Articles | Volume 21, issue 9
https://doi.org/10.5194/nhess-21-2791-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-21-2791-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Multi-decadal geomorphic changes of a low-angle valley glacier in the East Kunlun Mountains: remote sensing observations and detachment hazard assessment
Faculty of Geosciences and Environmental Engineering, Southwest
Jiaotong University, Chengdu, China
State-Province Joint Engineering Laboratory of Spatial Information
Technology of High-speed Rail Safety, Southwest Jiaotong University, Chengdu, China
Earth System Science Programme, Faculty of Science, The Chinese
University of Hong Kong, Hong Kong, China
Earth System Science Programme, Faculty of Science, The Chinese
University of Hong Kong, Hong Kong, China
Tonghua Wu
Cryosphere Research Station on the Qinghai–Tibet Plateau, State Key
Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and
Resources, Chinese Academy of Sciences, Lanzhou, China
Cryosphere Research Station on the Qinghai–Tibet Plateau, State Key
Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and
Resources, Chinese Academy of Sciences, Lanzhou, China
School of Geographical Sciences, Nanjing University of Information
Science and Technology, Nanjing, China
Institute of Mountain Hazards and Environment, Chinese Academy of
Sciences, Chengdu, China
Rui Zhang
Faculty of Geosciences and Environmental Engineering, Southwest
Jiaotong University, Chengdu, China
State-Province Joint Engineering Laboratory of Spatial Information
Technology of High-speed Rail Safety, Southwest Jiaotong University, Chengdu, China
Bo Zhang
Faculty of Geosciences and Environmental Engineering, Southwest
Jiaotong University, Chengdu, China
Guoxiang Liu
Faculty of Geosciences and Environmental Engineering, Southwest
Jiaotong University, Chengdu, China
State-Province Joint Engineering Laboratory of Spatial Information
Technology of High-speed Rail Safety, Southwest Jiaotong University, Chengdu, China
Related authors
Zhangyu Sun, Yan Hu, Adina Racoviteanu, Lin Liu, Stephan Harrison, Xiaowen Wang, Jiaxin Cai, Xin Guo, Yujun He, and Hailun Yuan
Earth Syst. Sci. Data, 16, 5703–5721, https://doi.org/10.5194/essd-16-5703-2024, https://doi.org/10.5194/essd-16-5703-2024, 2024
Short summary
Short summary
We propose a new dataset, TPRoGI (v1.0), encompassing rock glaciers in the entire Tibetan Plateau. We used a neural network, DeepLabv3+, and images from Planet Basemaps. The inventory identified 44 273 rock glaciers, covering 6 000 km2, mainly at elevations of 4000 to 5500 m a.s.l. The dataset, with details on distribution and characteristics, aids in understanding permafrost distribution, mountain hydrology, and climate impacts in High Mountain Asia, filling a knowledge gap.
Kathrin Maier, Zhuoxuan Xia, Lin Liu, Mark J. Lara, Jurjen van der Sluijs, Philipp Bernhard, and Irena Hajnsek
EGUsphere, https://doi.org/10.5194/egusphere-2025-2187, https://doi.org/10.5194/egusphere-2025-2187, 2025
Short summary
Short summary
Our study explores how thawing permafrost on the Qinghai-Tibet Plateau triggers landslides, mobilising stored carbon. Using satellite data from 2011 to 2020, we measured soil erosion, ice loss, and carbon mobilisation. While current impacts are modest, increasing landslide activity suggests future significance. This research underscores the need to understand permafrost thaw's role in carbon dynamics and climate change.
Defu Zou, Lin Zhao, Guojie Hu, Erji Du, Guangyue Liu, Chong Wang, and Wangping Li
Earth Syst. Sci. Data, 17, 1731–1742, https://doi.org/10.5194/essd-17-1731-2025, https://doi.org/10.5194/essd-17-1731-2025, 2025
Short summary
Short summary
This study provides baseline data of permafrost temperature at 15 m depth on the Qinghai–Tibetan Plateau (QTP) over the period 2010–2019 at a spatial resolution of nearly 1 km, using 231 borehole records and a machine learning method. The average MAGT15 m of the QTP permafrost was −1.85 °C, with 90 % of the values ranging from −5.1 to −0.1 °C and 51.2 % exceeding −1.5 °C. The data can serve as a crucial boundary condition for deeper permafrost assessments and a reference for model simulations.
Jianting Zhao, Lin Zhao, Ze Sun, Guojie Hu, Defu Zou, Minxuan Xiao, Guangyue Liu, Qiangqiang Pang, Erji Du, Zhibin Li, Xiaodong Wu, Yao Xiao, Lingxiao Wang, and Wenxin Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2024-3956, https://doi.org/10.5194/egusphere-2024-3956, 2025
Short summary
Short summary
The thermal regime is a key indicator of permafrost evolution. We quantitatively analyzed the spatiotemporal dynamics of the permafrost status in western Tibet since the 1980s, based on numerical simulations using the enhanced, model-forcing-driven Moving-Grid Permafrost Model. Our simulated results indicated that slow and lagged response of permafrost to climate warming, which closely linked to historical thermal conditions.
