Articles | Volume 22, issue 3
https://doi.org/10.5194/nhess-22-1015-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-22-1015-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Detrainment and braking of snow avalanches interacting with forests
Louis Védrine
School of Architecture, Civil and Environmental Engineering, Swiss Federal Institute of Technology, Lausanne, Switzerland
DER Génie Civil et Environnement, Université Paris-Saclay, ENS Paris-Saclay, Gif-sur-Yvette, France
Xingyue Li
CORRESPONDING AUTHOR
Department of Geotechnical Engineering, College of Civil Engineering, Tongji University, Shanghai, China
Johan Gaume
School of Architecture, Civil and Environmental Engineering, Swiss Federal Institute of Technology, Lausanne, Switzerland
WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland
Related authors
No articles found.
Julia Glaus, Katreen Wikstrom Jones, Perry Bartelt, Marc Christen, Lukas Stoffel, Johan Gaume, and Yves Bühler
Nat. Hazards Earth Syst. Sci., 25, 2399–2419, https://doi.org/10.5194/nhess-25-2399-2025, https://doi.org/10.5194/nhess-25-2399-2025, 2025
Short summary
Short summary
This study assesses RAMMS::EXTENDED's predictive power in estimating avalanche runout distances critical for mountain road safety. Leveraging meteorological data and sensitivity analyses, it offers meaningful predictions, aiding near real-time hazard assessments and future model refinement for improved decision-making.
Grégoire Bobillier, Bertil Trottet, Bastian Bergfeld, Ron Simenhois, Alec van Herwijnen, Jürg Schweizer, and Johan Gaume
Nat. Hazards Earth Syst. Sci., 25, 2215–2223, https://doi.org/10.5194/nhess-25-2215-2025, https://doi.org/10.5194/nhess-25-2215-2025, 2025
Short summary
Short summary
Our study investigates the initiation of snow slab avalanches. Combining experimental data with numerical simulations, we show that on gentle slopes, cracks form and propagate due to compressive fractures within a weak layer. On steeper slopes, crack velocity can increase dramatically after approximately 5 m due to a fracture mode transition from compression to shear. Understanding these dynamics provides a crucial missing piece in the puzzle of dry-snow slab avalanche formation.
Hervé Vicari, Michael Lukas Kyburz, and Johan Gaume
EGUsphere, https://doi.org/10.5194/egusphere-2024-3421, https://doi.org/10.5194/egusphere-2024-3421, 2025
Short summary
Short summary
Advances in 3D modeling have improved understanding of geophysical flows like avalanches, but using these complex simulations in hazard mapping remains challenging. This study presents a tool that converts 3D simulation results into simplified 2D maps, making results more accessible for natural hazard applications. We applied this tool to model an ice avalanche and visualized the data in GIS, aiming to support practical hazard assessment and mitigation efforts.
Alessandro Cicoira, Daniel Tobler, Rachel Riner, Lars Blatny, Michael Lukas Kyburz, and Johan Gaume
Abstr. Int. Cartogr. Assoc., 9, 4, https://doi.org/10.5194/ica-abs-9-4-2025, https://doi.org/10.5194/ica-abs-9-4-2025, 2025
Andrea Manconi, Yves Bühler, Andreas Stoffel, Johan Gaume, Qiaoping Zhang, and Valentyn Tolpekin
Nat. Hazards Earth Syst. Sci., 24, 3833–3839, https://doi.org/10.5194/nhess-24-3833-2024, https://doi.org/10.5194/nhess-24-3833-2024, 2024
Short summary
Short summary
Our research reveals the power of high-resolution satellite synthetic-aperture radar (SAR) imagery for slope deformation monitoring. Using ICEYE data over the Brienz/Brinzauls instability, we measured surface velocity and mapped the landslide event with unprecedented precision. This underscores the potential of satellite SAR for timely hazard assessment in remote regions and aiding disaster mitigation efforts effectively.
Xingyue Li, Betty Sovilla, Chenfanfu Jiang, and Johan Gaume
The Cryosphere, 14, 3381–3398, https://doi.org/10.5194/tc-14-3381-2020, https://doi.org/10.5194/tc-14-3381-2020, 2020
Short summary
Short summary
This numerical study investigates how different types of snow avalanches behave, how key factors affect their dynamics and flow regime transitions, and what are the underpinning rules. According to the unified trends obtained from the simulations, we are able to quantify the complex interplay between bed friction, slope geometry and snow mechanical properties (cohesion and friction) on the maximum velocity, runout distance and deposit height of the avalanches.
