Articles | Volume 21, issue 5
Nat. Hazards Earth Syst. Sci., 21, 1495–1511, 2021

Special issue: Remote sensing and Earth observation data in natural hazard...

Nat. Hazards Earth Syst. Sci., 21, 1495–1511, 2021

Research article 12 May 2021

Research article | 12 May 2021

HazMapper: a global open-source natural hazard mapping application in Google Earth Engine

Corey M. Scheip and Karl W. Wegmann

Related subject area

Databases, GIS, Remote Sensing, Early Warning Systems and Monitoring Technologies
Opportunities and risks of disaster data from social media: a systematic review of incident information
Matti Wiegmann, Jens Kersten, Hansi Senaratne, Martin Potthast, Friederike Klan, and Benno Stein
Nat. Hazards Earth Syst. Sci., 21, 1431–1444,,, 2021
Short summary
Online urban-waterlogging monitoring based on a recurrent neural network for classification of microblogging text
Hui Liu, Ya Hao, Wenhao Zhang, Hanyue Zhang, Fei Gao, and Jinping Tong
Nat. Hazards Earth Syst. Sci., 21, 1179–1194,,, 2021
Short summary
Predicting power outages caused by extratropical storms
Roope Tervo, Ilona Láng, Alexander Jung, and Antti Mäkelä
Nat. Hazards Earth Syst. Sci., 21, 607–627,,, 2021
Short summary
Near-real-time automated classification of seismic signals of slope failures with continuous random forests
Michaela Wenner, Clément Hibert, Alec van Herwijnen, Lorenz Meier, and Fabian Walter
Nat. Hazards Earth Syst. Sci., 21, 339–361,,, 2021
Short summary
Assessing the accuracy of remotely sensed fire datasets across the southwestern Mediterranean Basin
Luiz Felipe Galizia, Thomas Curt, Renaud Barbero, and Marcos Rodrigues
Nat. Hazards Earth Syst. Sci., 21, 73–86,,, 2021
Short summary

Cited articles

Abancó, C., Bennett, G. L., Matthews, A. J., Matera, M. A., and Tan, F. J.: The role of geomorphology, rainfall and soil moisture in the occurrence of landslides triggered by 2018 Typhoon Mangkhut in the Philippines, Nat. Hazards Earth Syst. Sci. Discuss. [preprint],, in review, 2020. a
Amatya, P., Kirschbaum, D., and Stanley, T.: Use of very high-resolution optical data for landslide mapping and susceptibility analysis along the Karnali highway, Nepal, Remote Sens., 11, 2284,, 2019. a
Amos, C., Petropoulos, G. P., and Ferentinos, K. P.: Determining the use of Sentinel-2A MSI for wildfire burning & severity detection, Int. J. Remote Sens., 40, 905–930,, 2019. a, b
Andersen, L. M. and Sugg, M. M.: Geographic multi-criteria evaluation and validation: A case study of wildfire vulnerability in Western North Carolina, USA following the 2016 wildfires, Int. J. Disast. Risk. Re., 39, 101123,, 2019. a
Ashley, S. T. and Ashley, W. S.: Flood fatalities in the United States, J. Appl. Meteorol. Clim., 47, 805–818,, 2008. a
Short summary
For many decades, natural disasters have been monitored by trained analysts using multiple satellite images to observe landscape change. This approach is incredibly useful, but our new tool, HazMapper, offers researchers and the scientifically curious public a web-accessible cloud-based tool to perform similar analysis. We intend for the tool to both be used in scientific research and provide rapid response to global natural disasters like landslides, wildfires, and volcanic eruptions.
Final-revised paper