Articles | Volume 21, issue 5
https://doi.org/10.5194/nhess-21-1431-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/nhess-21-1431-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Opportunities and risks of disaster data from social media: a systematic review of incident information
Matti Wiegmann
CORRESPONDING AUTHOR
Bauhaus-Universität Weimar, Web Technology and Information Systems Group, Weimar, Germany
German Aerospace Center (DLR), Institute of Data Science, Jena, Germany
Jens Kersten
German Aerospace Center (DLR), Institute of Data Science, Jena, Germany
Hansi Senaratne
German Aerospace Center (DLR), German Remote Sensing Data Center, Oberpfaffenhofen, Germany
Martin Potthast
Leipzig University, Text Mining and Retrieval Group, Leipzig, Germany
Friederike Klan
German Aerospace Center (DLR), Institute of Data Science, Jena, Germany
Benno Stein
Bauhaus-Universität Weimar, Web Technology and Information Systems Group, Weimar, Germany
Related authors
No articles found.
Anna Kruspe, Jens Kersten, and Friederike Klan
Nat. Hazards Earth Syst. Sci., 21, 1825–1845, https://doi.org/10.5194/nhess-21-1825-2021, https://doi.org/10.5194/nhess-21-1825-2021, 2021
Short summary
Short summary
Messages on social media can be an important source of information during crisis situations. This article reviews approaches for the reliable detection of informative messages in a flood of data. We demonstrate the varying goals of these approaches and present existing data sets. We then compare approaches based (1) on keyword and location filtering, (2) on crowdsourcing, and (3) on machine learning. We also point out challenges and suggest future research.
This article is included in the Encyclopedia of Geosciences
Related subject area
Databases, GIS, Remote Sensing, Early Warning Systems and Monitoring Technologies
Insights into the development of a landslide early warning system prototype in an informal settlement: the case of Bello Oriente in Medellín, Colombia
AscDAMs: Advanced SLAM-based channel detection and mapping system
Exploring drought hazard, vulnerability, and related impacts to agriculture in Brandenburg
Tsunami hazard perception and knowledge of alert: early findings in five municipalities along the French Mediterranean coastlines
Exploiting radar polarimetry for nowcasting thunderstorm hazards using deep learning
Shoreline and Land Use Land Cover Changes along the 2004 tsunami-affected South Andaman Coast: Understanding Changing Hazard Susceptibility
Machine-learning-based nowcasting of the Vögelsberg deep-seated landslide: why predicting slow deformation is not so easy
Fixed photogrammetric systems for natural hazard monitoring with high spatio-temporal resolution
A neural network model for automated prediction of avalanche danger level
Brief communication: Landslide activity on the Argentinian Santa Cruz River mega dam works confirmed by PSI DInSAR
Impact of topography on in situ soil wetness measurements for regional landslide early warning – a case study from the Swiss Alpine Foreland
Earthquake building damage detection based on synthetic-aperture-radar imagery and machine learning
Assessing riverbank erosion in Bangladesh using time series of Sentinel-1 radar imagery in the Google Earth Engine
Quantifying unequal urban resilience to rainfall across China from location-aware big data
Comparison of machine learning techniques for reservoir outflow forecasting
Development of black ice prediction model using GIS-based multi-sensor model validation
Forecasting vegetation condition with a Bayesian auto-regressive distributed lags (BARDL) model
A dynamic hierarchical Bayesian approach for forecasting vegetation condition
Using a single remote-sensing image to calculate the height of a landslide dam and the maximum volume of a lake
Enhancing disaster risk resilience using greenspace in urbanising Quito, Ecuador
Gridded flood depth estimates from satellite-derived inundations
ProbFire: a probabilistic fire early warning system for Indonesia
Index establishment and capability evaluation of space–air–ground remote sensing cooperation in geohazard emergency response
Brief communication: Monitoring a soft-rock coastal cliff using webcams and strain sensors
Multiscale analysis of surface roughness for the improvement of natural hazard modelling
EUNADICS-AV early warning system dedicated to supporting aviation in the case of a crisis from natural airborne hazards and radionuclide clouds
Are sirens effective tools to alert the population in France?