Zhangyu Sun, Yan Hu, Adina Racoviteanu, Lin Liu, Stephan Harrison, Xiaowen Wang, Jiaxin Cai, Xin Guo, Yujun He, and Hailun Yuan
Earth Syst. Sci. Data, 16, 5703–5721, https://doi.org/10.5194/essd-16-5703-2024, https://doi.org/10.5194/essd-16-5703-2024, 2024
Short summary
Short summary
We propose a new dataset, TPRoGI (v1.0), encompassing rock glaciers in the entire Tibetan Plateau. We used a neural network, DeepLabv3+, and images from Planet Basemaps. The inventory identified 44 273 rock glaciers, covering 6 000 km2, mainly at elevations of 4000 to 5500 m a.s.l. The dataset, with details on distribution and characteristics, aids in understanding permafrost distribution, mountain hydrology, and climate impacts in High Mountain Asia, filling a knowledge gap.
Yan Hu, Stephan Harrison, Lin Liu, and Joanne Laura Wood
The Cryosphere, 17, 2305–2321, https://doi.org/10.5194/tc-17-2305-2023, https://doi.org/10.5194/tc-17-2305-2023, 2023
Short summary
Short summary
Rock glaciers are considered to be important freshwater reservoirs in the future climate. However, the amount of ice stored in rock glaciers is poorly quantified. Here we developed an empirical model to estimate ice content in rock the glaciers in the Khumbu and Lhotse valleys, Nepal. The modelling results confirmed the hydrological importance of rock glaciers in the study area. The developed approach shows promise in being applied to permafrost regions to assess water storage of rock glaciers.
Francisco José Cuesta-Valero, Hugo Beltrami, Almudena García-García, Gerhard Krinner, Moritz Langer, Andrew H. MacDougall, Jan Nitzbon, Jian Peng, Karina von Schuckmann, Sonia I. Seneviratne, Wim Thiery, Inne Vanderkelen, and Tonghua Wu
Earth Syst. Dynam., 14, 609–627, https://doi.org/10.5194/esd-14-609-2023, https://doi.org/10.5194/esd-14-609-2023, 2023
Short summary
Short summary
Climate change is caused by the accumulated heat in the Earth system, with the land storing the second largest amount of this extra heat. Here, new estimates of continental heat storage are obtained, including changes in inland-water heat storage and permafrost heat storage in addition to changes in ground heat storage. We also argue that heat gains in all three components should be monitored independently of their magnitude due to heat-dependent processes affecting society and ecosystems.
Karina von Schuckmann, Audrey Minière, Flora Gues, Francisco José Cuesta-Valero, Gottfried Kirchengast, Susheel Adusumilli, Fiammetta Straneo, Michaël Ablain, Richard P. Allan, Paul M. Barker, Hugo Beltrami, Alejandro Blazquez, Tim Boyer, Lijing Cheng, John Church, Damien Desbruyeres, Han Dolman, Catia M. Domingues, Almudena García-García, Donata Giglio, John E. Gilson, Maximilian Gorfer, Leopold Haimberger, Maria Z. Hakuba, Stefan Hendricks, Shigeki Hosoda, Gregory C. Johnson, Rachel Killick, Brian King, Nicolas Kolodziejczyk, Anton Korosov, Gerhard Krinner, Mikael Kuusela, Felix W. Landerer, Moritz Langer, Thomas Lavergne, Isobel Lawrence, Yuehua Li, John Lyman, Florence Marti, Ben Marzeion, Michael Mayer, Andrew H. MacDougall, Trevor McDougall, Didier Paolo Monselesan, Jan Nitzbon, Inès Otosaka, Jian Peng, Sarah Purkey, Dean Roemmich, Kanako Sato, Katsunari Sato, Abhishek Savita, Axel Schweiger, Andrew Shepherd, Sonia I. Seneviratne, Leon Simons, Donald A. Slater, Thomas Slater, Andrea K. Steiner, Toshio Suga, Tanguy Szekely, Wim Thiery, Mary-Louise Timmermans, Inne Vanderkelen, Susan E. Wjiffels, Tonghua Wu, and Michael Zemp
Earth Syst. Sci. Data, 15, 1675–1709, https://doi.org/10.5194/essd-15-1675-2023, https://doi.org/10.5194/essd-15-1675-2023, 2023
Short summary
Short summary
Earth's climate is out of energy balance, and this study quantifies how much heat has consequently accumulated over the past decades (ocean: 89 %, land: 6 %, cryosphere: 4 %, atmosphere: 1 %). Since 1971, this accumulated heat reached record values at an increasing pace. The Earth heat inventory provides a comprehensive view on the status and expectation of global warming, and we call for an implementation of this global climate indicator into the Paris Agreement’s Global Stocktake.
Fuming Xie, Shiyin Liu, Yongpeng Gao, Yu Zhu, Tobias Bolch, Andreas Kääb, Shimei Duan, Wenfei Miao, Jianfang Kang, Yaonan Zhang, Xiran Pan, Caixia Qin, Kunpeng Wu, Miaomiao Qi, Xianhe Zhang, Ying Yi, Fengze Han, Xiaojun Yao, Qiao Liu, Xin Wang, Zongli Jiang, Donghui Shangguan, Yong Zhang, Richard Grünwald, Muhammad Adnan, Jyoti Karki, and Muhammad Saifullah
Earth Syst. Sci. Data, 15, 847–867, https://doi.org/10.5194/essd-15-847-2023, https://doi.org/10.5194/essd-15-847-2023, 2023
Short summary
Short summary
In this study, first we generated inventories which allowed us to systematically detect glacier change patterns in the Karakoram range. We found that, by the 2020s, there were approximately 10 500 glaciers in the Karakoram mountains covering an area of 22 510.73 km2, of which ~ 10.2 % is covered by debris. During the past 30 years (from 1990 to 2020), the total glacier cover area in Karakoram remained relatively stable, with a slight increase in area of 23.5 km2.