Cited articles
Abegg, M., Brändli, U.-B., Cioldi, F., Fischer, C., Herold, A., Meile, R.,
Rösler, E., Speich, S., and Traub, B.: Swiss national forest inventory –
Result table No. 815491: forest area Birmensdorf, Swiss Federal Research
Institute WSL, https://doi.org/10.21258/1679353, 2020. a
Bartelt, P. and Stöckli, V.: The influence of tree and branch fracture,
overturning and debris entrainment on snow avalanche flow, Ann. Glaciol., 32, 209–216, https://doi.org/10.3189/172756401781819544, 2001. a
Bebi, P., Feistl, T., Teich, M., Margreth, S., and Bartelt, P.: Accounting for
forest effects in avalanche models and risk analysis,
in: 13th congress INTERPRAEVENT 2016, edited by: Koboltschnig, G., 30 May to 2 June 2016, Lucerne, Switzerland, Extended abstracts “Living with natural risks”, 184–185, International Research Society INTERPRAEVENT, 2016. a
Brozžová, N., Fischer, J.-T., Bühler, Y., Bartelt, P., and Bebi, P.:
Determining forest parameters for avalanche simulation using remote sensing
data, Cold Reg. Sci. Technol., 172, 102976,
https://doi.org/10.1016/j.coldregions.2019.102976, 2020. a, b
Christen, M., Kowalski, J., and Bartelt, P.: RAMMS: Numerical simulation of
dense snow avalanches in three-dimensional terrain, Cold Reg. Sci. Technol., 63, 1–14,
https://doi.org/10.1016/j.coldregions.2010.04.005, 2010. a, b
De Biagi, V., Chiaia, B., and Frigo, B.: Vulnerability of buildings against avalanche hazard, Snow engineering VII: proceedings of the seventh international conference on snow engineering, 2012. a
Feistl, T., Bebi, P., Bühler, Y., Christen, M., Teich, M., and Bartelt, P.:
Stopping behavior of snow avalanches in forests, in: Proceedings of the
International Snow Science Workshop ISSW, Anchorage, Alaska, https://arc.lib.montana.edu/snow-science/item/1712, 420–426, 2012. a
Gaume, J., Gast, T., Teran, J., van Herwijnen, A., and Jiang, C.: Dynamic
anticrack propagation in snow, Nat. Commun., 9, 1–10,
https://doi.org/10.1038/s41467-018-05181-w, 2018. a, b, c, d
Gaume, J., van Herwijnen, A., Gast, T., Teran, J., and Jiang, C.:
Investigating the release and flow of snow avalanches at the slope-scale
using a unified model based on the material point method, Cold Reg. Sci. Technol., 168, 102847,
https://doi.org/10.1016/j.coldregions.2019.102847, 2019. a
Gruber, U. and Bartelt, P.: Snow avalanche hazard modelling of large areas
using shallow water numerical methods and GIS, in: SI: Modelling, computer-assisted simulations, and mapping of dangerous phenomena for hazard assessment, Environ. Modell. Softw., 22, 1472–1481, https://doi.org/10.1016/j.envsoft.2007.01.001, 2007. a
Jiang, C., Schroeder, C., Selle, A., Teran, J., and Stomakhin, A.: The Affine
Particle-in-Cell Method, ACM Trans. Graph., 34, 1–10, https://doi.org/10.1145/2766996, 2015. a
Kyburz, M., Sovilla, B., Gaume, J., and Ancey, C.: Decoupling the Role of
Inertia, Friction, and Cohesion in Dense Granular Avalanche Pressure
Build‐up on Obstacles, J. Geophys. Res.-Earth, 125, e2019JF005192, https://doi.org/10.1029/2019JF005192, 2020. a
Lai, P.-Y., Pak, H., and To, K.: Jamming of Granular Flow in a Two-Dimensional
Hopper, Phys. Rev. Lett., 86, 71–74, https://doi.org/10.1103/PhysRevLett.86.71, 2001. a
Li, X., Sovilla, B., Jiang, C., and Gaume, J.: Three-dimensional and real-scale
modeling of flow regimes in dense snow avalanches, Landslides, 18, 3393–3406,
https://doi.org/10.1007/s10346-021-01692-8, 2021. a
Luong, T. T. H., Baker, J., and Einav, I.: Spread-out and slow-down of granular
flows through model forests, Granul. Matter, 22, 1–10, https://doi.org/10.1007/s10035-019-0980-9, 2020. a