UAV survey method to monitor and analyze geological hazards: the case study of the mud volcano of Villaggio Santa Barbara, Caltanissetta (Sicily)
Timely prediction potential of landslide early warning systems with multispectral remote sensing: a conceptual approach tested in the Sattelkar, Austria
CHILDA – Czech Historical Landslide Database
Review article: Detection of actionable tweets in crisis events
Long-term magnetic anomalies and their possible relationship to the latest greater Chilean earthquakes in the context of the seismo-electromagnetic theory
HazMapper: a global open-source natural hazard mapping application in Google Earth Engine
Online urban-waterlogging monitoring based on a recurrent neural network for classification of microblogging text
Predicting power outages caused by extratropical storms
Near-real-time automated classification of seismic signals of slope failures with continuous random forests
Assessing the accuracy of remotely sensed fire datasets across the southwestern Mediterranean Basin
Responses to severe weather warnings and affective decision-making
The object-specific flood damage database HOWAS 21
A spaceborne SAR-based procedure to support the detection of landslides
GIS-based DRASTIC and composite DRASTIC indices for assessing groundwater vulnerability in the Baghin aquifer, Kerman, Iran
Review article: The spatial dimension in the assessment of urban socio-economic vulnerability related to geohazards
Design and implementation of a mobile device app for network-based earthquake early warning systems (EEWSs): application to the PRESTo EEWS in southern Italy
CCAF-DB: the Caribbean and Central American active fault database
Evaluation of a combined drought indicator and its potential for agricultural drought prediction in southern Spain
Study on real-time correction of site amplification factor
Three-dimensional rockfall shape back analysis: methods and implications
Effects of high-resolution geostationary satellite imagery on the predictability of tropical thunderstorms over Southeast Asia
InSAR technique applied to the monitoring of the Qinghai–Tibet Railway
Understanding the spatiotemporal development of human settlement in hurricane-prone areas on the US Atlantic and Gulf coasts using nighttime remote sensing
Christian Werthmann, Marta Sapena, Marlene Kühnl, John Singer, Carolina Garcia, Tamara Breuninger, Moritz Gamperl, Bettina Menschik, Heike Schäfer, Sebastian Schröck, Lisa Seiler, Kurosch Thuro, and Hannes Taubenböck
Nat. Hazards Earth Syst. Sci., 24, 1843–1870, https://doi.org/10.5194/nhess-24-1843-2024, https://doi.org/10.5194/nhess-24-1843-2024, 2024
Short summary
Short summary
Early warning systems (EWSs) promise to decrease the vulnerability of self-constructed (informal) settlements. A living lab developed a partially functional prototype of an EWS for landslides in a Medellín neighborhood. The first findings indicate that technical aspects can be manageable, unlike social and political dynamics. A resilient EWS for informal settlements has to achieve sufficient social and technical redundancy to maintain basic functionality in a reduced-support scenario.
This article is included in the Encyclopedia of Geosciences
Tengfei Wang, Fucheng Lu, Jintao Qin, Taosheng Huang, Hui Kong, and Ping Shen
EGUsphere, https://doi.org/10.48550/arXiv.2401.13877, https://doi.org/10.48550/arXiv.2401.13877, 2024
Short summary
Short summary
The harsh environment limits the use of drone, satellite, and simultaneous localization and mapping technology to obtain precise channel morphology data. We propose AscDAMs, which include a deviation correction algorithm to reduce errors, a point cloud smoothing algorithm to diminish noise, and a cross section extraction algorithm to quantitatively assess the morphology data. AscDAMs solve the problems and provide researchers with more reliable channel morphology data for further analysis.