Jianting Zhao, Lin Zhao, Zhe Sun, Fujun Niu, Guojie Hu, Defu Zou, Guangyue Liu, Erji Du, Chong Wang, Lingxiao Wang, Yongping Qiao, Jianzong Shi, Yuxin Zhang, Junqiang Gao, Yuanwei Wang, Yan Li, Wenjun Yu, Huayun Zhou, Zanpin Xing, Minxuan Xiao, Luhui Yin, and Shengfeng Wang
The Cryosphere, 16, 4823–4846, https://doi.org/10.5194/tc-16-4823-2022, https://doi.org/10.5194/tc-16-4823-2022, 2022
Short summary
Short summary
Permafrost has been warming and thawing globally; this is especially true in boundary regions. We focus on the changes and variability in permafrost distribution and thermal dynamics in the northern limit of permafrost on the Qinghai–Tibet Plateau (QTP) by applying a new permafrost model. Unlike previous papers on this topic, our findings highlight a slow, decaying process in the response of permafrost in the QTP to a warming climate, especially regarding areal extent.
Zhuoxuan Xia, Lingcao Huang, Chengyan Fan, Shichao Jia, Zhanjun Lin, Lin Liu, Jing Luo, Fujun Niu, and Tingjun Zhang
Earth Syst. Sci. Data, 14, 3875–3887, https://doi.org/10.5194/essd-14-3875-2022, https://doi.org/10.5194/essd-14-3875-2022, 2022
Short summary
Short summary
Retrogressive thaw slumps are slope failures resulting from abrupt permafrost thaw, and are widely distributed along the Qinghai–Tibet Engineering Corridor. The potential damage to infrastructure and carbon emission of thaw slumps motivated us to obtain an inventory of thaw slumps. We used a semi-automatic method to map 875 thaw slumps, filling the knowledge gap of thaw slump locations and providing key benchmarks for analysing the distribution features and quantifying spatio-temporal changes.
Lingxiao Wang, Lin Zhao, Huayun Zhou, Shibo Liu, Erji Du, Defu Zou, Guangyue Liu, Yao Xiao, Guojie Hu, Chong Wang, Zhe Sun, Zhibin Li, Yongping Qiao, Tonghua Wu, Chengye Li, and Xubing Li
The Cryosphere, 16, 2745–2767, https://doi.org/10.5194/tc-16-2745-2022, https://doi.org/10.5194/tc-16-2745-2022, 2022
Short summary
Short summary
Selin Co has exhibited the greatest increase in water storage among all the lakes on the Tibetan Plateau in the past decades. This study presents the first attempt to quantify the water contribution of ground ice melting to the expansion of Selin Co by evaluating the ground surface deformation since terrain surface settlement provides a
windowto detect the subsurface ground ice melting. Results reveal that ground ice meltwater contributed ~ 12 % of the lake volume increase during 2017–2020.
Stefan Fugger, Catriona L. Fyffe, Simone Fatichi, Evan Miles, Michael McCarthy, Thomas E. Shaw, Baohong Ding, Wei Yang, Patrick Wagnon, Walter Immerzeel, Qiao Liu, and Francesca Pellicciotti
The Cryosphere, 16, 1631–1652, https://doi.org/10.5194/tc-16-1631-2022, https://doi.org/10.5194/tc-16-1631-2022, 2022
Short summary
Short summary
The monsoon is important for the shrinking and growing of glaciers in the Himalaya during summer. We calculate the melt of seven glaciers in the region using a complex glacier melt model and weather data. We find that monsoonal weather affects glaciers that are covered with a layer of rocky debris and glaciers without such a layer in different ways. It is important to take so-called turbulent fluxes into account. This knowledge is vital for predicting the future of the Himalayan glaciers.
Tonghua Wu, Changwei Xie, Xiaofan Zhu, Jie Chen, Wu Wang, Ren Li, Amin Wen, Dong Wang, Peiqing Lou, Chengpeng Shang, Yune La, Xianhua Wei, Xin Ma, Yongping Qiao, Xiaodong Wu, Qiangqiang Pang, and Guojie Hu
Earth Syst. Sci. Data, 14, 1257–1269, https://doi.org/10.5194/essd-14-1257-2022, https://doi.org/10.5194/essd-14-1257-2022, 2022
Short summary
Short summary
We presented an 11-year time series of meteorological, active layer, and permafrost data at the Mahan Mountain relict permafrost site in northeastern Qinghai-Tibet Plateau. From 2010 to 2020, the increasing rate of active layer thickness was 1.8 cm-year and the permafrost temperature showed slight changes. The release of those data would be helpful to understand the impacts of climate change on permafrost in relict permafrost regions and to validate the permafrost models and land surface models.
Yi Zhao, Zhuotong Nan, Hailong Ji, and Lin Zhao
The Cryosphere, 16, 825–849, https://doi.org/10.5194/tc-16-825-2022, https://doi.org/10.5194/tc-16-825-2022, 2022
Short summary
Short summary
Convective heat transfer (CHT) is important in affecting thermal regimes in permafrost regions. We quantified its thermal impacts by contrasting the simulation results from three scenarios in which the Simultaneous Heat and Water model includes full, partial, and no consideration of CHT. The results show the CHT commonly happens in shallow and middle soil depths during thawing periods and has greater impacts in spring than summer. The CHT has both heating and cooling effects on the active layer.
Yan Zhong, Qiao Liu, Matthew Westoby, Yong Nie, Francesca Pellicciotti, Bo Zhang, Jialun Cai, Guoxiang Liu, Haijun Liao, and Xuyang Lu
Earth Surf. Dynam., 10, 23–42, https://doi.org/10.5194/esurf-10-23-2022, https://doi.org/10.5194/esurf-10-23-2022, 2022
Short summary
Short summary
Slope failures exist in many paraglacial regions and are the main manifestation of the interaction between debris-covered glaciers and slopes. We mapped paraglacial slope failures (PSFs) along the Hailuogou Glacier (HLG), Mt. Gongga, southeastern Tibetan Plateau. We argue that the formation, evolution, and current status of these typical PSFs are generally related to glacier history and paraglacial geomorphological adjustments, and influenced by the fluctuation of climate conditions.
Lin Zhao, Defu Zou, Guojie Hu, Tonghua Wu, Erji Du, Guangyue Liu, Yao Xiao, Ren Li, Qiangqiang Pang, Yongping Qiao, Xiaodong Wu, Zhe Sun, Zanpin Xing, Yu Sheng, Yonghua Zhao, Jianzong Shi, Changwei Xie, Lingxiao Wang, Chong Wang, and Guodong Cheng
Earth Syst. Sci. Data, 13, 4207–4218, https://doi.org/10.5194/essd-13-4207-2021, https://doi.org/10.5194/essd-13-4207-2021, 2021
Short summary
Short summary
Lack of a synthesis dataset of the permafrost state has greatly limited our understanding of permafrost-related research as well as the calibration and validation of RS retrievals and model simulation. We compiled this dataset, including ground temperature, active layer hydrothermal regimes, and meteorological indexes based on our observational network, and we summarized the basic changes in permafrost and its climatic conditions. It is the first comprehensive dataset on permafrost for the QXP.
Lihui Luo, Yanli Zhuang, Mingyi Zhang, Zhongqiong Zhang, Wei Ma, Wenzhi Zhao, Lin Zhao, Li Wang, Yanmei Shi, Ze Zhang, Quntao Duan, Deyu Tian, and Qingguo Zhou
Earth Syst. Sci. Data, 13, 4035–4052, https://doi.org/10.5194/essd-13-4035-2021, https://doi.org/10.5194/essd-13-4035-2021, 2021
Short summary
Short summary
We implement a variety of sensors to monitor the hydrological and thermal deformation between permafrost slopes and engineering projects in the hinterland of the Qinghai–Tibet Plateau. We present the integrated observation dataset from the 1950s to 2020, explaining the instrumentation, processing, data visualisation, and quality control.
Dong Wang, Tonghua Wu, Lin Zhao, Cuicui Mu, Ren Li, Xianhua Wei, Guojie Hu, Defu Zou, Xiaofan Zhu, Jie Chen, Junmin Hao, Jie Ni, Xiangfei Li, Wensi Ma, Amin Wen, Chengpeng Shang, Yune La, Xin Ma, and Xiaodong Wu
Earth Syst. Sci. Data, 13, 3453–3465, https://doi.org/10.5194/essd-13-3453-2021, https://doi.org/10.5194/essd-13-3453-2021, 2021
Short summary
Short summary
The Third Pole regions are important components in the global permafrost, and the detailed spatial soil organic carbon data are the scientific basis for environmental protection as well as the development of Earth system models. Based on multiple environmental variables and soil profile data, this study use machine-learning approaches to evaluate the SOC storage and spatial distribution at a depth interval of 0–3 m in the frozen ground area of the Third Pole region.
Jiahua Zhang, Lin Liu, Lei Su, and Tao Che
The Cryosphere, 15, 3021–3033, https://doi.org/10.5194/tc-15-3021-2021, https://doi.org/10.5194/tc-15-3021-2021, 2021
Short summary
Short summary
We improve the commonly used GPS-IR algorithm for estimating surface soil moisture in permafrost areas, which does not consider the bias introduced by seasonal surface vertical movement. We propose a three-in-one framework to integrate the GPS-IR observations of surface elevation changes, soil moisture, and snow depth at one site and illustrate it by using a GPS site in the Qinghai–Tibet Plateau. This study is the first to use GPS-IR to measure environmental variables in the Tibetan Plateau.
Xiangfei Li, Tonghua Wu, Xiaodong Wu, Jie Chen, Xiaofan Zhu, Guojie Hu, Ren Li, Yongping Qiao, Cheng Yang, Junming Hao, Jie Ni, and Wensi Ma
Geosci. Model Dev., 14, 1753–1771, https://doi.org/10.5194/gmd-14-1753-2021, https://doi.org/10.5194/gmd-14-1753-2021, 2021
Short summary
Short summary
In this study, an ensemble simulation of 55296 scheme combinations for at a typical permafrost site on the Qinghai–Tibet Plateau (QTP) was conducted. The general performance of the Noah-MP model for snow cover events (SCEs), soil temperature (ST) and soil liquid water content (SLW) was assessed, and the sensitivities of parameterization schemes at different depths were investigated. We show that Noah-MP tends to overestimate SCEs and underestimate ST and topsoil SLW on the QTP.