Perzl, F., Bono, A., Garbarino, M., and Motta, R.: Protective effects of forests against gravitational natural hazards, in: Protective forests as Ecosystem-based solution for Disaster Risk Reduction (Eco-DRR), edited by: Teich, M., Accastello, C., Perzl, F., and Kleemayr, K., IntechOpen, London, https://www.intechopen.com/online-first/77984 (last access: 21 March 2022), 2021. a
Reineke, L. H.: Perfection a stand-density index for even-aged forest, J. Agric. Res., 46, 627–638, 1933. a
Sadrekarimi, A. and Olson, S.: Critical state friction angle of sands,
Géotechnique, 61, 771–783, https://doi.org/10.1680/geot.9.P.090, 2011. a
Scapozza, C. and Bartelt, P.: Triaxial tests on snow at low strain rate. Part
II. Constitutive behaviour, J. Glaciol., 49, 91–101,
https://doi.org/10.3189/172756503781830890, 2003. a
Stomakhin, A., Schroeder, C., Chai, L., Teran, J., and Selle, A.: A Material
Point Method for Snow Simulation, ACM Trans. Graph., 32, 1–10,
https://doi.org/10.1145/2461912.2461948, 2013. a
Stritih, A.: Dealing with uncertaintiesin the assessment of the avalancheprotective effects of forests, in: Protective Forests as Ecosystem-Based Solution for Disaster RiskReduction (Eco-DRR), edited by: Teich, M., Accastello, C., Perzl, F., and Kleemayr, K., London, IntechOpen, https://www.intechopen.com/online-first/78297 (last access: 21 March 2022), 2021. a
Takeuchi, Y., Nishimura, K., and Patra, A.: Observations and numerical
simulations of the braking effect of forests on large-scale avalanches,
Ann. Glaciol., 59, 50–58, https://doi.org/10.1017/aog.2018.22, 2018.
a
Teich, M., Bartelt, P., Grêt-Regamey, A., and Bebi, P.: Snow Avalanches in
Forested Terrain: Influence of Forest Parameters, Topography, and Avalanche
Characteristics on Runout Distance, Arct. Antarct. Alp. Res.,
44, 509–519, https://doi.org/10.1657/1938-4246-44.4.509, 2012a. a
Teich, M., Vasella, I., Bartelt, P., Bebi, P., Feistl, T., and Grêt, A.:
Avalanche simulations in forested terrain: a framework towards a bayesian
probabilistic model calibration, Montana State UniversityLibrary, Bozeman, MT, , in: Proceedings of the International Snow Science Workshop (ISSW), Anchorage, Alaska, 16–21 September 2012, http://arc.lib.montana.edu/snow-science (last access: 21 March 2022), 2012b. a, b
Teich, M., Fischer, J.-T., Feistl, T., Bebi, P., Christen, M., and Grêt-Regamey, A.: Computational snow avalanche simulation in forested terrain, Nat. Hazards Earth Syst. Sci., 14, 2233–2248, https://doi.org/10.5194/nhess-14-2233-2014, 2014. a, b, c
Védrine, L., Li, X., and Gaume, J.: Supplementary videos for “Detrainment and braking of snow avalanches interacting with forests”, Zenodo [video], https://doi.org/10.5281/zenodo.5547386, 2021. a
Védrine, L., Li, X., and Gaume, J.: Supplementary data for “Detrainment and braking of snow avalanches interacting with forests”, Zenodo [data set], https://doi.org/10.5281/zenodo.6121811, 2022. a
Viglietti, D., Letey, S., Motta, R., Maggioni, M., and Freppaz, M.: Snow and
avalanche: The influence of forest on snowpack stability, ISSW 09 –
International Snow Science Workshop, Proceedings, Davos, Switzerland, 323–327, 2009. a
Voellmy, A.: Uber die Zerstörungskraft von Lawinen, Schweizerische Bauzeitung, 73, 159–162, 1955. a
Short summary
This study investigates how forests affect the behaviour of snow avalanches through the evaluation of the amount of snow stopped by the trees and the analysis of energy dissipation mechanisms. Different avalanche features and tree configurations have been examined, leading to the proposal of a unified law for the detrained snow mass. Outcomes from this study can be directly implemented in operational models for avalanche risk assessment and contribute to improved forest management strategy.
This study investigates how forests affect the behaviour of snow avalanches through the...
Altmetrics
Final-revised paper
Preprint