This article is included in the Encyclopedia of Geosciences
Fabio Brill, Pedro Henrique Lima Alencar, Huihui Zhang, Friedrich Boeing, Silke Hüttel, and Tobia Lakes
EGUsphere, https://doi.org/10.5194/egusphere-2024-1149, https://doi.org/10.5194/egusphere-2024-1149, 2024
Short summary
Short summary
Droughts are a threat to agricultural crops, but different factors influence how much damage occurs. This is important to know to create meaningful risk maps and to evaluate adaptation options. We investigate the years 2013–2022 in Brandenburg, Germany, and find in particular the soil quality and meteorological drought in June to be statistically related to the observed damage. Measurement of crop health from satellites are also related to soil quality, and not necessarily to anomalous yields.
This article is included in the Encyclopedia of Geosciences
Johnny Douvinet, Noé Carles, Pierre Foulquier, and Matthieu Peroche
Nat. Hazards Earth Syst. Sci., 24, 715–735, https://doi.org/10.5194/nhess-24-715-2024, https://doi.org/10.5194/nhess-24-715-2024, 2024
Short summary
Short summary
This study provided an opportunity to assess both the perception of the tsunami hazard and the knowledge of alerts in five municipalities located along the French Mediterranean coastlines. The age and location of the respondents explain several differences between the five municipalities surveyed – more so than gender or residence status. This study may help local authorities to develop future tsunami awareness actions and to identify more appropriate strategies to be applied in the short term.
This article is included in the Encyclopedia of Geosciences
Nathalie Rombeek, Jussi Leinonen, and Ulrich Hamann
Nat. Hazards Earth Syst. Sci., 24, 133–144, https://doi.org/10.5194/nhess-24-133-2024, https://doi.org/10.5194/nhess-24-133-2024, 2024
Short summary
Short summary
Severe weather such as hail, lightning, and heavy rainfall can be hazardous to humans and property. Dual-polarization weather radars provide crucial information to forecast these events by detecting precipitation types. This study analyses the importance of dual-polarization data for predicting severe weather for 60 min using an existing deep learning model. The results indicate that including these variables improves the accuracy of predicting heavy rainfall and lightning.
This article is included in the Encyclopedia of Geosciences
Vikas Ghadamode, K. Kumari Aruna, Anand K. Pandey, and Kirti Srivastava
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-191, https://doi.org/10.5194/nhess-2023-191, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
In the 2004-Tsunami affected southern Andaman region tsunami wave propagation, arrival times, and run-up heights at 13 locations are computed to analyse pre- and post-tsunami shoreline and LULC changes to understand the evolving hazard scenario. The LULC changes and dynamic shoreline changes are observed in Zones 3, 4, and 5 owing to dynamic population changes, infrastructural growth, and Gross State Domestic Product growth. Economic losses would increase five-fold foa a similar tsunami.
This article is included in the Encyclopedia of Geosciences
Adriaan L. van Natijne, Thom A. Bogaard, Thomas Zieher, Jan Pfeiffer, and Roderik C. Lindenbergh
Nat. Hazards Earth Syst. Sci., 23, 3723–3745, https://doi.org/10.5194/nhess-23-3723-2023, https://doi.org/10.5194/nhess-23-3723-2023, 2023
Short summary
Short summary
Landslides are one of the major weather-related geohazards. To assess their potential impact and design mitigation solutions, a detailed understanding of the slope is required. We tested if the use of machine learning, combined with satellite remote sensing data, would allow us to forecast deformation. Our results on the Vögelsberg landslide, a deep-seated landslide near Innsbruck, Austria, show that the formulation of such a machine learning system is not as straightforward as often hoped for.
