Articles | Volume 21, issue 7
https://doi.org/10.5194/nhess-21-2257-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-21-2257-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Deep uncertainties in shoreline change projections: an extra-probabilistic approach applied to sandy beaches
Rémi Thiéblemont
CORRESPONDING AUTHOR
Bureau de Recherches Géologiques et Minières “BRGM”, French Geological Survey, 3 Avenue, Claude Guillemin, CEDEX, 45060 Orléans, France
Gonéri Le Cozannet
Bureau de Recherches Géologiques et Minières “BRGM”, French Geological Survey, 3 Avenue, Claude Guillemin, CEDEX, 45060 Orléans, France
Jérémy Rohmer
Bureau de Recherches Géologiques et Minières “BRGM”, French Geological Survey, 3 Avenue, Claude Guillemin, CEDEX, 45060 Orléans, France
Alexandra Toimil
IHCantabria-Instituto de Hidráulica Ambiental de la Universidad de Cantabria, Parque Científico y Tecnológico de Cantabria, Calle Isabel Torres 15, 39011 Santander, Cantabria, Spain
Moisés Álvarez-Cuesta
IHCantabria-Instituto de Hidráulica Ambiental de la Universidad de Cantabria, Parque Científico y Tecnológico de Cantabria, Calle Isabel Torres 15, 39011 Santander, Cantabria, Spain
Iñigo J. Losada
IHCantabria-Instituto de Hidráulica Ambiental de la Universidad de Cantabria, Parque Científico y Tecnológico de Cantabria, Calle Isabel Torres 15, 39011 Santander, Cantabria, Spain
Related authors
Jeremy Rohmer, Remi Thieblemont, Goneri Le Cozannet, Heiko Goelzer, and Gael Durand
The Cryosphere, 16, 4637–4657, https://doi.org/10.5194/tc-16-4637-2022, https://doi.org/10.5194/tc-16-4637-2022, 2022
Short summary
Short summary
To improve the interpretability of process-based projections of the sea-level contribution from land ice components, we apply the machine-learning-based
SHapley Additive exPlanationsapproach to a subset of a multi-model ensemble study for the Greenland ice sheet. This allows us to quantify the influence of particular modelling decisions (related to numerical implementation, initial conditions, or parametrisation of ice-sheet processes) directly in terms of sea-level change contribution.
Jeremy Rohmer, Deborah Idier, Remi Thieblemont, Goneri Le Cozannet, and François Bachoc
Nat. Hazards Earth Syst. Sci., 22, 3167–3182, https://doi.org/10.5194/nhess-22-3167-2022, https://doi.org/10.5194/nhess-22-3167-2022, 2022
Short summary
Short summary
We quantify the influence of wave–wind characteristics, offshore water level and sea level rise (projected up to 2200) on the occurrence of flooding events at Gâvres, French Atlantic coast. Our results outline the overwhelming influence of sea level rise over time compared to the others. By showing the robustness of our conclusions to the errors in the estimation procedure, our approach proves to be valuable for exploring and characterizing uncertainties in assessments of future flooding.
Ioannis A. Daglis, Loren C. Chang, Sergio Dasso, Nat Gopalswamy, Olga V. Khabarova, Emilia Kilpua, Ramon Lopez, Daniel Marsh, Katja Matthes, Dibyendu Nandy, Annika Seppälä, Kazuo Shiokawa, Rémi Thiéblemont, and Qiugang Zong
Ann. Geophys., 39, 1013–1035, https://doi.org/10.5194/angeo-39-1013-2021, https://doi.org/10.5194/angeo-39-1013-2021, 2021
Short summary
Short summary
We present a detailed account of the science programme PRESTO (PREdictability of the variable Solar–Terrestrial cOupling), covering the period 2020 to 2024. PRESTO was defined by a dedicated committee established by SCOSTEP (Scientific Committee on Solar-Terrestrial Physics). We review the current state of the art and discuss future studies required for the most effective development of solar–terrestrial physics.
Davide Zanchettin, Sara Bruni, Fabio Raicich, Piero Lionello, Fanny Adloff, Alexey Androsov, Fabrizio Antonioli, Vincenzo Artale, Eugenio Carminati, Christian Ferrarin, Vera Fofonova, Robert J. Nicholls, Sara Rubinetti, Angelo Rubino, Gianmaria Sannino, Giorgio Spada, Rémi Thiéblemont, Michael Tsimplis, Georg Umgiesser, Stefano Vignudelli, Guy Wöppelmann, and Susanna Zerbini
Nat. Hazards Earth Syst. Sci., 21, 2643–2678, https://doi.org/10.5194/nhess-21-2643-2021, https://doi.org/10.5194/nhess-21-2643-2021, 2021
Short summary
Short summary
Relative sea level in Venice rose by about 2.5 mm/year in the past 150 years due to the combined effect of subsidence and mean sea-level rise. We estimate the likely range of mean sea-level rise in Venice by 2100 due to climate changes to be between about 10 and 110 cm, with an improbable yet possible high-end scenario of about 170 cm. Projections of subsidence are not available, but historical evidence demonstrates that they can increase the hazard posed by climatically induced sea-level rise.
