Articles | Volume 22, issue 5
https://doi.org/10.5194/nhess-22-1655-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-22-1655-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Landslides caught on seismic networks and satellite radars
Department of Earth Sciences, Engineering Geology, ETH Zurich, Zurich, Switzerland
now at: CERC, WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland
Alessandro C. Mondini
National Research Council, Istituto di Ricerca per la Protezione Idrogeologica, Perugia, Italy
For further information regarding the team, please visit the link which appears at the end of the paper.
Related authors
Jane Walden, Mylène Jacquemart, Bretwood Higman, Romain Hugonnet, Andrea Manconi, and Daniel Farinotti
Nat. Hazards Earth Syst. Sci., 25, 2045–2073, https://doi.org/10.5194/nhess-25-2045-2025, https://doi.org/10.5194/nhess-25-2045-2025, 2025
Short summary
Short summary
We studied eight glacier-adjacent landslides in Alaska and found that slope movement increased at four sites as the glacier retreated past the landslide area. Movement at other sites may be due to heavy precipitation or increased glacier thinning, and two sites showed little to no motion. We suggest that landslides near waterbodies may be especially vulnerable to acceleration, which we guess is due to faster retreat rates of water-terminating glaciers and changing water flow in the slope.
Andrea Manconi, Gwendolyn Dasser, Mylène Jacquemart, Nicolas Oestreicher, Livia Piermattei, and Tazio Strozzi
Abstr. Int. Cartogr. Assoc., 9, 41, https://doi.org/10.5194/ica-abs-9-41-2025, https://doi.org/10.5194/ica-abs-9-41-2025, 2025
Andrea Manconi, Yves Bühler, Andreas Stoffel, Johan Gaume, Qiaoping Zhang, and Valentyn Tolpekin
Nat. Hazards Earth Syst. Sci., 24, 3833–3839, https://doi.org/10.5194/nhess-24-3833-2024, https://doi.org/10.5194/nhess-24-3833-2024, 2024
Short summary
Short summary
Our research reveals the power of high-resolution satellite synthetic-aperture radar (SAR) imagery for slope deformation monitoring. Using ICEYE data over the Brienz/Brinzauls instability, we measured surface velocity and mapped the landslide event with unprecedented precision. This underscores the potential of satellite SAR for timely hazard assessment in remote regions and aiding disaster mitigation efforts effectively.
Gwendolyn Dasser, Valentin T. Bickel, Marius Rüetschi, Mylène Jacquemart, Mathias Bavay, Elisabeth D. Hafner, Alec van Herwijnen, and Andrea Manconi
EGUsphere, https://doi.org/10.5194/egusphere-2024-1510, https://doi.org/10.5194/egusphere-2024-1510, 2024
Short summary
Short summary
Understanding snowpack wetness is crucial for predicting wet snow avalanches, but detailed data is often limited to certain locations. Using satellite radar, we monitor snow wetness spatially continuously. By combining different radar tracks from Sentinel-1, we improved spatial resolution and tracked snow wetness over several seasons. Our results indicate higher snow wetness to correlate with increased wet snow avalanche activity, suggesting our method can help identify potential risk areas.
Kristina Juliana Reinders, Govert Frederik Verhoeven, Luca Sartorelli, Ramon Hanssen, and Andrea Manconi
EGUsphere, https://doi.org/10.5194/egusphere-2023-2321, https://doi.org/10.5194/egusphere-2023-2321, 2023
Preprint archived
Short summary
Short summary
We investigated if radar data from the Sentinel-1 satellite can be used to assess displacements in permafrost areas in the Swiss alps. We discovered that 92 % of the permafrost areas can be visible with Sentinel-1. Next, based on displacement times series derived from radar data we revealed that the ground movements in permafrost areas are 2–3 times as large than in permafrost without areas. This result can help in monitoring permafrost areas and update current permafrost maps.
Jane Walden, Mylène Jacquemart, Bretwood Higman, Romain Hugonnet, Andrea Manconi, and Daniel Farinotti
Nat. Hazards Earth Syst. Sci., 25, 2045–2073, https://doi.org/10.5194/nhess-25-2045-2025, https://doi.org/10.5194/nhess-25-2045-2025, 2025
Short summary
Short summary
We studied eight glacier-adjacent landslides in Alaska and found that slope movement increased at four sites as the glacier retreated past the landslide area. Movement at other sites may be due to heavy precipitation or increased glacier thinning, and two sites showed little to no motion. We suggest that landslides near waterbodies may be especially vulnerable to acceleration, which we guess is due to faster retreat rates of water-terminating glaciers and changing water flow in the slope.