This article is included in the Encyclopedia of Geosciences
Xabier Blanch, Marta Guinau, Anette Eltner, and Antonio Abellan
Nat. Hazards Earth Syst. Sci., 23, 3285–3303, https://doi.org/10.5194/nhess-23-3285-2023, https://doi.org/10.5194/nhess-23-3285-2023, 2023
Short summary
Short summary
We present cost-effective photogrammetric systems for high-resolution rockfall monitoring. The paper outlines the components, assembly, and programming codes required. The systems utilize prime cameras to generate 3D models and offer comparable performance to lidar for change detection monitoring. Real-world applications highlight their potential in geohazard monitoring which enables accurate detection of pre-failure deformation and rockfalls with a high temporal resolution.
This article is included in the Encyclopedia of Geosciences
Vipasana Sharma, Sushil Kumar, and Rama Sushil
Nat. Hazards Earth Syst. Sci., 23, 2523–2530, https://doi.org/10.5194/nhess-23-2523-2023, https://doi.org/10.5194/nhess-23-2523-2023, 2023
Short summary
Short summary
Snow avalanches are a natural hazard that can cause danger to human lives. This threat can be reduced by accurate prediction of the danger levels. The development of mathematical models based on past data and present conditions can help to improve the accuracy of prediction. This research aims to develop a neural-network-based model for correlating complex relationships between the meteorological variables and the profile variables.
This article is included in the Encyclopedia of Geosciences
Guillermo Tamburini-Beliveau, Sebastián Balbarani, and Oriol Monserrat
Nat. Hazards Earth Syst. Sci., 23, 1987–1999, https://doi.org/10.5194/nhess-23-1987-2023, https://doi.org/10.5194/nhess-23-1987-2023, 2023
Short summary
Short summary
Landslides and ground deformation associated with the construction of a hydropower mega dam in the Santa Cruz River in Argentine Patagonia have been monitored using radar and optical satellite data, together with the analysis of technical reports. This allowed us to assess the integrity of the construction, providing a new and independent dataset. We have been able to identify ground deformation trends that put the construction works at risk.
This article is included in the Encyclopedia of Geosciences
Adrian Wicki, Peter Lehmann, Christian Hauck, and Manfred Stähli
Nat. Hazards Earth Syst. Sci., 23, 1059–1077, https://doi.org/10.5194/nhess-23-1059-2023, https://doi.org/10.5194/nhess-23-1059-2023, 2023
Short summary
Short summary
Soil wetness measurements are used for shallow landslide prediction; however, existing sites are often located in flat terrain. Here, we assessed the ability of monitoring sites at flat locations to detect critically saturated conditions compared to if they were situated at a landslide-prone location. We found that differences exist but that both sites could equally well distinguish critical from non-critical conditions for shallow landslide triggering if relative changes are considered.
This article is included in the Encyclopedia of Geosciences
Anirudh Rao, Jungkyo Jung, Vitor Silva, Giuseppe Molinario, and Sang-Ho Yun
Nat. Hazards Earth Syst. Sci., 23, 789–807, https://doi.org/10.5194/nhess-23-789-2023, https://doi.org/10.5194/nhess-23-789-2023, 2023
Short summary
Short summary
This article presents a framework for semi-automated building damage assessment due to earthquakes from remote-sensing data and other supplementary datasets including high-resolution building inventories, while also leveraging recent advances in machine-learning algorithms. For three out of the four recent earthquakes studied, the machine-learning framework is able to identify over 50 % or nearly half of the damaged buildings successfully.
This article is included in the Encyclopedia of Geosciences
Jan Freihardt and Othmar Frey
Nat. Hazards Earth Syst. Sci., 23, 751–770, https://doi.org/10.5194/nhess-23-751-2023, https://doi.org/10.5194/nhess-23-751-2023, 2023
Short summary
Short summary
In Bangladesh, riverbank erosion occurs every year during the monsoon and affects thousands of households. Information on locations and extent of past erosion can help anticipate where erosion might occur in the upcoming monsoon season and to take preventive measures. In our study, we show how time series of radar satellite imagery can be used to retrieve information on past erosion events shortly after the monsoon season using a novel interactive online tool based on the Google Earth Engine.