Gonéri Le Cozannet, Déborah Idier, Marcello de Michele, Yoann Legendre, Manuel Moisan, Rodrigo Pedreros, Rémi Thiéblemont, Giorgio Spada, Daniel Raucoules, and Ywenn de la Torre
Nat. Hazards Earth Syst. Sci., 21, 703–722, https://doi.org/10.5194/nhess-21-703-2021, https://doi.org/10.5194/nhess-21-703-2021, 2021
Short summary
Short summary
Chronic flooding occurring at high tides under calm weather conditions is an early impact of sea-level rise. This hazard is a reason for concern on tropical islands, where coastal infrastructure is commonly located in low-lying areas. We focus here on the Guadeloupe archipelago, in the French Antilles, where chronic flood events have been reported for about 10 years. We show that the number of such events will increase drastically over the 21st century under continued growth of CO2 emissions.
Heiko Goelzer, Constantijn J. Berends, Fredrik Boberg, Gael Durand, Tamsin Edwards, Xavier Fettweis, Fabien Gillet-Chaulet, Quentin Glaude, Philippe Huybrechts, Sébastien Le clec'h, Ruth Mottram, Brice Noël, Martin Olesen, Charlotte Rahlves, Jeremy Rohmer, Michiel van den Broeke, and Roderik S. W. van de Wal
EGUsphere, https://doi.org/10.5194/egusphere-2025-3098, https://doi.org/10.5194/egusphere-2025-3098, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
We present an ensemble of ice sheet model projections for the Greenland ice sheet. The focus is on providing projections that improve our understanding of the range future sea-level rise and the inherent uncertainties over the next 100 to 300 years. Compared to earlier work we more fully account for some of the uncertainties in sea-level projections. We include a wider range of climate model output, more climate change scenarios and we extend projections schematically up to year 2300.
Sophie Lecacheux, Jeremy Rohmer, Eva Membrado, Rodrigo Pedreros, Andrea Filippini, Déborah Idier, Servane Gueben-Vénière, Denis Paradis, Alice Dalphinet, and David Ayache
EGUsphere, https://doi.org/10.5194/egusphere-2024-3615, https://doi.org/10.5194/egusphere-2024-3615, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
This study comparer three data-driven methodologies to overcome the computational burden of numerical simulations for early warning purpose. They are all based on the statistical analysis of pre-calculated databases, to downscale total sea levels and predict marine flooding maps from offshore metocean forecasts. Conclusions highlight the relevance of metamodel-based approaches for fast prediction and the added value of precalculated databases during the prepardness phase.
Camila Cotrim, Alexandra Toimil, Iñigo Losada, Melisa Menéndez, and Hector Lobeto
EGUsphere, https://doi.org/10.5194/egusphere-2025-2998, https://doi.org/10.5194/egusphere-2025-2998, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
Coastal storms place millions of people and infrastructures at risk. So, we developed a method to estimate extreme total water levels in a consistent way across Europe, as this is the main indicator for coastal flooding, for example. We consider local variations in tides, storm surges, waves, and beach slopes. We found that parts of Europe are affected differently, with tides being important on the Atlantic coast, storm surges in the Baltic Sea, and waves mattering most in the Mediterranean Sea.
Susan E. Hanson, Robert J. Nicholls, Floris R. Calkoen, Gonéri Le Cozannet, and Arjen P. Luijendijk
EGUsphere, https://doi.org/10.5194/egusphere-2025-2371, https://doi.org/10.5194/egusphere-2025-2371, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
The CoasTER geographic database provides erosion relevant characteristics for Europe’s coastal floodplains. It builds on earlier erosion research and includes a coastal geomorphological typology incorporating modification in the form of hard engineering and infrastructure. Analysis shows 27 % of coastal floodplains have shown significant erosion over the last 40 years. Nearly 3,500 km will require additional or new management to protect developed areas and infrastructure if the trend continues.
Mirna Badillo-Interiano, Jérémy Rohmer, Gonéri Le Cozannet, and Virginie Duvat
EGUsphere, https://doi.org/10.5194/egusphere-2024-3884, https://doi.org/10.5194/egusphere-2024-3884, 2025
Short summary
Short summary
Small islands face growing threats from climate change. In this context, we consider it important to explore new modeling approaches to improve climate risk assessments in these islands. Our study propose a probabilistic approach using Bayesian Networks (BNs). We developed a expert-based BN model to assess the risk to habitability on four atoll islands in the Indian and Pacific Oceans. The findings suggests that BNs could be used to assess climate-related risk and other adaptation problems.
Jeremy Rohmer, Heiko Goelzer, Tamsin Edwards, Goneri Le Cozannet, and Gael Durand
EGUsphere, https://doi.org/10.5194/egusphere-2025-52, https://doi.org/10.5194/egusphere-2025-52, 2025
Short summary
Short summary
Developing robust protocols to design multi-model ensembles is of primary importance for the uncertainty quantification of sea level projections. Here, we set up a series of computer experiments to reflect design decisions for the prediction of future sea level contribution of the Greenland ice sheet. We show the importance of including the most extreme climate scenario, and the benefit of having diversity in numerical models for ice sheet modelling and regional climate assessments.