Cited articles
Allen, S. K., Schneider, D., and Owens, I. F.: First approaches towards
modelling glacial hazards in the Mount Cook region of New Zealand's Southern
Alps, Nat. Hazards Earth Syst. Sci., 9, 481–499,
https://doi.org/10.5194/nhess-9-481-2009, 2009.
ASP: NASA Ames Intelligent Robotics Group, NASA Ames Stereo Pipeline (ASP), GitHub [code], available at: https://github.com/NeoGeographyToolkit/StereoPipeline (last access: 7 September 2021), 2008.
Bai, X. and He, S.: Dynamic process of the massive Aru glacier collapse in Tibet, Landslides, 17, 1353–1361, https://doi.org/10.1007/s10346-019-01337-x, 2020.
Bartelt, P., Salm, B., and Gruber, U.: Calculating dense-snow avalanche runout using a Voellmy-fluid model with active/passive longitudinal straining, J. Glaciol., 45, 242–254, https://doi.org/10.1017/S002214300000174X, 1999.
Bhambri, R., Watson, C. S., Hewitt, K., Haritashya, U. K., Kargel, J. S., Pratap Shahi, A., Chand, P., Kumar, A., Verma, A., and Govil, H.: The hazardous 2017–2019 surge and river damming by Shispare Glacier, Karakoram, Sci. Rep.-UK, 10, 4685, https://doi.org/10.1038/s41598-020-61277-8, 2020.
Bolch, T., Pieczonka, T., and Benn, D. I.: Multi-decadal mass loss of glaciers in the Everest area (Nepal Himalaya) derived from stereo imagery, The Cryosphere, 5, 349–358, https://doi.org/10.5194/tc-5-349-2011, 2011.
Chen, D., Xu, B., Yao, T., Guo, Z., Cui, P., Chen, F., and Zhang, R.: Assessment of past, present and future environmental changes on the Tibetan Plateau, Chinese Sci. Bull., 60: 3025–3035, https://doi.org/10.1360/N972014-01370, 2015 (in Chinese).
Evans, S. G., Tutubalina, O. V., Drobyshev, V. N., Chernomorets, S. S., McDougall, S., Petrakov, D. A., and Hungr, O.: Catastrophic detachment and high-velocity long-runout flow of Kolka Glacier, Caucasus Mountains, Russia in 2002, Geomorphology, 105, 314–321, https://doi.org/10.1016/j.geomorph.2008.10.008, 2009.
Eriksen, H. Ø., Rouyet, L., Lauknes, T. R., Berthling, I., Isaksen, K., Hindberg, H., Larsen, Y., and Corner, G. D.: Recent Acceleration of a Rock Glacier Complex, Ádjet, Norway, Documented by 62 years of Remote Sensing Observations. Geophys. Res. Lett., 45, 8314–8323, https://doi.org/10.1029/2018GL077605, 2018.
Faillettaz, J., Funk, M., and Vincent, C.: Avalanching glacier instabilities: Review on processes and early warning perspectives, Rev. Geophys., 53, 203–224, https://doi.org/10.1002/2014rg000466, 2015.
Falaschi, D., Kääb, A., Paul, F., Tadono, T., Rivera, J. A., and Lenzano, L. E.: Brief communication: Collapse of 4 Mm3 of ice from a cirque glacier in the Central Andes of Argentina, The Cryosphere, 13, 997–1004, https://doi.org/10.5194/tc-13-997-2019, 2019.
Farinotti, D., Huss, M., Fürst, J. J., Landmann J., Machguth H., Maussion F., and Pandit A.: A consensus estimate for the ice thickness distribution of all glaciers on Earth, Nat. Geosci., 12, 168–173, https://doi.org/10.1038/s41561-019-0300-3, 2019.
Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., Roth, L., Seal, D., Shaffer, S., Shimada, J., Umland, J., Werner, M., Oskin, M., Burbank, D., and Alsdorf, D.: The Shuttle Radar Topography Mission, Rev. Geophys., 45, 1–33, https://doi.org/10.1029/2005RG000183, 2007.
Gardelle, J., Berthier, E., Arnaud, Y., and Kääb, A.: Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999–2011, The Cryosphere, 7, 1263–1286, https://doi.org/10.5194/tc-7-1263-2013, 2013.
Gilbert, A., Leinss, S., Kargel, J., Kääb, A., Gascoin, S., Leonard, G., Berthier, E., Karki, A., and Yao, T.: Mechanisms leading to the 2016 giant twin glacier collapses, Aru Range, Tibet, The Cryosphere, 12, 2883–2900, https://doi.org/10.5194/tc-12-2883-2018, 2018.
Guo, W., Liu, S., Xu, L., Wu, L., Shangguan, D., Yao, X., Wei, J., Bao, W., Yu, P., Liu, Q., and Jiang, Z.: The second Chinese glacier inventory: data, methods and results, J. Glaciol., 61, 357–372, https://doi.org/10.3189/2015JoG14J209, 2015.
Haeberli, W., Huggel, C., Kääb, A., Zgraggen-Oswald, S., Polkvoj, A., Galushkin, I., Zotikov, I., and Osokin, N.: The Kolka-Karmadon rock/ice slide of 20 September 2002: An extraordinary event of historical dimensions in North Ossetia, Russian Caucasus, J. Glaciol., 50, 533–546, https://doi.org/10.3189/172756504781829710, 2004.
Hall, D. K., Bayr, K. J., Schöner, W., Bindschadler, R. A., and Chien, J. Y. L.: Consideration of the errors inherent in mapping historical glacier positions in Austria from the ground and space (1893–2001), Remote Sens. Environ., 86, 566–577, https://doi.org/10.1016/S0034-4257(03)00134-2, 2003.
Hirano, A., Welch, R., and Lang, H.: Mapping from ASTER stereo image data: DEM validation and accuracy assessment, ISPRS Photogramm., 57, 356–370, https://doi.org/10.1016/S0924-2716(02)00164-8, 2003.
Huggel, C., Zgraggen-Oswald, S., Haeberli, W., Kääb, A., Polkvoj, A., Galushkin, I., and Evans, S. G.: The 2002 rock/ice avalanche at Kolka/Karmadon, Russian Caucasus: assessment of extraordinary avalanche formation and mobility, and application of QuickBird satellite imagery, Nat. Hazards Earth Syst. Sci., 5, 173–187, https://doi.org/10.5194/nhess-5-173-2005, 2005.
Jacquemart, M., Loso, M., Leopold, M., Welty, E., Berthier, E., Hansen, J. S. S., Sykes, J., and Tiampo, K.: What drives large-scale glacier detachments? Insights from Flat Creek glacier, St. Elias Mountains, Alaska, Geology, 48, 703–707, https://doi.org/10.1130/g47211.1, 2020.
Jerome, V. D. W., Owen, L. A., Tapponnier, P., Xu, X., Kervyn, F.,
Finkel, R. C., and Barnard, P. L.: Giant, ∼M8 earthquake-triggered ice avalanches in the eastern Kunlun Shan, northern Tibet: Characteristics, nature and dynamics, Geol. Soc. Am. Bull., 116: 394–406. https://doi.org/10.1130/B25317.1, 2004.
Kääb, A., Leinss, S., Gilbert, A., Bühler, Y., Gascoin, S., Evans, S. G., Bartelt, P., Berthier, E., Brun, F., Chao, W.-A., Farinotti, D., Gimbert, F., Guo, W., Huggel, C., Kargel, J. S., Leonard, G. J., Tian, L., Treichler, D., and Yao, T.: Massive collapse of two glaciers in western Tibet in 2016 after surge-like instability, Nat. Geosci., 11, 114–120, https://doi.org/10.1038/s41561-017-0039-7, 2018.
Kääb, A., Jacquemart, M., Gilbert, A., Leinss, S., Girod, L., Huggel, C., Falaschi, D., Ugalde, F., Petrakov, D., Chernomorets, S., Dokukin, M., Paul, F., Gascoin, S., Berthier, E., and Kargel, J. S.: Sudden large-volume detachments of low-angle mountain glaciers – more frequent than thought?, The Cryosphere, 15, 1751–1785, https://doi.org/10.5194/tc-15-1751-2021, 2021a.
Kääb, A., Strozzi, T., Bolch, T., Caduff, R., Trefall, H., Stoffel, M., and Kokarev, A.: Inventory and changes of rock glacier creep speeds in Ile Alatau and Kungöy Ala-Too, northern Tien Shan, since the 1950s, The Cryosphere, 15, 927–949, https://doi.org/10.5194/tc-15-927-2021, 2021b.
Kofler, C., Mair, V., Gruber, S., Todisco, M. C., Nettleton, I., Steger, Zebisch M., Schneiderbauer S., and Comiti F.: When do rock glacier fronts fail? Insights from two case studies in South Tyrol (Italian Alps), Earth Surf. Proc. Land., 46, 1311–1327, https://doi.org/10.1002/esp.5099, 2021.
Kotlyakov, V. M., Rototaeva, O. V., and Nosenko, G. A.: The September 2002 Kolka Glacier catastrophe in North Ossetia, Russian Federation: evidence and analysis, Mt. Res. Dev., 24, 78–83, https://doi.org/10.1659/0276-4741(2004)024[0078:Tskgci]2.0.Co;2, 2004.
Krieger, G., Moreira, A., Fiedler, H., Hajnsek, I., Werner, M., Younis, M., and Zink, M.: TanDEM-X: A Satellite formation for high-resolution SAR interferometry, IEEE T. Geosci. Remote, 45, 3317–3341, https://doi.org/10.1109/TGRS.2007.900693, 2007.
Kumar A., Negi, H. S., Kumar K., and Shekhar C.: Accuracy validation and bias assessment for various multi-sensor open-source DEMs in part of the Karakoram region, Remote Sens. Lett., 11, 893–902, https://doi.org/10.1080/2150704X.2020.1792001, 2020.
Lasserre, C., Peltzer, G., Crampé, F., Klinger, Y., Van der Woerd, J., and Tapponnier, P.: Coseismic deformation of the 2001 Mw=7.8 Kokoxili earthquake in Tibet, measured by synthetic aperture radar interferometry, J. Geophys. Res., 110, B12408, https://doi.org/10.1029/2004JB003500, 2005.
Leinss, S., Willimann, C., and Hajnsek, I.: Glacier detachment hazard analysis in the West Kunlun Shan mountains, IEEE International Geoscience and Remote Sensing Symposium (IGARSS) 2019, Yokohama, Japan, 4565–4568, https://doi.org/10.1109/IGARSS.2019.8900320, 2019.
Li, C., Jiang, L., Liu, L., and Wang, H.: Regional and altitude-dependent estimate of the SRTM C/X-band radar penetration difference on High Mountain Asia glaciers, IEEE J. Sel. Top. Appl., 14, 4244–4253, https://doi.org/10.1109/JSTARS.2021.3070362, 2021.
Lukas, S.: Ice-cored moraines, in: Encyclopedia of Snow, Ice and Glaciers,
edited by: Singh, V., Singh, P., and Haritashya, U. K., Springer, Heidelberg, 616–619, 2011.
Luo, J., Niu, F. J., Lin, Z. J., Liu, M. H., and Yin, G. A.: Variations in the northern permafrost boundary over the last four decades in the Xidatan region, Qinghai–Tibet Plateau, J. Mt. Sci., 15, 765–778, https://doi.org/10.1007/s11629-017-4731-2, 2018.
Magnússon, E., Muñoz-Cobo Belart, J., Pálsson, F., Ágústsson, H., and Crochet,
P.: Geodetic mass balance record with rigorous uncertainty estimates deduced
from aerial photographs and lidar data Case study from Drangajökull ice cap,
NW Iceland, The Cryosphere, 10, 159–177,
https://doi.org/10.5194/tc-10-159-2016, 2016.
Marcer, M., Nielsen, S. R., Ribeyre, C., Kummert, M., Duvillard, P., Schoeneich, P., Bodin X., and Genuite, K.: Investigating the slope failures at the Lou rock glacier front, French Alps, Permafrost. Periglac., 31, 15–30, https://doi.org/10.1002/ppp.2035, 2020.
Marshall, W. and Boshuizen, C.: Planet Labs' remote sensing satellite system, Proceedings of the AIAA/USU Conference on Small satellites, available at: https://www.planet.com/markets/education-and-research/ (last access: 7 September 2021), [data set], 2013.
Maurer, J. M.: HEXagon IMagery Automated Pipeline (HEXIMAP), GitHub [code], available at: https://github.com/gmorky/heximap (last access: 7 September 2021), 2019.
Maurer, J. M., Rupper, S. B., and Schaefer, J. M.: Quantifying ice loss in the
eastern Himalayas since 1974 using declassified spy satellite imagery, The
Cryosphere, 10, 2203–2215, https://doi.org/10.5194/tc-10-2203-2016, 2016.
McNabb, R., Nuth, C., Kääb, A., and Girod, L.: Sensitivity of glacier volume change estimation to DEM void interpolation, The Cryosphere, 13, 895–910, https://doi.org/10.5194/tc-13-895-2019, 2019.
Nuth, C. and Kääb, A.: Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change, The Cryosphere, 5, 271–290, https://doi.org/10.5194/tc-5-271-2011, 2011.
Obu, J., Westermann, S., Bartsch, A., Berdnikov, N. M., Christiansen, H. H., Dashtseren, A., and Kholodov, A.: Northern Hemisphere permafrost map based on TTOP modelling for 2000–2016 at 1 km2 scale, Earth-Sci. Rev., 193, 299–316, https://doi.org/10.1016/J.EARSCIREV.2019.04.023, 2019.
Ouyang, C.: Massflow, [code], available at: http://www.massflow-software.com/col.jsp?id=105 (last access: 7 September 2021), 2018.
Paul, F.: Repeat glacier collapses and surges in the Amney Machen Mountain Range, Tibet, possibly triggered by a developing rock-slope instability, Remote Sens.-Basel, 11, 708, https://doi.org/10.3390/rs11060708, 2019.
Paul, F., Bolch, T., Briggs, K., Kääb, A., McMillan, M.,
McNabb, R., and Strozzi, T.: Error sources and guidelines for quality
assessment of glacier area, elevation change, and velocity products derived
from satellite data in the Glaciers_CCI project, Remote Sens. Environ., 203, 256–275, 2017.
Pralong, A. and Funk, M.: Dynamic damage model of crevasse opening and application to glacier calving, J. Geophys. Res., 110, B01309, https://doi.org/10.1029/2004JB003104, 2005.
Rashid, I., Majeed, U., Jan, A., and Glasser, N. F.: The January 2018 to September 2019 surge of Shisper Glacier, Pakistan, detected from remote sensing observations, Geomorphology, 351, 105394, https://doi.org/10.1016/j.geomorph.2019.106957, 2020.
Riegler, G., Hennig, S. D., and Weber, M.: WORLDDEM A NOVEL GLOBAL FOUNDATION
LAYER, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XL-3/W2, 183–187,
https://doi.org/10.5194/isprsarchives-XL-3-W2-183-2015, 2015.
Rosu, A. M., Pierrot-Deseilligny, M., Delorme, A., Binet, R., and Klinger, Y.: Measurement of ground displacement from optical satellite image correlation using the free open-source software MicMac, ISPRS Photogramm., 100, 48–59, https://doi.org/10.1016/j.isprsjprs.2014.03.002, 2015.
Round, V., Leinss, S., Huss, M., Haemmig, C., and Hajnsek, I.: Surge dynamics and lake outbursts of Kyagar Glacier, Karakoram, The Cryosphere, 11, 723–739, https://doi.org/10.5194/tc-11-723-2017, 2017.
Rupnik, E., Daakir, M., and Pierrot Deseilligny, M.: MicMac – a free, open-source solution for photogrammetry, Open Geospatial Data, Software and Standards, 2, 14. https://doi.org/10.1186/s40965-017-0027-2, 2017.
Sakai, A.: Brief communication: Updated GAMDAM glacier inventory over high-mountain Asia, The Cryosphere, 13, 2043–2049, https://doi.org/10.5194/tc-13-2043-2019, 2019.
Scherler, D., Bookhagen, B., and Strecker, M. R.: Spatially variable response of Himalayan glaciers to climate change affected by debris cover, Nat. Geosci., 4, 156–159, https://doi.org/10.1038/ngeo1068, 2011.
Schneider, D., Huggel, C., Haeberli, W., and Kaitna, R.: Unraveling driving factors for large rock–ice avalanche mobility, Earth Surf. Proc. Land., 36, 1948–1966, https://doi.org/10.1002/esp.2218, 2011.
Shean, D.: High Mountain Asia 8-meter DEMs derived from along-track optical
imagery, NASA National Snow and Ice Data Center Distributed Active Archive
Center, [data set], https://doi.org/10.5067/gsacb044m4pk, 2017.
Shean, D., Alexandrov, O., Moratto, Z. M., Smith, B. E., Joughin, I. R., Porter, C., and Morin, P.: An automated, open-source pipeline for mass production of digital elevation models (DEMs) from very-high-resolution commercial stereo satellite imager, ISPRS Photogramm., 116, 101–117, https://doi.org/10.1016/j.isprsjprs.2016.03.012, 2016.
Song, C., Gao, D., Fang, X., Cui, Z., Li, J., Yang, S., Jin, H., Burbank, D.,
and Kirschvink, J.: Late Cenozoic high-resolution magnetostratigraphy in the
Kunlun Pass Basin and its implications for theuplift of the northern Tibetan
Plateau. Chinese Sci. Bull. 50, 1912–1922, 2005.
Tian, L., Li, W., Zhang, Y., Tian, L. Zhu, Q., Peng, C., and Chen, H.: The analysis of snow information from 1979 to 2007 in Qinghai Tibetan Plateau. Acta Ecologica Sinica, 34, 5974–5983, 2014 (in Chinese).
Tian, L., Yao, T., Gao, Y., Thompson, L., Mosley-Thompson, E., Muhammad, S., Zong, J., Wang, C., Jin, S., and Li, Z.: Two glaciers collapse in western Tibet, J. Glaciol., 63, 194–197, https://doi.org/10.1017/jog.2016.122, 2016.
Wang, D. and Kääb, A.: Modeling glacier elevation change from DEM time series, Remote Sens.-Basel, 7, 10117–10142, https://doi.org/10.3390/RS70810117, 2015.
Wang, X., Liu, L., Zhao, L., Wu, T., Li, Z., and Liu, G.: Mapping and inventorying active rock glaciers in the northern Tien Shan of China using satellite SAR interferometry, The Cryosphere, 11, 997–1014, https://doi.org/10.5194/tc-11-997-2017, 2017.
Wang, X., Liu, Q., Zhang, B., Zhang, R., and Liu, G.: Monitoring and analyzing collapse of KLSK-37 glacier tongue in recent 40 years with multi-source remote sensing, Geomatics and Information Science of Wuhan University, 45, 1687–1696. https://doi.org/10.13203/j.whugis20200214, 2020 (in Chinese).
Wessel, P., Smith, W. H. F., Scharroo, R., Luis, J., and Wobbe, F.: Generic Mapping Tools: improved version released, Eos Trans. AGU, 94, 409–410, https://doi.org/10.1002/2013EO450001, 2013.
Wu, T., Li, S., Cheng, G., and Nan, Z.: Using ground-penetrating radar to
detect permafrost degradation in the northern limit of permafrost on the
Tibetan Plateau, Cold Reg. Sci. Technol., 41, 211–219,
https://doi.org/10.1016/j.coldregions.2004.10.006, 2005 (in Chinese).
Wu, Y., Cui, Z., Liu, G., Ge, D., Yin, J., Xu, Q., and Pang, Q: Quaternary geomorphological evolution of the Kunlun Pass area and uplift of the Qinghai-Xizang (Tibet) Plateau, Geomorphology, 36, 203–216, https://doi.org/10.1016/S0169-555X(00)00057-X, 2001.
Wu, X., Qian, F., and Pu, Q. Y.: Quaternary geology of the eastern Kunlun
mountain, Symposium of Geology on Tibetan Plateau, 1–18, Geological
Publishing House, Beijing, 1982 (in Chinese).
Yasuda, T. and Furuya, M.: Dynamics of surge-type glaciers in West Kunlun Shan, Northwestern Tibet, J. Geophys. Res.-Earth, 120, 2393–2405, https://doi.org/10.1002/2015jf003511, 2015.
Short summary
We characterized the multi-decadal geomorphic changes of a low-angle valley glacier in the East Kunlun Mountains and assessed the detachment hazard influence. The observations reveal a slow surge-like dynamic pattern of the glacier tongue. The maximum runout distances of two endmember avalanche scenarios were presented. This study provides a reference to evaluate the runout hazards of low-angle mountain glaciers prone to detachment.
We characterized the multi-decadal geomorphic changes of a low-angle valley glacier in the East...
Altmetrics
Final-revised paper
Preprint