This article is included in the Encyclopedia of Geosciences
Jiale Qian, Yunyan Du, Jiawei Yi, Fuyuan Liang, Nan Wang, Ting Ma, and Tao Pei
Nat. Hazards Earth Syst. Sci., 23, 317–328, https://doi.org/10.5194/nhess-23-317-2023, https://doi.org/10.5194/nhess-23-317-2023, 2023
Short summary
Short summary
Human activities across China show a similar trend in response to rains. However, urban resilience varies significantly by region. The northwestern arid region and the central underdeveloped areas are very fragile, and even low-intensity rains can trigger significant human activity anomalies. By contrast, even high-intensity rains might not affect residents in the southeast.
This article is included in the Encyclopedia of Geosciences
Orlando García-Feal, José González-Cao, Diego Fernández-Nóvoa, Gonzalo Astray Dopazo, and Moncho Gómez-Gesteira
Nat. Hazards Earth Syst. Sci., 22, 3859–3874, https://doi.org/10.5194/nhess-22-3859-2022, https://doi.org/10.5194/nhess-22-3859-2022, 2022
Short summary
Short summary
Extreme events have increased in the last few decades; having a good estimation of the outflow of a reservoir can be an advantage for water management or early warning systems. This study analyzes the efficiency of different machine learning techniques to predict reservoir outflow. The results obtained showed that the proposed models provided a good estimation of the outflow of the reservoirs, improving the results obtained with classical approaches.
This article is included in the Encyclopedia of Geosciences
Seok Bum Hong, Hong Sik Yun, Sang Guk Yum, Seung Yeop Ryu, In Seong Jeong, and Jisung Kim
Nat. Hazards Earth Syst. Sci., 22, 3435–3459, https://doi.org/10.5194/nhess-22-3435-2022, https://doi.org/10.5194/nhess-22-3435-2022, 2022
Short summary
Short summary
This study advances previous models through machine learning and multi-sensor-verified results. Using spatial and meteorological data from the study area (Suncheon–Wanju Highway in Gurye-gun), the amount and location of black ice were modelled based on system dynamics to predict black ice and then simulated with the geographic information system (m2). Based on the model results, multiple sensors were buried at four selected points in the study area, and the model was compared with sensor data.
This article is included in the Encyclopedia of Geosciences
Edward E. Salakpi, Peter D. Hurley, James M. Muthoka, Adam B. Barrett, Andrew Bowell, Seb Oliver, and Pedram Rowhani
Nat. Hazards Earth Syst. Sci., 22, 2703–2723, https://doi.org/10.5194/nhess-22-2703-2022, https://doi.org/10.5194/nhess-22-2703-2022, 2022
Short summary
Short summary
The devastating effects of recurring drought conditions are mostly felt by pastoralists that rely on grass and shrubs as fodder for their animals. Using historical information from precipitation, soil moisture, and vegetation health data, we developed a model that can forecast vegetation condition and the probability of drought occurrence up till a 10-week lead time with an accuracy of 74 %. Our model can be adopted by policymakers and relief agencies for drought early warning and early action.
This article is included in the Encyclopedia of Geosciences
Edward E. Salakpi, Peter D. Hurley, James M. Muthoka, Andrew Bowell, Seb Oliver, and Pedram Rowhani
Nat. Hazards Earth Syst. Sci., 22, 2725–2749, https://doi.org/10.5194/nhess-22-2725-2022, https://doi.org/10.5194/nhess-22-2725-2022, 2022
Short summary
Short summary
The impact of drought may vary in a given region depending on whether it is dominated by trees, grasslands, or croplands. The differences in impact can also be the agro-ecological zones within the region. This paper proposes a hierarchical Bayesian model (HBM) for forecasting vegetation condition in spatially diverse areas. Compared to a non-hierarchical model, the HBM proved to be a more natural method for forecasting drought in areas with different land covers and
agro-ecological zones.