Andrea Manconi, Gwendolyn Dasser, Mylène Jacquemart, Nicolas Oestreicher, Livia Piermattei, and Tazio Strozzi
Abstr. Int. Cartogr. Assoc., 9, 41, https://doi.org/10.5194/ica-abs-9-41-2025, https://doi.org/10.5194/ica-abs-9-41-2025, 2025
Lorenzo Nava, Alessandro Mondini, Kushanav Bhuyan, Chengyong Fang, Oriol Monserrat, Alessandro Novellino, and Filippo Catani
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-230, https://doi.org/10.5194/gmd-2024-230, 2025
Preprint under review for GMD
Short summary
Short summary
This paper presents a new framework for landslide detection using radar and deep learning, informed by data from 73000 landslides across diverse regions in the world. The method showed high accuracy and rapid response potential regardless of weather and illumination conditions. By overcoming the limits of optical satellite imagery, it offers a powerful tool for global landslide detection, benefiting disaster management and advancing methods for monitoring hazardous terrains.
Andrea Manconi, Yves Bühler, Andreas Stoffel, Johan Gaume, Qiaoping Zhang, and Valentyn Tolpekin
Nat. Hazards Earth Syst. Sci., 24, 3833–3839, https://doi.org/10.5194/nhess-24-3833-2024, https://doi.org/10.5194/nhess-24-3833-2024, 2024
Short summary
Short summary
Our research reveals the power of high-resolution satellite synthetic-aperture radar (SAR) imagery for slope deformation monitoring. Using ICEYE data over the Brienz/Brinzauls instability, we measured surface velocity and mapped the landslide event with unprecedented precision. This underscores the potential of satellite SAR for timely hazard assessment in remote regions and aiding disaster mitigation efforts effectively.
Gwendolyn Dasser, Valentin T. Bickel, Marius Rüetschi, Mylène Jacquemart, Mathias Bavay, Elisabeth D. Hafner, Alec van Herwijnen, and Andrea Manconi
EGUsphere, https://doi.org/10.5194/egusphere-2024-1510, https://doi.org/10.5194/egusphere-2024-1510, 2024
Short summary
Short summary
Understanding snowpack wetness is crucial for predicting wet snow avalanches, but detailed data is often limited to certain locations. Using satellite radar, we monitor snow wetness spatially continuously. By combining different radar tracks from Sentinel-1, we improved spatial resolution and tracked snow wetness over several seasons. Our results indicate higher snow wetness to correlate with increased wet snow avalanche activity, suggesting our method can help identify potential risk areas.
Kristina Juliana Reinders, Govert Frederik Verhoeven, Luca Sartorelli, Ramon Hanssen, and Andrea Manconi
EGUsphere, https://doi.org/10.5194/egusphere-2023-2321, https://doi.org/10.5194/egusphere-2023-2321, 2023
Preprint archived
Short summary
Short summary
We investigated if radar data from the Sentinel-1 satellite can be used to assess displacements in permafrost areas in the Swiss alps. We discovered that 92 % of the permafrost areas can be visible with Sentinel-1. Next, based on displacement times series derived from radar data we revealed that the ground movements in permafrost areas are 2–3 times as large than in permafrost without areas. This result can help in monitoring permafrost areas and update current permafrost maps.
Txomin Bornaetxea, Ivan Marchesini, Sumit Kumar, Rabisankar Karmakar, and Alessandro Mondini
Nat. Hazards Earth Syst. Sci., 22, 2929–2941, https://doi.org/10.5194/nhess-22-2929-2022, https://doi.org/10.5194/nhess-22-2929-2022, 2022
Short summary
Short summary
One cannot know if there is a landslide or not in an area that one has not observed. This is an obvious statement, but when landslide inventories are obtained by field observation, this fact is seldom taken into account. Since fieldwork campaigns are often done following the roads, we present a methodology to estimate the visibility of the terrain from the roads, and we demonstrate that fieldwork-based inventories are underestimating landslide density in less visible areas.
Angelica Tarpanelli, Alessandro C. Mondini, and Stefania Camici
Nat. Hazards Earth Syst. Sci., 22, 2473–2489, https://doi.org/10.5194/nhess-22-2473-2022, https://doi.org/10.5194/nhess-22-2473-2022, 2022
Short summary
Short summary
We analysed 10 years of river discharge data from almost 2000 sites in Europe, and we extracted flood events, as proxies of flood inundations, based on the overpasses of Sentinel-1 and Sentinel-2 satellites to derive the percentage of potential inundation events that they were able to observe. Results show that on average 58 % of flood events are potentially observable by Sentinel-1 and only 28 % by Sentinel-2 due to the obstacle of cloud coverage.
Cited articles
Andres, N. and Badoux, A.: Unwetterschäden in der Schweiz im Jahre 2017,
Wasser Energ. Luft, 110, 67–74, 2018.
Bayer, B., Simoni, A., Mulas, M., Corsini, A., and Schmidt, D.: Deformation
responses of slow moving landslides to seasonal rainfall in the Northern
Apennines, measured by InSAR, Geomorphology, 308, 293–306,
https://doi.org/10.1016/j.geomorph.2018.02.020, 2018.
Chang, J.-M., Chao, W.-A., Chen, H., Kuo, Y.-T., and Yang, C.-M.: Locating rock slope failures along highways and understanding their physical processes using seismic signals, Earth Surf. Dynam., 9, 505–517, https://doi.org/10.5194/esurf-9-505-2021, 2021.
Chao, W.-A., Wu, Y.-M., Zhao, L., Chen, H., Chen, Y.-G., Chang, J.-M., and
Lin, C.-M.: A first near real-time seismology-based landquake monitoring
system, Sci. Rep., 7, 43510, https://doi.org/10.1038/srep43510, 2017.
Chen, C.-H., Chao, W.-A., Wu, Y.-M., Zhao, L., Chen, Y.-G., Ho, W.-Y., Lin,
T.-L., Kuo, K.-H., and Chang, J.-M.: A seismological study of landquakes
using a real-time broad-band seismic network, Geophys. J. Int., 194,
885–898, https://doi.org/10.1093/gji/ggt121, 2013.
Cook, K. L. and Dietze, M.: Seismic Advances in Process Geomorphology, Annu.
Rev. Earth Planet. Sci., 50, 183–204, https://doi.org/10.1146/annurev-earth-032320-085133, 2022.
Coviello, V., Arattano, M., Comiti, F., Macconi, P., and Marchi, L.: Seismic
Characterization of Debris Flows: Insights into Energy Radiation and Implications for Warning, J. Geophys. Res.-Earth, 124, 1440–1463,
https://doi.org/10.1029/2018JF004683, 2019.
Dammeier, F., Moore, J. R., Haslinger, F., and Loew, S.: Characterization of
alpine rockslides using statistical analysis of seismic signals, J. Geophys.
Res.-Earth, 116, F04024, https://doi.org/10.1029/2011JF002037, 2011.
Dammeier, F., Moore, J. R., Hammer, C., Haslinger, F., and Loew, S.: Automatic detection of alpine rockslides in continuous seismic data using
Hidden Markov Models, J. Geophys. Res.-Earth, 121, 351–371, https://doi.org/10.1002/2015JF003647, 2016.
Dietze, M., Turowski, J. M., Cook, K. L., and Hovius, N.: Spatiotemporal
patterns, triggers and anatomies of seismically detected rockfalls, Earth
Surf. Dynam., 5, 757–779, https://doi.org/10.5194/esurf-5-757-2017, 2017.
Ekström , G.: Global Detection and Location of Seismic Sources by Using Surface Waves, Bull. Seismol. Soc. Am., 96, 1201–1212, https://doi.org/10.1785/0120050175, 2006.
Ekström, G. and Stark, C. P.: Simple scaling of catastrophic landslide
dynamics, Science, 339, 1416–1419, 2013.
Froude, M. J. and Petley, D. N.: Global fatal landslide occurrence from 2004
to 2016, Nat. Hazards Earth Syst. Sci., 18, 2161–2181,
https://doi.org/10.5194/nhess-18-2161-2018, 2018.
Fuchs, F., Lenhardt, W., Bokelmann, G., and the AlpArray Working Group:
Seismic detection of rockslides at regional scale: examples from the Eastern
Alps and feasibility of kurtosis-based event location, Earth Surf. Dynam., 6,
955–970, https://doi.org/10.5194/esurf-6-955-2018, 2018.
Gariano, S. L. and Guzzetti, F.: Landslides in a changing climate, Earth-Sci. Rev., 162, 227–252, https://doi.org/10.1016/j.earscirev.2016.08.011, 2016.