Alexander Bisaro, Giulia Galluccio, Elisa Fiorini Beckhauser, Fulvio Biddau, Ruben David, Floortje d'Hont, Antonio Góngora Zurro, Gonéri Le Cozannet, Sadie McEvoy, Begoña Pérez Gómez, Claudia Romagnoli, Eugenio Sini, and Jill Slinger
State Planet, 3-slre1, 7, https://doi.org/10.5194/sp-3-slre1-7-2024, https://doi.org/10.5194/sp-3-slre1-7-2024, 2024
Short summary
Short summary
This paper assesses coastal adaptation governance by examining socio-economic and political contexts, reviewing policy frameworks, and identifying challenges. Results show that regional and basin-scale frameworks lack sea level rise provisions, but significant national progress is observed. The main governance challenges are time horizons and uncertainty, coordination, and social vulnerability. These, however, can be addressed if flexible planning and nature-based solutions are implemented.
Roderik van de Wal, Angélique Melet, Debora Bellafiore, Paula Camus, Christian Ferrarin, Gualbert Oude Essink, Ivan D. Haigh, Piero Lionello, Arjen Luijendijk, Alexandra Toimil, Joanna Staneva, and Michalis Vousdoukas
State Planet, 3-slre1, 5, https://doi.org/10.5194/sp-3-slre1-5-2024, https://doi.org/10.5194/sp-3-slre1-5-2024, 2024
Short summary
Short summary
Sea level rise has major impacts in Europe, which vary from place to place and in time, depending on the source of the impacts. Flooding, erosion, and saltwater intrusion lead, via different pathways, to various consequences for coastal regions across Europe. This causes damage to assets, the environment, and people for all three categories of impacts discussed in this paper. The paper provides an overview of the various impacts in Europe.
Jeremy Rohmer, Stephane Belbeze, and Dominique Guyonnet
SOIL, 10, 679–697, https://doi.org/10.5194/soil-10-679-2024, https://doi.org/10.5194/soil-10-679-2024, 2024
Short summary
Short summary
Machine learning (ML) models have become key ingredients for digital soil mapping. To explain why the ML model is reliable, we apply a popular method from explainable artificial intelligence to the uncertainty prediction, with an application to the mapping of hydrocarbon pollutants on urban soil. We show the benefit of a joint analysis of the influence on the best estimate and the uncertainty to improve communication with end users and support decisions regarding covariates’ characterisation.
Jeremy Rohmer, Remi Thieblemont, Goneri Le Cozannet, Heiko Goelzer, and Gael Durand
The Cryosphere, 16, 4637–4657, https://doi.org/10.5194/tc-16-4637-2022, https://doi.org/10.5194/tc-16-4637-2022, 2022
Short summary
Short summary
To improve the interpretability of process-based projections of the sea-level contribution from land ice components, we apply the machine-learning-based
SHapley Additive exPlanationsapproach to a subset of a multi-model ensemble study for the Greenland ice sheet. This allows us to quantify the influence of particular modelling decisions (related to numerical implementation, initial conditions, or parametrisation of ice-sheet processes) directly in terms of sea-level change contribution.
Jeremy Rohmer, Deborah Idier, Remi Thieblemont, Goneri Le Cozannet, and François Bachoc
Nat. Hazards Earth Syst. Sci., 22, 3167–3182, https://doi.org/10.5194/nhess-22-3167-2022, https://doi.org/10.5194/nhess-22-3167-2022, 2022
Short summary
Short summary
We quantify the influence of wave–wind characteristics, offshore water level and sea level rise (projected up to 2200) on the occurrence of flooding events at Gâvres, French Atlantic coast. Our results outline the overwhelming influence of sea level rise over time compared to the others. By showing the robustness of our conclusions to the errors in the estimation procedure, our approach proves to be valuable for exploring and characterizing uncertainties in assessments of future flooding.
Ryota Wada, Jeremy Rohmer, Yann Krien, and Philip Jonathan
Nat. Hazards Earth Syst. Sci., 22, 431–444, https://doi.org/10.5194/nhess-22-431-2022, https://doi.org/10.5194/nhess-22-431-2022, 2022
Short summary
Short summary
Characterizing extreme wave environments caused by tropical cyclones in the Caribbean Sea near Guadeloupe is difficult because cyclones rarely pass near the location of interest. STM-E (space-time maxima and exposure) model utilizes wave data during cyclones on a spatial neighbourhood. Long-duration wave data generated from a database of synthetic tropical cyclones are used to evaluate the performance of STM-E. Results indicate STM-E provides estimates with small bias and realistic uncertainty.
Ioannis A. Daglis, Loren C. Chang, Sergio Dasso, Nat Gopalswamy, Olga V. Khabarova, Emilia Kilpua, Ramon Lopez, Daniel Marsh, Katja Matthes, Dibyendu Nandy, Annika Seppälä, Kazuo Shiokawa, Rémi Thiéblemont, and Qiugang Zong
Ann. Geophys., 39, 1013–1035, https://doi.org/10.5194/angeo-39-1013-2021, https://doi.org/10.5194/angeo-39-1013-2021, 2021
Short summary
Short summary
We present a detailed account of the science programme PRESTO (PREdictability of the variable Solar–Terrestrial cOupling), covering the period 2020 to 2024. PRESTO was defined by a dedicated committee established by SCOSTEP (Scientific Committee on Solar-Terrestrial Physics). We review the current state of the art and discuss future studies required for the most effective development of solar–terrestrial physics.
Davide Zanchettin, Sara Bruni, Fabio Raicich, Piero Lionello, Fanny Adloff, Alexey Androsov, Fabrizio Antonioli, Vincenzo Artale, Eugenio Carminati, Christian Ferrarin, Vera Fofonova, Robert J. Nicholls, Sara Rubinetti, Angelo Rubino, Gianmaria Sannino, Giorgio Spada, Rémi Thiéblemont, Michael Tsimplis, Georg Umgiesser, Stefano Vignudelli, Guy Wöppelmann, and Susanna Zerbini
Nat. Hazards Earth Syst. Sci., 21, 2643–2678, https://doi.org/10.5194/nhess-21-2643-2021, https://doi.org/10.5194/nhess-21-2643-2021, 2021
Short summary
Short summary
Relative sea level in Venice rose by about 2.5 mm/year in the past 150 years due to the combined effect of subsidence and mean sea-level rise. We estimate the likely range of mean sea-level rise in Venice by 2100 due to climate changes to be between about 10 and 110 cm, with an improbable yet possible high-end scenario of about 170 cm. Projections of subsidence are not available, but historical evidence demonstrates that they can increase the hazard posed by climatically induced sea-level rise.
Gonéri Le Cozannet, Déborah Idier, Marcello de Michele, Yoann Legendre, Manuel Moisan, Rodrigo Pedreros, Rémi Thiéblemont, Giorgio Spada, Daniel Raucoules, and Ywenn de la Torre
Nat. Hazards Earth Syst. Sci., 21, 703–722, https://doi.org/10.5194/nhess-21-703-2021, https://doi.org/10.5194/nhess-21-703-2021, 2021
Short summary
Short summary
Chronic flooding occurring at high tides under calm weather conditions is an early impact of sea-level rise. This hazard is a reason for concern on tropical islands, where coastal infrastructure is commonly located in low-lying areas. We focus here on the Guadeloupe archipelago, in the French Antilles, where chronic flood events have been reported for about 10 years. We show that the number of such events will increase drastically over the 21st century under continued growth of CO2 emissions.
Cited articles
Athanasiou, P., van Dongeren, A., Giardino, A., Vousdoukas, M. I., Ranasinghe, R., and Kwadijk, J.: Uncertainties in projections of sandy beach erosion due to sea level rise: an analysis at the European scale, Sci. Rep., 10, 11895, https://doi.org/10.1038/s41598-020-68576-0, 2020.
Bakker, A. M. R., Louchard, D., and Keller, K.: Sources and implications of deep uncertainties surrounding sea-level projections, Clim. Change, 140, 339–347, https://doi.org/10.1007/s10584-016-1864-1, 2017.
Bamber, J. L., Oppenheimer, M., Kopp, R. E., Aspinall, W. P., and Cooke, R. M.: Ice sheet contributions to future sea-level rise from structured expert judgment, Proc. Natl. Acad. Sci. USA, 116, 11195, https://doi.org/10.1073/pnas.1817205116, 2019.
Baudrit, C., Guyonnet, D., and Dubois, D.: Postprocessing the Hybrid Method for Addressing Uncertainty in Risk Assessments, J. Environ. Eng., 131, 1750–1754, https://doi.org/10.1061/(ASCE)0733-9372(2005)131:12(1750), 2005.
Baudrit, C., Guyonnet, D., and Dubois, D.: Joint propagation of variability and imprecision in assessing the risk of groundwater contamination, J. Contam. Hydrol., 93, 72–84, https://doi.org/10.1016/j.jconhyd.2007.01.015, 2007.
Beer, M., Ferson, S., and Kreinovich, V.: Imprecise probabilities in engineering analyses, Mech. Syst. Signal Pr., 37, 4–29, https://doi.org/10.1016/j.ymssp.2013.01.024, 2013.
Bernon, N., Mallet, C., and Belon, R.: Caractérisation de l'aléa recul du trait de côte sur le littoral de la côte aquitaine aux horizons 2025 et 2050, Rapport final, BRGM/RP-66277-FR, 99 pp., available at: https://www.actu-environnement.com/media/pdf/news-28220-littoral-aquitain-recul.pdf (last access: 29 June 2021), 2016.
Beven, K. J., Almeida, S., Aspinall, W. P., Bates, P. D., Blazkova, S., Borgomeo, E., Freer, J., Goda, K., Hall, J. W., Phillips, J. C., Simpson, M., Smith, P. J., Stephenson, D. B., Wagener, T., Watson, M., and Wilkins, K. L.: Epistemic uncertainties and natural hazard risk assessment – Part 1: A review of different natural hazard areas, Nat. Hazards Earth Syst. Sci., 18, 2741–2768, https://doi.org/10.5194/nhess-18-2741-2018, 2018.
BRGM: Shoreline change Hyrisk Gitlab, available at: https://gitlab.brgm.fr/brgm/shoreline-change-hyrisk, last access: 29 July 2021a.
BRGM: Regional sea level changes, available at: https://sealevelrise.brgm.fr/sea-level-scenarios, last access: 22 June 2021b.
Bruun, P.: Sea-Level Rise as a Cause of Shore Erosion, Journal of the Waterways and Harbors Division, 88, 117–132, 1962.
Budescu, D. V., Broomell, S. B., Lempert, R. J., and Keller, K.: Aided and unaided decisions with imprecise probabilities in the domain of losses, EURO Journal on Decision Processes, 2, 31–62, https://doi.org/10.1007/s40070-013-0023-4, 2014.
Bulteau, T., Mugica, J., Mallet, C., Garnier, C., Rosebery, D., Maugard, F., Nicolae Lerma , A., and Naho, A.: Évaluation de l'impact des tempêtes de l'hiver 2013–2014 sur la morphologie de la Côte Aquitaine, Rapport final, BRGM/RP-63797-FR, 68 pp., 138, fig., 8 tab., 2 ann., 2014.
Carson, M., Kohl, A., Stammer, D., Slangen, A. B. A., Katsman, C. A., van de Wal, R. S. W., Church, J., and White, N.: Coastal sea level changes, observed and projected during the 20th and 21st century, Clim. Change, 134, 269–281, https://doi.org/10.1007/s10584-015-1520-1, 2016.
Castelle, B., Guillot, B., Marieu, V., Chaumillon, E., Hanquiez, V., Bujan, S., and Poppeschi, C.: Spatial and temporal patterns of shoreline change of a 280 km high-energy disrupted sandy coast from 1950 to 2014: SW France, Estuar. Coast. Shelf S., 200, 212–223, https://doi.org/10.1016/j.ecss.2017.11.005, 2018.
Church, J. A., Clark, P. U., Cazenave, A., Gregory, J. M., Jevrejeva, S., Levermann, A., Merrifield, M. A., Milne, G. A., Nerem, R. S., Nunn, P. D., Payne, A. J., Pfeffer, W. T., Stammer, D., and Unnikrishnan, A. S.: Sea Level Change, in: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change ed., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2013.
Clark, P. U., Shakun, J. D., Marcott, S. A., Mix, A. C., Eby, M., Kulp, S., Levermann, A., Milne, G. A., Pfister, P. L., Santer, B. D., Schrag, D. P., Solomon, S., Stocker, T. F., Strauss, B. H., Weaver, A. J., Winkelmann, R., Archer, D., Bard, E., Goldner, A., Lambeck, K., Pierrehumbert, R. T., and Plattner, G. K.: Consequences of twenty-first-century policy for multi-millennial climate and sea-level change, Nat. Clim. Change, 6, 360–369, https://doi.org/10.1038/nclimate2923, 2016.
Cooper, J. A. G. and Pilkey, O. H.: Sea-level rise and shoreline retreat: time to abandon the Bruun Rule, Global Planet. Change, 43, 157–171, https://doi.org/10.1016/j.gloplacha.2004.07.001, 2004.
Cooper, J. A. G., Masselink, G., Coco, G., Short, A. D., Castelle, B., Rogers, K., Anthony, E., Green, A. N., Kelley, J. T., Pilkey, O. H., and Jackson, D. W. T.: Sandy beaches can survive sea-level rise, Nat. Clim. Change, 10, 993–995, https://doi.org/10.1038/s41558-020-00934-2, 2020.
Cowell, P. J., Stive, M. J. F., Niedoroda, A. W., de Vriend, H. J., Swift, D. J. P., Kaminsky, G. M., and Capobianco, M.: The Coastal-Tract (Part 1 ): A Conceptual Approach to Aggregated Modeling of Low-Order Coastal Change, J. Coastal Res., 19, 812–827, 2003.
DeConto, R. M. and Pollard, D.: Contribution of Antarctica to past and future sea-level rise, Nature, 531, 591–597, 2016.
Dempster, A. P.: Upper and lower probabilities induced by a multivalued mapping, Ann. Math. Stat., 38, 325–339, 1967.
Dubois, D. and Guyonnet, D.: Risk-informed decision-making in the presence of epistemic uncertainty, International Journal of General Systems, 40, 145-167, https://doi.org/10.1080/03081079.2010.506179, 2011.
Dubois, D. and Prade, H.: Possibility Theory: An Approach to Computerized Processing of Uncertainty, Plenum Press, New York, 1988.
Dubois, D. and Prade, H.: On the Combination of Evidence in Various Mathematical Frameworks, in: Reliability Data Collection and Analysis, edited by: Flamm, J. and Luisi, T., Springer the Netherlands, Dordrecht, 213–241, 1992.
Edwards, T. L., Brandon, M. A., Durand, G., Edwards, N. R., Golledge, N. R., Holden, P. B., Nias, I. J., Payne, A. J., Ritz, C., and Wernecke, A.: Revisiting Antarctic ice loss due to marine ice-cliff instability, Nature, 566, 58–64, https://doi.org/10.1038/s41586-019-0901-4, 2019.
Enríquez, A. R., Marcos, M., Falqués, A., and Roelvink, D.: Assessing Beach and Dune Erosion and Vulnerability Under Sea Level Rise: A Case Study in the Mediterranean Sea, Frontiers in Marine Science, 6, 4, https://doi.org/10.3389/fmars.2019.00004, 2019.
Garner, A. J., Weiss, J. L., Parris, A., Kopp, R. E., Horton, R. M., Overpeck, J. T., and Horton, B. P.: Evolution of 21st Century Sea Level Rise Projections, Earths Future, 6, 1603–1615, https://doi.org/10.1029/2018ef000991, 2018.
Gregory, J. M., Griffies, S. M., Hughes, C. W., Lowe, J. A., Church, J. A., Fukimori, I., Gomez, N., Kopp, R. E., Landerer, F., Le Cozannet, G., Ponte, R. M., Stammer, D., Tamisiea, M. E., and van de Wal, R. S. W.: Concepts and Terminology for Sea Level: Mean, Variability and Change, Both Local and Global, Surv. Geophys., 40, 1251–1289, https://doi.org/10.1007/s10712-019-09525-z, 2019.
Helgeson, C., Srikrishnan, V., Keller, K., and Tuana, N.: Why Simpler Computer Simulation Models Can Be Epistemically Better for Informing Decisions, Philos. Sci., 88, 213–233, https://doi.org/10.1086/711501, 2020.
Hinkel, J., Jaeger, C., Nicholls, R. J., Lowe, J., Renn, O., and Shi, P. J.: Sea-level rise scenarios and coastal risk management, Nat. Clim. Change, 5, 188–190, https://doi.org/10.1038/nclimate2505, 2015.
Hinkel, J., Church, J. A., Gregory, J. M., Lambert, E., Le Cozannet, G., Lowe, J., McInnes, K. L., Nicholls, R. J., van der Pol, T. D., and van de Wal, R.: Meeting User Needs for Sea Level Rise Information: A Decision Analysis Perspective, Earths Future, 7, 320–337, https://doi.org/10.1029/2018ef001071, 2019.
Joughin, I., Smith, B. E., and Medley, B.: Marine Ice Sheet Collapse Potentially Under Way for the Thwaites Glacier Basin, West Antarctica, Science, 344, 735, https://doi.org/10.1126/science.1249055, 2014.
Kopp, R. E., DeConto, R. M., Bader, D. A., Hay, C. C., Horton, R. M., Kulp, S., Oppenheimer, M., Pollard, D., and Strauss, B. H.: Evolving Understanding of Antarctic Ice-Sheet Physics and Ambiguity in Probabilistic Sea-Level Projections, Earths Future, 5, 1217–1233, https://doi.org/10.1002/2017ef000663, 2017.
Le Bars, D., Drijfhout, S., and de Vries, H.: A high-end sea level rise probabilistic projections includiing rapid Antarctic ice sheet mass loss, Environ. Res. Lett., 12, 044013, https://doi.org/10.1088/1748-9326/aa6512, 2017.
Le Cozannet, G., Manceau, J. C., and Rohmer, J.: Bounding probabilistic sea-level projections within the framework of the possibility theory, Environ. Res. Lett., 12, 014012, https://doi.org/10.1088/1748-9326/aa5528, 2017.
Le Cozannet, G., Bulteau, T., Castelle, B., Ranasinghe, R., Woppelmann, G., Rohmer, J., Bernon, N., Idier, D., Louisor, J., and Salas-y-Melia, D.: Quantifying uncertainties of sandy shoreline change projections as sea level rises, Sci. Rep., 9, 42, https://doi.org/10.1038/s41598-018-37017-4, 2019a.
Le Cozannet, G., Thiéblemont, R., Rohmer, J., Idier, D., Manceau, J.-C., and Quique, R.: Low-End Probabilistic Sea-Level Projections, Water, 11, 1507, https://doi.org/10.3390/w11071507, 2019b.
Luijendijk, A., Hagenaars, G., Ranasinghe, R., Baart, F., Donchyts, G., and Aarninkhof, S.: The State of the World's Beaches, Sci. Rep., 8, 6641, https://doi.org/10.1038/s41598-018-24630-6, 2018.
Marcos, M. and Tsimplis, M. N.: Coastal sea level trends in Southern Europe, Geophys. J. Int., 175, 70–82, https://doi.org/10.1111/j.1365-246X.2008.03892.x, 2008.
Mentaschi, L., Vousdoukas, M. I., Pekel, J. F., Voukouvalas, E., and Feyen, L.: Global long-term observations of coastal erosion and accretion, Sci. Rep., 8, 12876, https://doi.org/10.1038/s41598-018-30904-w, 2018.
Montaño, J., Coco, G., Antolínez, J. A. A., Beuzen, T., Bryan, K. R., Cagigal, L., Castelle, B., Davidson, M. A., Goldstein, E. B., Ibaceta, R., Idier, D., Ludka, B. C., Masoud-Ansari, S., Méndez, F. J., Murray, A. B., Plant, N. G., Ratliff, K. M., Robinet, A., Rueda, A., Sénéchal, N., Simmons, J. A., Splinter, K. D., Stephens, S., Townend, I., Vitousek, S., and Vos, K.: Blind testing of shoreline evolution models, Sci. Rep., 10, 2137, https://doi.org/10.1038/s41598-020-59018-y, 2020.
Nicholls, R. J., Hanson, S. E., Lowe, J. A., Warrick, R. A., Lu, X. F., and Long, A. J.: Sea-level scenarios for evaluating coastal impacts, WiRes Clim. Change, 5, 129–150, https://doi.org/10.1002/wcc.253, 2014.
Oppenheimer, M., Glavovic, B. C., Hinkel, J., van de Wal, R., Magnan, A. K., Abd-EIgawad, A., Cai, R., Cifuentes-Jara, M., DeConto, R. M., Ghosh, T., Hay, J., Isla, F., Marzeion, B., Meyssignac, B., and Sebesvari, Z.: Sea level rise and implications for low-Lying islands, coasts and communities, in: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, edited by: Pörtner, H.-O., et al., Cambridge University Press, 2019.
Peter, J. C., Marcel, J. F. S., Alan, W. N., Huib, J. d. V., Donald, J. P. S., George, M. K., and Michele, C.: The Coastal-Tract (Part 1): A Conceptual Approach to Aggregated Modeling of Low-Order Coastal Change, J. Coastal Res., 19, 812–827, 2003.
Ranasinghe, R.: Assessing climate change impacts on open sandy coasts: A review, Earth-Sci. Rev., 160, 320–332, https://doi.org/10.1016/j.earscirev.2016.07.011, 2016.
Ranasinghe, R.: On the need for a new generation of coastal change models for the 21st century, Sci. Rep., 10, 2010, https://doi.org/10.1038/s41598-020-58376-x, 2020.
Ranasinghe, R. and Stive, M. J. F.: Rising seas and retreating coastlines, Clim. Change, 97, 465, https://doi.org/10.1007/s10584-009-9593-3, 2009.
Ranasinghe, R., Callaghan, D., and Stive, M. J. F.: Estimating coastal recession due to sea level rise: beyond the Bruun rule, Clim. Change, 110, 561–574, https://doi.org/10.1007/s10584-011-0107-8, 2012.
Rignot, E., Mouginot, J., Morlighem, M., Seroussi, H., and Scheuchl, B.: Widespread, rapid grounding line retreat of Pine Island, Thwaites, Smith, and Kohler glaciers, West Antarctica, from 1992 to 2011, Geophys. Res. Lett., 41, 3502–3509, https://doi.org/10.1002/2014GL060140, 2014.
Robinet, A., Idier, D., Castelle, B., and Marieu, V.: A reduced-complexity shoreline change model combining longshore and cross-shore processes: The LX-Shore model, Environ. Modell. Softw., 109, 1–16, https://doi.org/10.1016/j.envsoft.2018.08.010, 2018.
Rohmer, J. and Verdel, T.: Joint exploration of regional importance of possibilistic and probabilistic uncertainty in stability analysis, Comput. Geotech., 61, 308–315, https://doi.org/10.1016/j.compgeo.2014.05.015, 2014.
Rohmer, J., Manceau, J., Guyonnet, D., and Boulahya, F.: HYRISK: Hybrid Methods for Addressing Uncertainty in RISK Assessments, Eartharxiv, https://doi.org/10.31223/osf.io/j67cy, 2018.
Rohmer, J., Le Cozannet, G., and Manceau, J.-C.: Addressing ambiguity in probabilistic assessments of future coastal flooding using possibility distributions, Clim. Change, 155, 95–109, https://doi.org/10.1007/s10584-019-02443-4, 2019.
Rohmer, J., Manceau, J.-C., Guyonnet, D., and Boulahya, F.: HYRISK: Hybrid Methods for Addressing Uncertainty in RISK Assessments, available at: https://cran.r-project.org/web/packages/HYRISK/index.html, last access: 22 June 2021.
Shafer, G.: A mathematical theory of evidence, B. Lond. Math. Soc., 9, 237–238, 1976.
Slangen, A. B. A., Katsman, C. A., van de Wal, R. S. W., Vermeersen, L. L. A., and Riva, R. E. M.: Towards regional projections of twenty-first century sea-level change based on IPCC SRES scenarios, Clim. Dynam., 38, 1191–1209, https://doi.org/10.1007/s00382-011-1057-6, 2012.
Slangen, A. B. A., Carson, M., Katsman, C. A., van de Wal, R. S. W., Kohl, A., Vermeersen, L. L. A., and Stammer, D.: Projecting twenty-first century regional sea-level changes, Clim. Change, 124, 317–332, https://doi.org/10.1007/s10584-014-1080-9, 2014.
Slangen, A. B. A., Adloff, F., Jevrejeva, S., Leclercq, P. W., Marzeion, B., Wada, Y., and Winkelmann, R.: A Review of Recent Updates of Sea-Level Projections at Global and Regional Scales, Surv. Geophys., 38, 385–406, https://doi.org/10.1007/s10712-016-9374-2, 2017.
Stammer, D., van de Wal, R. S. W., Nicholls, R. J., Church, J. A., Le Cozannet, G., Lowe, J. A., Horton, B. P., White, K., Behar, D., and Hinkel, J.: Framework for high-end estimates of sea-level rise for stakeholder applications, Earths Future, 7, 923–938, https://doi.org/10.1029/2019EF001163, 2019.
Stephens, A. S., Bell, G. R., and Lawrence, J.: Applying Principles of Uncertainty within Coastal Hazard Assessments to Better Support Coastal Adaptation, Journal of Marine Science and Engineering, 5, 40, https://doi.org/10.3390/jmse5030040, 2017.
Stive, M. J. F.: How Important is Global Warming for Coastal Erosion?, Clim. Change, 64, 27–39, https://doi.org/10.1023/B:CLIM.0000024785.91858.1d, 2004.
Stive, M. J. F., Aarninkhof, S. G. J., Hamm, L., Hanson, H., Larson, M., Wijnberg, K. M., Nicholls, R. J., and Capobianco, M.: Variability of shore and shoreline evolution, Coast. Eng., 47, 211–235, https://doi.org/10.1016/S0378-3839(02)00126-6, 2002.
Thiéblemont, R., Le Cozannet, G., Toimil, A., Meyssignac, B., and Losada, I. J.: Likely and High-End Impacts of Regional Sea-Level Rise on the Shoreline Change of European Sandy Coasts Under a High Greenhouse Gas Emissions Scenario, Water, 11, 2607, https://doi.org/10.3390/w11122607, 2019.
Toimil, A., Losada, I. J., Camus, P., and Díaz-Simal, P.: Managing coastal erosion under climate change at the regional scale, Coast. Eng., 128, 106–122, https://doi.org/10.1016/j.coastaleng.2017.08.004, 2017.
Toimil, A., Camus, P., Losada, I. J., Le Cozannet, G., Nicholls, R. J., Idier, D., and Maspataud, A.: Climate change-driven coastal erosion modelling in temperate sandy beaches: Methods and uncertainty treatment, Earth-Sci. Rev., 202, 103110, https://doi.org/10.1016/j.earscirev.2020.103110, 2020.
Tucker, W. T. and Ferson, S.: Sensitivity in risk analyses with uncertain numbers, Sandia Report, Albuquerque, New Mexico, Livermore, California, United States, 2006.
University of Hamburg: AR5 Sea Level Rise, available at: https://icdc.cen.uni-hamburg.de/en/ar5-slr.html, last access: 2 May 2021.
van der Pol, T. D. and Hinkel, J.: Uncertainty representations of mean sea-level change: a telephone game?, Clim. Change, 152, 393–411, https://doi.org/10.1007/s10584-018-2359-z, 2019.
Verschuur, J., Le Bars, D., Katsman, C. A., de Vries, S., Ranasinghe, R., Drijfhout, S. S., and Aarninkhof, S. G. J.: Implications of ambiguity in Antarctic ice sheet dynamics for future coastal erosion estimates: a probabilistic assessment, Climatic Change, 162, 859–876, https://doi.org/10.1007/s10584-020-02769-4, 2020.
Vitousek, S., Barnard, P. L., and Limber, P.: Can beaches survive climate change?, J. Geophys. Res.-Earth, 122, 1060–1067, https://doi.org/10.1002/2017JF004308, 2017.
Vos, K., Harley, M. D., Splinter, K. D., Simmons, J. A., and Turner, I. L.: Sub-annual to multi-decadal shoreline variability from publicly available satellite imagery, Coast. Eng., 150, 160–174, https://doi.org/10.1016/j.coastaleng.2019.04.004, 2019a.
Vos, K., Splinter, K. D., Harley, M. D., Simmons, J. A., and Turner, I. L.: CoastSat: A Google Earth Engine-enabled Python toolkit to extract shorelines from publicly available satellite imagery, Environ. Modell. Softw., 122, 104528, https://doi.org/10.1016/j.envsoft.2019.104528, 2019b.
Vousdoukas, M. I., Ranasinghe, R., Mentaschi, L., Plomaritis, T. A., Athanasiou, P., Luijendijk, A., and Feyen, L.: Sandy coastlines under threat of erosion, Nat. Clim. Change, 10, 260–263, https://doi.org/10.1038/s41558-020-0697-0, 2020.
Wong, T. E., Bakker, A. M. R., and Keller, K: Impacts of Antarctic fast dynamics on sea-level projections and coastal flood defense, Climatic Change, 144, 347–364, https://doi.org/10.1007/s10584-017-2039-4, 2017.
Wöppelmann, G. and Marcos, M.: Vertical land motion as a key to understanding sea level change and variability, Rev. Geophys., 54, 64–92, https://doi.org/10.1002/2015RG000502, 2016.
Short summary
Sea level rise and its acceleration are projected to aggravate coastal erosion over the 21st century. Resulting shoreline projections are deeply uncertain, however, which constitutes a major challenge for coastal planning and management. Our work presents a new extra-probabilistic framework to develop future shoreline projections and shows that deep uncertainties could be drastically reduced by better constraining sea level projections and improving coastal impact models.
Sea level rise and its acceleration are projected to aggravate coastal erosion over the 21st...
Altmetrics
Final-revised paper
Preprint