This article is included in the Encyclopedia of Geosciences
Weijie Zou, Yi Zhou, Shixin Wang, Futao Wang, Litao Wang, Qing Zhao, Wenliang Liu, Jinfeng Zhu, Yibing Xiong, Zhenqing Wang, and Gang Qin
Nat. Hazards Earth Syst. Sci., 22, 2081–2097, https://doi.org/10.5194/nhess-22-2081-2022, https://doi.org/10.5194/nhess-22-2081-2022, 2022
Short summary
Short summary
Landslide dams are secondary disasters caused by landslides, which can cause great damage to mountains. We have proposed a procedure to calculate the key parameters of these dams that uses only a single remote-sensing image and a pre-landslide DEM combined with landslide theory. The core of this study is a modeling problem. We have found the bridge between the theory of landslide dams and the requirements of disaster relief.
This article is included in the Encyclopedia of Geosciences
C. Scott Watson, John R. Elliott, Susanna K. Ebmeier, María Antonieta Vásquez, Camilo Zapata, Santiago Bonilla-Bedoya, Paulina Cubillo, Diego Francisco Orbe, Marco Córdova, Jonathan Menoscal, and Elisa Sevilla
Nat. Hazards Earth Syst. Sci., 22, 1699–1721, https://doi.org/10.5194/nhess-22-1699-2022, https://doi.org/10.5194/nhess-22-1699-2022, 2022
Short summary
Short summary
We assess how greenspaces could guide risk-informed planning and reduce disaster risk for the urbanising city of Quito, Ecuador, which experiences earthquake, volcano, landslide, and flood hazards. We use satellite data to evaluate the use of greenspaces as safe spaces following an earthquake. We find disparities regarding access to and availability of greenspaces. The availability of greenspaces that could contribute to community resilience is high; however, many require official designation.
This article is included in the Encyclopedia of Geosciences
Seth Bryant, Heather McGrath, and Mathieu Boudreault
Nat. Hazards Earth Syst. Sci., 22, 1437–1450, https://doi.org/10.5194/nhess-22-1437-2022, https://doi.org/10.5194/nhess-22-1437-2022, 2022
Short summary
Short summary
The advent of new satellite technologies improves our ability to study floods. While the depth of water at flooded buildings is generally the most important variable for flood researchers, extracting this accurately from satellite data is challenging. The software tool presented here accomplishes this, and tests show the tool is more accurate than competing tools. This achievement unlocks more detailed studies of past floods and improves our ability to plan for and mitigate disasters.
This article is included in the Encyclopedia of Geosciences
Tadas Nikonovas, Allan Spessa, Stefan H. Doerr, Gareth D. Clay, and Symon Mezbahuddin
Nat. Hazards Earth Syst. Sci., 22, 303–322, https://doi.org/10.5194/nhess-22-303-2022, https://doi.org/10.5194/nhess-22-303-2022, 2022
Short summary
Short summary
Extreme fire episodes in Indonesia emit large amounts of greenhouse gasses and have negative effects on human health in the region. In this study we show that such burning events can be predicted several months in advance in large parts of Indonesia using existing seasonal climate forecasts and forest cover change datasets. A reliable early fire warning system would enable local agencies to prepare and mitigate the worst of the effects.
This article is included in the Encyclopedia of Geosciences
Yahong Liu and Jin Zhang
Nat. Hazards Earth Syst. Sci., 22, 227–244, https://doi.org/10.5194/nhess-22-227-2022, https://doi.org/10.5194/nhess-22-227-2022, 2022
Short summary
Short summary
Through a comprehensive analysis of the current remote sensing technology resources, this paper establishes the database to realize the unified management of heterogeneous sensor resources and proposes a capability evaluation method of remote sensing cooperative technology in geohazard emergencies, providing a decision-making basis for the establishment of remote sensing cooperative observations in geohazard emergencies.
This article is included in the Encyclopedia of Geosciences
Diego Guenzi, Danilo Godone, Paolo Allasia, Nunzio Luciano Fazio, Michele Perrotti, and Piernicola Lollino
Nat. Hazards Earth Syst. Sci., 22, 207–212, https://doi.org/10.5194/nhess-22-207-2022, https://doi.org/10.5194/nhess-22-207-2022, 2022
Short summary
Short summary
In the Apulia region (southeastern Italy) we are monitoring a soft-rock coastal cliff using webcams and strain sensors. In this urban and touristic area, coastal recession is extremely rapid and rockfalls are very frequent. In our work we are using low-cost and open-source hardware and software, trying to correlate both meteorological information with measures obtained from crack meters and webcams, aiming to recognize potential precursor signals that could be triggered by instability phenomena.
This article is included in the Encyclopedia of Geosciences
Natalie Brožová, Tommaso Baggio, Vincenzo D'Agostino, Yves Bühler, and Peter Bebi
Nat. Hazards Earth Syst. Sci., 21, 3539–3562, https://doi.org/10.5194/nhess-21-3539-2021, https://doi.org/10.5194/nhess-21-3539-2021, 2021
Short summary
Short summary
Surface roughness plays a great role in natural hazard processes but is not always well implemented in natural hazard modelling. The results of our study show how surface roughness can be useful in representing vegetation and ground structures, which are currently underrated. By including surface roughness in natural hazard modelling, we could better illustrate the processes and thus improve hazard mapping, which is crucial for infrastructure and settlement planning in mountainous areas.
This article is included in the Encyclopedia of Geosciences
Hugues Brenot, Nicolas Theys, Lieven Clarisse, Jeroen van Gent, Daniel R. Hurtmans, Sophie Vandenbussche, Nikolaos Papagiannopoulos, Lucia Mona, Timo Virtanen, Andreas Uppstu, Mikhail Sofiev, Luca Bugliaro, Margarita Vázquez-Navarro, Pascal Hedelt, Michelle Maree Parks, Sara Barsotti, Mauro Coltelli, William Moreland, Simona Scollo, Giuseppe Salerno, Delia Arnold-Arias, Marcus Hirtl, Tuomas Peltonen, Juhani Lahtinen, Klaus Sievers, Florian Lipok, Rolf Rüfenacht, Alexander Haefele, Maxime Hervo, Saskia Wagenaar, Wim Som de Cerff, Jos de Laat, Arnoud Apituley, Piet Stammes, Quentin Laffineur, Andy Delcloo, Robertson Lennart, Carl-Herbert Rokitansky, Arturo Vargas, Markus Kerschbaum, Christian Resch, Raimund Zopp, Matthieu Plu, Vincent-Henri Peuch, Michel Van Roozendael, and Gerhard Wotawa
Nat. Hazards Earth Syst. Sci., 21, 3367–3405, https://doi.org/10.5194/nhess-21-3367-2021, https://doi.org/10.5194/nhess-21-3367-2021, 2021
Short summary
Short summary
The purpose of the EUNADICS-AV (European Natural Airborne Disaster Information and Coordination System for Aviation) prototype early warning system (EWS) is to develop the combined use of harmonised data products from satellite, ground-based and in situ instruments to produce alerts of airborne hazards (volcanic, dust, smoke and radionuclide clouds), satisfying the requirement of aviation air traffic management (ATM) stakeholders (https://cordis.europa.eu/project/id/723986).
This article is included in the Encyclopedia of Geosciences
Johnny Douvinet, Anna Serra-Llobet, Esteban Bopp, and G. Mathias Kondolf
Nat. Hazards Earth Syst. Sci., 21, 2899–2920, https://doi.org/10.5194/nhess-21-2899-2021, https://doi.org/10.5194/nhess-21-2899-2021, 2021
Short summary
Short summary
This study proposes to combine results of research regarding the spatial inequalities due to the siren coverage, the political dilemma of siren activation, and the social problem of siren awareness and trust for people in France. Surveys were conducted using a range of complementary methods (GIS analysis, statistical analysis, questionnaires, interviews) through different scales. Results show that siren coverage in France is often determined by population density but not risks or disasters.
This article is included in the Encyclopedia of Geosciences
Fabio Brighenti, Francesco Carnemolla, Danilo Messina, and Giorgio De Guidi
Nat. Hazards Earth Syst. Sci., 21, 2881–2898, https://doi.org/10.5194/nhess-21-2881-2021, https://doi.org/10.5194/nhess-21-2881-2021, 2021
Short summary
Short summary
In this paper we propose a methodology to mitigate hazard in a natural environment in an urbanized context. The deformation of the ground is a precursor of paroxysms in mud volcanoes. Therefore, through the analysis of the deformation supported by a statistical approach, this methodology was tested to reduce the hazard around the mud volcano. In the future, the goal is that this dangerous area will become both a naturalistic heritage and a source of development for the community of the area.
This article is included in the Encyclopedia of Geosciences
Doris Hermle, Markus Keuschnig, Ingo Hartmeyer, Robert Delleske, and Michael Krautblatter
Nat. Hazards Earth Syst. Sci., 21, 2753–2772, https://doi.org/10.5194/nhess-21-2753-2021, https://doi.org/10.5194/nhess-21-2753-2021, 2021
Short summary
Short summary
Multispectral remote sensing imagery enables landslide detection and monitoring, but its applicability to time-critical early warning is rarely studied. We present a concept to operationalise its use for landslide early warning, aiming to extend lead time. We tested PlanetScope and unmanned aerial system images on a complex mass movement and compared processing times to historic benchmarks. Acquired data are within the forecasting window, indicating the feasibility for landslide early warning.
This article is included in the Encyclopedia of Geosciences
Michal Bíl, Pavel Raška, Lukáš Dolák, and Jan Kubeček
Nat. Hazards Earth Syst. Sci., 21, 2581–2596, https://doi.org/10.5194/nhess-21-2581-2021, https://doi.org/10.5194/nhess-21-2581-2021, 2021
Short summary
Short summary
The online landslide database CHILDA (Czech Historical Landslide Database) summarises information about landslides which occurred in the area of Czechia (the Czech Republic). The database is freely accessible via the https://childa.cz/ website. It includes 699 records (spanning the period of 1132–1989). Overall, 55 % of all recorded landslide events occurred only within 15 years of the extreme landslide incidence.
This article is included in the Encyclopedia of Geosciences
Anna Kruspe, Jens Kersten, and Friederike Klan
Nat. Hazards Earth Syst. Sci., 21, 1825–1845, https://doi.org/10.5194/nhess-21-1825-2021, https://doi.org/10.5194/nhess-21-1825-2021, 2021
Short summary
Short summary
Messages on social media can be an important source of information during crisis situations. This article reviews approaches for the reliable detection of informative messages in a flood of data. We demonstrate the varying goals of these approaches and present existing data sets. We then compare approaches based (1) on keyword and location filtering, (2) on crowdsourcing, and (3) on machine learning. We also point out challenges and suggest future research.
This article is included in the Encyclopedia of Geosciences
Enrique Guillermo Cordaro, Patricio Venegas-Aravena, and David Laroze
Nat. Hazards Earth Syst. Sci., 21, 1785–1806, https://doi.org/10.5194/nhess-21-1785-2021, https://doi.org/10.5194/nhess-21-1785-2021, 2021
Short summary
Short summary
We developed a methodology that generates free externally disturbed magnetic variations in ground magnetometers close to the Chilean convergent margin. Spectral analysis (~ mHz) and magnetic anomalies increased prior to large Chilean earthquakes (Maule 2010, