Articles | Volume 21, issue 6
https://doi.org/10.5194/nhess-21-1825-2021
https://doi.org/10.5194/nhess-21-1825-2021
Review article
 | 
15 Jun 2021
Review article |  | 15 Jun 2021

Review article: Detection of actionable tweets in crisis events

Anna Kruspe, Jens Kersten, and Friederike Klan

Related authors

Opportunities and risks of disaster data from social media: a systematic review of incident information
Matti Wiegmann, Jens Kersten, Hansi Senaratne, Martin Potthast, Friederike Klan, and Benno Stein
Nat. Hazards Earth Syst. Sci., 21, 1431–1444, https://doi.org/10.5194/nhess-21-1431-2021,https://doi.org/10.5194/nhess-21-1431-2021, 2021
Short summary

Related subject area

Databases, GIS, Remote Sensing, Early Warning Systems and Monitoring Technologies
A neural network model for automated prediction of avalanche danger level
Vipasana Sharma, Sushil Kumar, and Rama Sushil
Nat. Hazards Earth Syst. Sci., 23, 2523–2530, https://doi.org/10.5194/nhess-23-2523-2023,https://doi.org/10.5194/nhess-23-2523-2023, 2023
Short summary
Brief communication: Landslide activity on the Argentinian Santa Cruz River mega dam works confirmed by PSI DInSAR
Guillermo Tamburini-Beliveau, Sebastián Balbarani, and Oriol Monserrat
Nat. Hazards Earth Syst. Sci., 23, 1987–1999, https://doi.org/10.5194/nhess-23-1987-2023,https://doi.org/10.5194/nhess-23-1987-2023, 2023
Short summary
Inform@Risk. The Development of a Prototype for an Integrated Landslide Early Warning System in an Informal Settlement: the Case of Bello Oriente in Medellín, Colombia
Christian Werthmann, Marta Sapena, Marlene Kühnl, John Singer, Carolina Garcia, Bettina Menschik, Heike Schäfer, Sebastian Schröck, Lisa Seiler, Kurosch Thuro, and Hannes Taubenböck
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-53,https://doi.org/10.5194/nhess-2023-53, 2023
Revised manuscript under review for NHESS
Short summary
Impact of topography on in situ soil wetness measurements for regional landslide early warning – a case study from the Swiss Alpine Foreland
Adrian Wicki, Peter Lehmann, Christian Hauck, and Manfred Stähli
Nat. Hazards Earth Syst. Sci., 23, 1059–1077, https://doi.org/10.5194/nhess-23-1059-2023,https://doi.org/10.5194/nhess-23-1059-2023, 2023
Short summary
Earthquake building damage detection based on synthetic-aperture-radar imagery and machine learning
Anirudh Rao, Jungkyo Jung, Vitor Silva, Giuseppe Molinario, and Sang-Ho Yun
Nat. Hazards Earth Syst. Sci., 23, 789–807, https://doi.org/10.5194/nhess-23-789-2023,https://doi.org/10.5194/nhess-23-789-2023, 2023
Short summary

Cited articles

Alam, F., Imran, M., and Ofli, F.: Image4Act: Online Social Media Image Processing for Disaster Response, in: Proceedings of the 2017 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining 2017, ASONAM ’17, 601–604, 2017. a
Alam, F., Joty, S., and Imran, M.: Domain Adaptation with Adversarial Training and Graph Embeddings, in: 56th Annual Meeting of the Association for Computational Linguistics (ACL), Melbourne, Australia, 2018a. a, b
Alam, F., Ofli, F., and Imran, M.: CrisisMMD: Multimodal Twitter Datasets from Natural Disasters, in: Proceedings of the 12th International AAAI Conference on Web and Social Media (ICWSM), 31 July–3 August 2017, Sydney, Australia, 2018b. a, b, c
Alam, F., Ofli, F., and Imran, M.: Descriptive and visual summaries of disaster events using artificial intelligence techniques: case studies of Hurricanes Harvey, Irma, and Maria, Behav. Inform. Technol., 39, 288–318, https://doi.org/10.1080/0144929X.2019.1610908, 2020. a
ALRashdi, R. and O'Keefe, S.: Deep Learning and Word Embeddings for Tweet Classification for Crisis Response, The 3rd National Computing Colleges Conference, 8–9 October 2018, Abha, Saudi Arabia, 2019. a
Short summary
Messages on social media can be an important source of information during crisis situations. This article reviews approaches for the reliable detection of informative messages in a flood of data. We demonstrate the varying goals of these approaches and present existing data sets. We then compare approaches based (1) on keyword and location filtering, (2) on crowdsourcing, and (3) on machine learning. We also point out challenges and suggest future research.
Altmetrics
Final-revised paper
Preprint