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Abstract. We present a procedure to detect landslide events
by analyzing in-sequence data acquired from regional broad-
band seismic networks and spaceborne radar imagery. The
combined used of these techniques is meant to exploit their
complementary elements and mitigate their limitations when
used singularly. To test the method, we consider a series
of six slope failures associated to the Piz Cengalo rock
avalanche that recently occurred in the Swiss Alps, a region
where we can benefit from high spatial density and quality
of seismic data, as well as from the high spatial and temporal
resolution of the European Space Agency (ESA) Copernicus
Sentinel-1 radar satellites. The operational implementation
of the proposed approach, in combination with the future in-
crease in availability of seismic and satellite data, can offer a
new and efficient solution to build and/or expand landslide
catalogues based on quantitative measurements and, thus,
help in hazard assessments and the definition of early warn-
ing systems at regional scales.

1 Introduction

Landslides cause fatalities and devastation globally, with re-
markable effects especially on low-income and/or develop-
ing countries (Froude and Petley, 2018). While the spatial
occurrence of landslides is related to intrinsic geomorpho-
logical and climatic characteristics (Stead and Wolter, 2015),
catastrophic failures arise when slope materials reach a crit-
ical damage state (Petley, 2004). In many cases, the ultimate
trigger towards failure events is related to anthropic activ-
ities, meteorological events, and earthquakes (Bayer et al.,
2018; Huang et al., 2017; Lacroix et al., 2019).

Quantitative and accurate data on the timing, location, and
size of landslide events are crucial for studying the relation-
ships between local and regional preconditioning factors, to
recognize potential causes, and to identify the potential ef-
fects of climatic forcing. Moreover, efficient early warning
systems at regional scale rely on the availability of accurate
and complete landslide catalogues (Gariano and Guzzetti,
2016). Despite recent efforts, the knowledge on spatial and
temporal landslide distribution is incomplete. The informa-
tion about landslide volume, runout, velocity, etc., is usu-
ally available only when the events threat life or damage
infrastructures, as well as when they are associated with
large earthquakes or exceptional meteorological occurrences.
These catalogues, however, deliver only a partial picture of
the impact of such events on the landscape. In addition, many
landslide events are unreported because they occur in remote
regions and do not have immediate and/or relevant impacts
on human activities. This strongly hinders the completeness
of inventories used for hazard assessment and for the calibra-
tion of early warning systems at regional scales (Guzzetti et
al., 2019).

In recent years, two methods have emerged in the
panorama of landslide event detection, i.e., satellite remote
sensing and seismic data analyses. This is mainly due to
the increased availability and quality of these datasets at the
global scale and to the open data access policies. In par-
ticular, Earth observation (EO) data acquired through dif-
ferent satellite missions are more and more exploited by
systematic visual interpretation, and supervised and unsu-
pervised automatic classification methodologies, in order to
build catalogues of landslide events triggered by large earth-
quakes and/or extreme meteorological events (Mondini et al.,
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Figure 1. Overview of the area of investigation. (a) View of Val Bondasca, with an approximate outline of the area affected by the Piz
Cengalo (46.29475° N, 9.602056° E) rock avalanche and subsequent debris flows (© Google Earth 2021). (b) Detail of the release area on
25 August 2017. (¢) Detail of the deposits on 30 August 2017. Photos: © VBS swisstopo Flugdienst.

2019; Tanyas et al., 2017). These methodologies strongly
depend on the availability of the images, which are usu-
ally not adequate for systematic early landslide detection.
Despite the identification of signatures of landslide events
in seismic networks deployed for earthquake monitoring
having been occasionally studied in the past (Govi et al.,
2002; Weichert et al., 1994), current technical advances and
the diffusion of broadband seismic sensors have increased
the possibility also to detect and locate landslide events of
small-moderate size at regional scales. Automatic or semi-
automatic procedures adapted from earthquake location rou-
tines have demonstrated fair performances (Chao et al., 2017;
Dammeier et al., 2011; Ekstrom, 2006; Fuchs et al., 2018);
however, while uncertainties of several kilometers can be tol-
erated in case of earthquake epicentral locations, landslides
are extremely confined phenomena that affect a single slope
(or only small portions of it). A more accurate location of
the events can be achieved with local networks specifically
designed to identify mass movements (Dietze et al., 2017,
Cook and Dietze, 2022). Nevertheless, such procedures are
impractical when the areas to explore are very large, and the
number of stations is poor, as it is typical at the scale of entire
mountain chains.

In this work, we jointly use broadband seismic data and
spaceborne radar imagery to show a procedure allowing for a
systematic detection and location of landslides, as well as an
initial definition of their area of impact, and their magnitude.
We present results over the region recently affected by the Piz
Cengalo, a steep granitic massive located in the central Alps
at the border between Switzerland and Italy (see Fig. 1). The
area was repeatedly affected by large (> 1 x 10° m3), rock
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slope failure processes in the past decades, with the main
event on 23 August 2017 being the largest (> 3x 10® m?) and
most catastrophic reported in recent years, causing eight fa-
talities and damages in the range of EUR 50 million (Andres
and Badoux, 2018). A detailed description of the event, its
preconditioning factors, potential causes, the dynamics of the
rock slope failure, and the subsequent debris flow reaching
the village of Bondo, is beyond the scope of this work. Thus,
the readers are referred to the recent literature for more infor-
mation on these specific topics (Mergili et al., 2020; Walter
etal., 2019).

2 Materials and methods

We consider Piz Cengalo as an exemplary case to demon-
strate the potential and the limits of the combination of seis-
mic and spaceborne radar data to provide quantitative infor-
mation on landslide occurrence in an alpine scenario. We
benefit from the high spatial density of the AlpArray seismic
network (Hetényi et al., 2018) and from the unprecedented
spatial and temporal resolution of Sentinel-1 Synthetic Aper-
ture Radar (SAR) imagery (Torres et al., 2012).

In the following, we describe the steps to initially define
a candidate location region with seismic data and then apply
change detection investigations on Sentinel-1 SAR imagery
to refine the location and identify the slope failure event.
Hereafter, we will use the term “landquake” (LQ) to define
landslide events recorded by seismic sensors, as increasingly
proposed in literature (Chen et al., 2013). However, this term
is not meant to provide additional details on specific land-
slide characteristics.
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Figure 2. Seismic network and data. The left panel shows the AlpArray network of broadband stations (red triangles). The right panels
show the selected signals (vertical component HHZ, where H is high broadband, H is high gain, and Z is vertical orientation) recorded by
AlpArray stations located at different distances from event LQ2 (see Table 1), which occurred on 23 August 2017 (i.e., the main Piz Cengalo

rock avalanche event; yellow star in the map).

2.1 Seismic data processing

We consider a total of six events occurred at Piz Cengalo
between 21 August and 10 October 2017. The landquakes
are characterized by different volumes and runout and all oc-
curred in the same slope but at different stages of the pro-
gressive failure process. LQ1 occurred 2 d before the main
failure, with three events on 23 August 2017, (LQ2-LQ4),
while LQ5 occurred about a month later and LQ6 about
2 months later). Figure 2 shows the distribution of the AlpAr-
ray stations and examples of the signals for the LQ2 detected
at different distances from the source. The apparent veloc-
ities are of the order of 3kms~! and are thus compatible
with surface waves generated by surficial mass movements
(e.g., Dammeier et al., 2011). The Swiss Seismological Ser-
vice (SED) routinely recognizes landslide phenomena in the
seismic records of stations located in Switzerland and in the
vicinity of the national borders. Despite monitoring proce-
dures not being optimized to detect mass movements, these
are systematically reported. After an event detection (at least
three stations triggered on the SED network), a first-order so-
lution is obtained by (visually) identifying coherent energy
at multiple stations, typically due to S waves, and using a
regional 3D velocity model to estimate location. In general,
locations are more accurate when seismic stations are close
to the event and there is good azimuthal distribution of ob-
servations. For the Piz Cengalo landquake event associated
to the largest failure (LQ?2), the closest station recording the
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event is at ~ 25 km, and the location accuracy has uncertain-
ties of the order of 5 km.

To perform our back analysis on the Piz Cengalo sequence,
we arbitrarily define a temporal window of 10 min centered
on the date and time provided by SED with the manual proce-
dure described above. We consider the waveforms recorded
by all the AlpArray broadband stations available for each
event and focused on the HHZ channel (i.e., the vertical ve-
locity component of high broadband sampled at or above
80 Hz, generally 100 or 200 Hz). The choice of the HHZ
channel is justified by previous studies showing that such
a component usually entails the largest energy in case of
landquakes (e.g., Dammeier et al., 2011). We apply a short-
term average/long-term average (STA/LTA) detection (see
the details and parameters in Table S1 in the Supplement)
to find the onset time of the event at each station. Then, we
compute the time delay between the first triggered station
(i.e., the first station recording an event, which is assumed to
be the closest to the event) and all the other stations identi-
fying an event in the same temporal window. The resulting
values are interpolated on a regular grid of 0.25 x 0.25°, spa-
tially smoothed with an average filter (3 x 3 kernel), and then
normalized to obtain a new function defined here as the like-
lihood of landquake location (LLL). The candidate region of
interest (ROI) potentially affected by a landquake is defined
by considering LLL > 0.95 and constraining the change de-
tection processing on a spatial subset of available Sentinel-1
radar scenes.

Nat. Hazards Earth Syst. Sci., 22, 1655-1664, 2022
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2.2 Sentinel-1 SAR data processing

We adopt the change detection approach proposed in Mon-
dini (2017), which is specifically modified here to tackle sin-
gle events instead of populations of landslides. The analy-
sis is performed to identify potential variations in surface
backscattering occurred between the pre- and post-event im-
ages over the area with LLL > 0.95. In fact, changes in the
radar brightness coefficient (beta nought, 8y) have demon-
strated to be a suitable indicator for the detection of land-
slide events of different sizes and occurring in different geo-
graphic scenarios (Mondini et al., 2019). In the maps record-
ing the temporal changes in By, landslides appear as clusters
of similar values in a bulk of speckles. After data acquisi-
tion, pre- and post-event Sentinel-1 radar imagery require
the following steps: radiometric and geometric corrections,
multi-looking, filtering of the intensity values, co-registration
(pair alignment), computation of changes (logarithm of the
Bo ratio), and ellipsoid correction. The result is a Sy changes
map with a cell resolution of about 14 x 14 m. Furthermore,
the Bp changes map is segmented using a parametric water-
shed approach (Roerdink and Meijster, 2000) in which the
scale level and the moving window kernel size parameters
of the intensity algorithm are automatically assigned mini-
mizing a cost function (Mondini, 2017). The segmentation
process is aimed at identifying a few large segments (e.g.,
the largest, potentially delineating changes associated to the
landquake) in the candidate area LLL > 0.95 and a number of
small segments intercepting the speckle-like effect. Thus, the
landquake event can be recognized as an outlier in the seg-
ment’s distribution of the areas. The boundaries of the outlier
segment provide the potential location of the landquake.

3 Results

To distinguish between local earthquakes and landquakes,
we applied the method proposed in Manconi et al. (2016),
based on the ratio between the local magnitude and the du-
ration magnitude (see Table 1). This method classifies the
Piz Cengalo sequence as landquakes. Moreover, the volumes
computed by considering the empirical relationship with the
duration magnitude (Manconi et al., 2016) are in agreement
with the ones measured with lidar (see Walter et al., 2019).
Figure 3 shows the results obtained by analyzing the seis-
mic data available for the LQ2 event. This is the largest
landquake, and its seismic signature was detected by tens
of stations up to ~ 400km distance from the source (also
see the Supplement). The computed LLL function is approx-
imately centered on Piz Cengalo massif. The area within
LLL > 0.95 is of the order of 35000km?, i.e., ~ 2% of the
entire grid considered in the interpolation. However, this area
is still very large for an accurate identification of a slope fail-
ure event that affects an area of about 1km? (Walter et al.,
2019). The initial candidate region defined by the LLL func-
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Figure 3. Likelihood of landquake location (LLL) based on the ar-
rival time of seismic signals recorded by AlpArray stations. This ba-
sic analysis of the seismic data is used to constrain the approximate
location where a landslide event has occurred. (a) LLL over the en-
tire AlpArray network. (b) Magnified view of the areas with high
likelihood. The area 0.95 < LLL < 1.0 is used to confine the change
detection analysis. The true location of the Piz Cengalo event (white
star) is also shown.

Table 1. Summary of the landquakes analyzed in this study and
associated to the Piz Cengalo slope failure. ML (local magnitude)
is estimated by SED, while average magnitude duration (MD) and
volumes are computed, following Manconi et al. (2016), by consid-
ering the event duration on all triggered AlpArray stations. Note that
all LQ events have ML/MD less or equal to 0.8, i.e., they can be dis-
cerned from earthquake events which typically have ML/MD ~ 1.

Event Date/time (UTC) ML MD* ML/MD Vol Mmd)
D

LQl 21 Aug2017,09:29:09 23 3.03 075  0.078-0.167
LQ2 23 Aug2017,07:30:27 3.0 3.71 0.80 1.65-2.61
LQ3 23 Aug2017,09:03:57 13 286 045 0.02-0.14
LQ4 23 Aug2017,09:36:16 2.1 322  0.65 0.12-0.50
LQ5  158ep2017,20:04:36 23 326  0.70 0.23-0.41
LQ6  100ct2017,02:58:41 1.1  2.65 041  0.014-0.035
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tion is used to first identify the available Sentinel-1 imagery
in terms of time of acquisition and orbit. In this specific case,
the suitable Sentinel-1 orbits are the TO15, ascending, and
T066, descending, respectively. Then, the change detection
processing is not applied to the entire image but only to the
area with LLL > 0.95, which is 20 % of the acquired SAR
scene.

Figure 4 shows the results of the change detection analy-
sis obtained on the ascending TO15 imagery (see Table S2).
Due to the temporal proximity of the LQI-LQ4 sequence
(which occurred within 2 d; see Table 1), the events cannot
be singularly discriminated because the Sentinel-1 constel-
lation (when both Sentinel-1A and 1B are operative) revisit
time in Europe was of 6 d in the period of analysis. The LQ2,
however, has certainly been the main cause of the surface
changes, and for this reason, we refer hereafter mainly to
this event. The outlier segment covers an area of ~ 0.9 km?,
about 2 orders of magnitude larger than the average areas
of the segment’s distribution. Moreover, the segment is elon-
gated and thus has a very low value of roundness (defined as
the area of the circle with the same length as the polygon to
the polygon area; see results in the scatterplot in the bottom
panels of Fig. 4). The footprint and the dimensions of the
segment identified are in very good agreement with the area
affected by the rock avalanche (Walter et al., 2019). Since the
events LQS5 and LQ6 are smaller in magnitude compared to
the LQ1-LQ4 sequence, the changes in the SAR image can-
not be univocally and automatically defined as for the LQ2
(see Figs. 4 and S2 and S3). In fact, the LQ5 event is likely
the fifth in size segment in the region analyzed, with quite
a stretched/elongated shape and a roundness value of 0.17
(median roundness equal to 0.47; first quartile equal to 0.37).
The first and the third segments are contiguous, rounded
in the first and amorphous in the third, indicating a large
change, of ~ 21.4 km? about 25 km north of Piz Cengalo, in
an area where landslides were not reported. The second and
the fourth segments, contiguous and rounded as well, record
a change of ~ 15.3km? over the Cima di Castello moun-
tain, 6km east of the Piz Cengalo valley. Their roundness
ranges from 1.6 (for the amorphous segment) to 0.45. The
LQ6 event does not produce statistically relevant changes in
terms of size and in terms of shape.

4 Discussion

Seismic data are capable of providing indirect evidence of
the time of landslide occurrence, also in inaccessible loca-
tions, but independent verification of the location is neces-
sary for event confirmation and classification (Ekstrom and
Stark, 2013). On the other hand, remote sensing data can de-
liver direct evidence of the areas hit by landslide events, but
independent observations are necessary to identify the exact
time of occurrence (Guzzetti et al., 2012).
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Figure 4. The top panel shows the results of the change detection
analysis. The red polygon shows the area identified as potential
landquake location for the main landquake event (i.e., LQ1-LQ4)
identified by processing the Sentinel-1 pre- and post-event, while
the gray polygon is the area hit by the rock avalanche (compare
Walter et al., 2019). The white star and the yellow star show the
locations of the largest segments for LQS5 and LQ6, respectively,
as identified within the Bondasca valley. Also see the Supplement
for more details on the segmentation results. The black dots show
the epicentral locations provided by SED (see Table 1). The bot-
tom plot shows scatterplots indicating the distribution of changes
in radar backscatter versus normalized areas of the segments. The
color map shows the normalized roundness. The segments associ-
ated to the landquakes are identified by the black arrows. See the
text for more details.

We propose here an approach exploiting seismic and re-
mote sensing (specifically, spaceborne SAR data), which is
suitable for the development of automatic pipelines aimed
at a systematic identification, location, and first evaluation
of landslide events. We have shown, as an exemplary case,
the application to a sequence of events that recently occurred
in the Swiss Alps. Our results provide several hints on the
potential application of this approach in operational scenar-
ios. We have applied a STA/LTA approach for the identifica-
tion of the event on an arbitrarily constrained temporal win-
dow. The STA/LTA method has shown to be suitable for the
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automatic detection of mass movements in continuous seis-
mic records also for early warning purposes, although spe-
cific calibration of the parameters used is necessary and de-
pends on the sensors, the network configuration, and local
conditions (Coviello et al., 2019). One of the main arguments
against the use of the STA/LTA approach in the detection of
mass movement signals lies in the inaccuracy of the determi-
nation of the event’s onset, which might cause errors in the
subsequent location procedures (Fuchs et al., 2018). Since
we refine the location using the remote sensing imagery, the
STA/LTA approach is sufficient to constrain the candidate re-
gion for the change detection task. Inaccuracies up to few
seconds of the STA/LTA detection that would cause large in-
accuracies in location routines based on seismic data only
would cause only negligible changes in the LLL function.

An important problem after the detection of an event is
the distinction and/or classification of the signals recorded
in continuous seismic waveforms (earthquakes, explosion,
mass movements, anthropic sources, etc.). Several authors
have proposed empirical-based relationships, signal process-
ing, and/or machine learning strategies, which achieve good
performances (Dammeier et al., 2016; Hibert et al., 2014;
Moore et al., 2017). The approach used here, proposed by
Manconi et al. (2016), shows that, in the Piz Cengalo se-
quence, all events could have been classified as landquakes.
Moreover, the evaluation of the rockslide volumes based on
the empirical relationship observed with the duration mag-
nitude provided good agreement with independent volume
measurements. The same approach has recently been im-
plemented in an operational regional system in Taiwan and
shows encouraging results (Chang et al., 2021).

Despite the candidate location being identified with a ba-
sic proximity approach, the source region is already reason-
ably well constrained for all six LQ events considered (see
also Fig. S1 in the Supplement). This result is possible only
when a relatively high spatial density of seismic sensors is
available, such as the AlpArray network. We tested how the
estimation of the area LLL > 0.95 would vary by omitting
the nearest seismic stations (see Table 2). For LQ1 and LQ2,
there is a clear increase in the LLL > 0.95 area, although the
values in percentage with respect to the entire size of the net-
work still show a substantial benefit in the reduction of the
candidate area for the subsequent change detection analysis.
In case of smaller events, the differences are difficult to eval-
uate because the number of stations operative at the moment
of the event, the signal/noise ratio of the seismic data, and the
grid interpolation step have a more relevant effect. The re-
sults of this test show that the size of the area for initial guess
of landquake location is thus not only related to the distri-
bution of the stations but also to the size (and likely the dy-
namic) of the event. At this stage, we cannot provide general
network requirements that could be exported in other case
scenarios. More advanced location routines can be applied,
but the homogenization of procedures across large areas like
the entire alpine chain is not straightforward. In addition, an

Nat. Hazards Earth Syst. Sci., 22, 1655-1664, 2022

Table 2. Results of the assessment of differences between areas with
LLL > 0.95 when reducing the number of stations used for the inter-
polation. In case 1, we removed all stations triggered between 0 and
5s, i.e., up to ~ 50km from the event. In case 2, we removed sta-
tions triggered between 0 and 10, i.e., up to ~ 65 km. Missing val-
ues are because of lack of stations for reliable interpolation. Values
in percentage are computed with respect to the entire interpolation
grid, i.e., 1.71 x 100 km?.

Case 1
km? x 104 (%)

Case 2
km? x 104 (%)

Event All network
D km? x 10* (%)

LQI 1.24 (0.7) 2.86 (1.7) -
LQ2 3.55(2.1) 6.03 (3.6) 103
LQ3 0.85 (0.5) 0.7 (0.4) -
LQ4 2.70 (1.6) 2.63 (1.56) -
LQ5 2.24(1.3) 2.63 (1.56) -
LQ6 1.08 (0.64) - -

increased level of complexity would not certainly correspond
to an increase in accuracy for landslide location.

As far as the change detection analysis of the Sentinel-1
SAR data is concerned, the location of landquakes in LQ2
(i.e. in this case the LQ1-LQ4 sequence) is straightforward.
The event was large and caused a vast drop in the backscat-
tering coefficient in the post-event image, which occurred
by spatially oversizing the surrounding random changes al-
ways present in SAR images (speckle-like effect). Further-
more, other environmental changes in the area are not rele-
vant and, in this specific case, are mostly in the direction of
an increase in the backscattering coefficient. The results of
the segmentation are unambiguous in all the images, what-
ever the acquisition mode and the polarization are, even if the
final segments can be slightly different. Additionally, post-
processing, like smoothing or gap-filling filtering, can also
partially change the final shape of the segment and the iden-
tified area. On the contrary, the identification of the LQS5 and
LQ6 events shows more complexity, and it is not straight-
forward. Their signals emerge only in the ascending imagery
with VH (vertical-horizontal) polarization, which is a pos-
sible indication of a weak change in roughness along the
slope (Sung and Holzer, 1976). According to seismic data,
their sizes are much smaller compared to LQ2, and then
the corresponding changes of the backscattering coefficient
are expected to be less distinguishable in the bulk of ran-
dom speckles (see Fig. 4). In fact, when the signs left in the
Bo changes map have a size comparable to other environmen-
tal changes or the speckle-like segments, landslides cannot
be univocally recognized. Regarding LQ5, only a supervised
post-processing, including customized filtering to facilitate
the segmentation, and manual cluster shape analysis (Mon-
dini et al., 2019) over the valley allowed the highlighting of a
potential segment of interest. The segment is the fifth in size
among millions, with a stretched shape compatible with the
slope process under study. On the contrary, the first four clus-
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Table 3. Summary of the pros and cons related to the herein proposed strategy for landquake identification, location, and classification.

Task Proposed approach Pros Cons Comments
Event detection STA/LTA Straightforward Pre-calibration of the Minor impacts in a procedure that
implementation parameters is needed; relies on additional data for a
inaccuracies in the refinement of the location
determination of the event’s
onset
Landquake classification ~ML/MD < 0.8 Performance already Large variabilities due to Ad hoc relationships can be
tested in alpine contexts  different approaches for the calibrated over smaller areas for
estimation of local and duration  better accuracies
magnitudes
Preliminary location LLL > 0.95 Straightforward Depends on stations Minor impacts in a procedure that

implementation

distribution, grid step, and
interpolation method

relies on additional data for a
refinement of the location

Location refinement (1) Satellite radar imagery

conditions

Day/night; any weather

Relatively low spatial and
temporal resolution; geometric
distortions

High-resolution data will be
available in near future, according to
the space missions planned — to be
complemented with optical imagery
when available

Location refinement (2) ~ Optical imagery Identification of

polygons vs. pixelwise

analysis

Ambiguity when events and/or
associated changes in SAR
imagery are too small

Benefit from the use of higher-
resolution imagery and/or acquired
in different bands

ters are rounded, or amorphous, and more adequate for rep-
resenting other types of processes that occurred in the area.
Multi-band, multi-polarization data, and a shorter revisit time
of the satellite would have probably helped in reducing the
environmental noise and then in surfacing the segment. For
LQ6, a small but clear signal along the slope is present in
the catchment, but it is not large when considering the entire
distribution of segments. Other geometrical parameters such
as, for example, the elongation or the roundness of the seg-
ment’s area do not help (see Fig. 4). We can then assert that
LQ6 is below the limit of the spatial resolution of the used
images. A potential adaption for the operational implemen-
tation of our approach could be running the change detec-
tion task on progressively increasing LLL thresholds (0.95,
0.975, etc.). This could provide additional hints on possible
hot spots, which can be verified with subsequent SAR acqui-
sitions and/or supplementary remote sensing imagery (space-
borne or airborne).

In Table 3, we summarize the strong points and the short-
comings of the herein proposed methodology, including the
working hypotheses to overcome the current limitations. One
of the main advantages of the pipeline is that the data pre-
processing can be fully automated. Moreover, some of the
limitations depend mainly on technical constraints that might
be overcome in the near future. There are a number of prob-
lems, however, that depend on the intrinsic limitations of the
data considered, and it is difficult, at the current stage, to have
a clear definition of the best-suited strategies for improving
the performance. We will perform future evaluations on the
continuous processing of seismic data to make a substantial
assessment of the potential implementation of our procedure,
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to find the best compromise for specific parameters, and to
minimize false/missed alarms.

5 Conclusions

The key take-home message of this study is to show how
the systematic combination of seismic and remote sensing
data can be useful for identification and mapping of landslide
events. The use of SAR satellites shows the advantages of
all weather, day and night, and systematic acquisitions at the
global scale. When available, optical imagery and/or SAR
imagery acquired with different bands, fully polarimetric, or
with a higher spatial resolution can eventually contribute to
increase the quality and the quantity of the information. We
believe that the combination of seismic and spaceborne data
is a viable approach for a future operational monitoring sys-
tem at the scale of the Alps, and for this reason, this work
can be the starting point for raising awareness in the com-
munity and to foster the cooperation and funding necessary
for such an endeavor. We conclude by remarking that our ap-
proach is intended to be used for systematically populated
landslide catalogues relying on quantitative and accurate in-
formation on timing, magnitude, and frequency and also in
remote areas. Improved catalogue completeness is very im-
portant for the calibration of regional early warning systems
based on rainfall thresholds and on regional hazard assess-
ments (Guzzetti et al., 2019). An increase in the availabil-
ity of remote sensing imagery with daily or sub-daily revisit
times could lead to an employment in early detection of land-
slide events and possibly in disaster response scenarios, but
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these potential applications have to be evaluated in future
studies.

Code availability. Seismic data were processed with MATLAB
(Mathworks, R2020a) and the GISMO toolbox (available at
https://doi.org/10.5281/zenodo.1404723; Thompson et al., 2018).
The Sentinel-1 data were processed with SNAP — ESA Sentinel
Application Platform v2.0.2. Segmentation of SAR backscattering
and statistical assessment was performed with ENVI and IDL Math
(L3Harris Geospatial). Final plots were processed with Adobe II-
lustrator.
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