Govi, M., Gullà, G., and Nicoletti, P. G.: Val Pola rock avalanche of
July 28, 1987, in Valtellina (Central Italian Alps), in: Reviews in
Engineering Geology, vol. 15, Geological Society of America, 71–90,
https://doi.org/10.1130/REG15-p71, 2002.
Guzzetti, F., Mondini, A. C., Cardinali, M., Fiorucci, F., Santangelo, M., and Chang, K.-T.: Landslide inventory maps: New tools for an old problem, Earth-Sci. Rev., 112, 42–66, https://doi.org/10.1016/j.earscirev.2012.02.001, 2012.
Guzzetti, F., Gariano, S. L., Peruccacci, S., Brunetti, M. T., Marchesini, I., Rossi, M., and Melillo, M.: Geographical landslide early warning
systems, Earth-Sci. Rev., 200, 102973, https://doi.org/10.1016/j.earscirev.2019.102973, 2019.
Hetényi, G., Molinari, I., Clinton, J., Bokelmann, G., Bondár, I.,
Crawford, W. C., Dessa, J.-X., Doubre, C., Friederich, W., Fuchs, F., Giardini, D., Gráczer, Z., Handy, M. R., Herak, M., Jia, Y., Kissling,
E., Kopp, H., Korn, M., Margheriti, L., Meier, T., Mucciarelli, M., Paul, A., Pesaresi, D., Piromallo, C., Plenefisch, T., Plomerová, J., Ritter, J., Rümpker, G., Šipka, V., Spallarossa, D., Thomas, C., Tilmann, F., Wassermann, J., Weber, M., Wéber, Z., Wesztergom, V., Živčić, M., Abreu, R., Allegretti, I., Apoloner, M.-T., Aubert, C., Besançon, S., Bès de Berc, M., Brunel, D., Capello, M., Čarman, M., Cavaliere, A., Chèze, J., Chiarabba, C., Cougoulat, G., Cristiano, L., Czifra, T., D'Alema, E., Danesi, S., Daniel, R., Dannowski, A., Dasović, I., Deschamps, A., Egdorf, S., Fiket, T., Fischer, K., Funke, S., Govoni, A., Gröschl, G., Heimers, S., Heit, B., Herak, D., Huber, J., Jarić, D., Jedlička, P., Jund, H., Klingen, S., Klotz, B., Kolínský, P., Kotek, J., Kühne, L., Kuk, K., Lange, D., Loos, J., Lovati, S., Malengros, D., Maron, C., Martin, X., Massa, M., Mazzarini, F., Métral, L., Moretti, M., Munzarová, H., Nardi, A., Pahor, J., Péquegnat, C., Petersen, F., Piccinini, D., Pondrelli, S., Prevolnik, S., Racine, R., Régnier, M., Reiss, M., Salimbeni, S., et al.: The AlpArray Seismic Network: A Large-Scale European Experiment to Image the Alpine Orogen, Surv. Geophys., 39, 1009–1033, https://doi.org/10.1007/s10712-018-9472-4, 2018.
Hibert, C., Mangeney, A., Grandjean, G., Baillard, C., Rivet, D., Shapiro, N. M., Satriano, C., Maggi, A., Boissier, P., Ferrazzini, V., and Crawford, W.: Automated identification, location, and volume estimation of rockfalls at Piton de la Fournaise volcano, J. Geophys. Res.-Earth, 119, 1082–1105, https://doi.org/10.1002/2013JF002970, 2014.
Huang, J., Fenton, G., Griffiths, D. V., Li, D., and Zhou, C.: On the efficient estimation of small failure probability in slopes, Landslides, 14,
491–498, https://doi.org/10.1007/s10346-016-0726-2, 2017.
Lacroix, P., Dehecq, A., and Taipe, E.: Irrigation-triggered landslides in a
Peruvian desert caused by modern intensive farming, Nat. Geosci., 13, 56–60,
https://doi.org/10.1038/s41561-019-0500-x, 2019.
Manconi, A., Picozzi, M., Coviello, V., De Santis, F., and Elia, L.: Real-time detection, location, and characterization of rockslides using
broadband regional seismic networks, Geophys. Res. Lett., 43, 6960–6967, https://doi.org/10.1002/2016GL069572, 2016.
Mergili, M., Jaboyedoff, M., Pullarello, J., and Pudasaini, S. P.: Back calculation of the 2017 Piz Cengalo–Bondo landslide cascade with r.avaflow: what we can do and what we can learn, Nat. Hazards Earth Syst. Sci., 20, 505–520, https://doi.org/10.5194/nhess-20-505-2020, 2020.
Mondini, A. C.: Measures of Spatial Autocorrelation Changes in Multitemporal
SAR Images for Event Landslides Detection, Remote Sens., 9, 554,
https://doi.org/10.3390/rs9060554, 2017.
Mondini, A. C., Santangelo, M., Rocchetti, M., Rossetto, E., Manconi, A.,
and Monserrat, O.: Sentinel-1 SAR Amplitude Imagery for Rapid Landslide
Detection, Remote Sens., 11, 760, https://doi.org/10.3390/rs11070760, 2019.
Moore, J. R., Pankow, K. L., Ford, S. R., Koper, K. D., Hale, J. M., Aaron,
J., and Larsen, C. F.: Dynamics of the Bingham Canyon rock avalanches (Utah,
USA) resolved from topographic, seismic, and infrasound data, J. Geophys.
Res.-Earth, 122, 315–640, https://doi.org/10.1002/2016JF004036, 2017.
Petley, D. N.: The evolution of slope failures: mechanisms of rupture propagation, Nat. Hazards Earth Syst. Sci., 4, 147–152,
https://doi.org/10.5194/nhess-4-147-2004, 2004.
Roerdink, J. B. T. M. and Meijster, A.: The Watershed Transform: Definitions, Algorithms and Parallelization Strategies, Fundam. Informaticae, 41, 187–228, https://doi.org/10.3233/FI-2000-411207, 2000.
Stead, D. and Wolter, A.: A critical review of rock slope failure mechanisms: The importance of structural geology, J. Struct. Geol., 74, 1–23, https://doi.org/10.1016/j.jsg.2015.02.002, 2015.
Sung, C. C. and Holzer, J. A.: Scattering of electromagnetic waves from a
rough surface, Appl. Phys. Lett., 28, 429–431, https://doi.org/10.1063/1.88809, 1976.
Tanyaş, H., van Westen, C. J., Allstadt, K. E., Nowicki, A., Jessee, M.,
Görüm, T., Jibson, R. W., Godt, J. W., Sato, H. P., Schmitt, R. G.,
Marc, O., and Hovius, N.: Presentation and Analysis of a Worldwide Database
of Earthquake-Induced Landslide Inventories, J. Geophys. Res.-Earth, 122, 1991–2015, https://doi.org/10.1002/2017JF004236, 2017.
Thompson, G., West, M., usfseismiclab, Ketner, D., and Tape, C.: geoscience-community-codes/GISMO: version 1.20 beta (v1.20b), Zenodo [code], https://doi.org/10.5281/zenodo.1404723, 2018.
Torres, R., Snoeij, P., Geudtner, D., Bibby, D., Davidson, M., Attema, E.,
Potin, P., Rommen, B., Floury, N., Brown, M., Traver, I. N., Deghaye, P.,
Duesmann, B., Rosich, B., Miranda, N., Bruno, C., L'Abbate, M., Croci, R.,
Pietropaolo, A., Huchler, M., and Rostan, F.: GMES Sentinel-1 mission, Remote Sens. Environ., 120, 9–24, https://doi.org/10.1016/j.rse.2011.05.028, 2012.
Walter, F., Amann, F., Kos, A., Kenner, R., Phillips, M., de Preux, A., Huss, M., Tognacca, C., Clinton, J., Diehl, T., and Bonanomi, Y.: Direct observations of a three million cubic meter rock-slope collapse with almost
immediate initiation of ensuing debris flows, Geomorphology, 351, 106933, https://doi.org/10.1016/j.geomorph.2019.106933, 2019.
Weichert, D., Horner, R. B., and Evans, S. G.: Seismic signatures of landslides: The 1990 Brenda Mine collapse and the 1965 hope rockslides, Bull. Seismol. Soc. Am., 84, 1523–1532, 1994.
Short summary
Information on when, where, and how landslide events occur is the key to building complete catalogues and performing accurate hazard assessments. Here we show a procedure that allows us to benefit from the increased density of seismic sensors installed on ground for earthquake monitoring and from the unprecedented availability of satellite radar data. We show how the procedure works on a recent sequence of landslides that occurred at Piz Cengalo (Swiss Alps) in 2017.
Information on when, where, and how landslide events occur is the key to building complete...
Altmetrics
Final-revised paper
Preprint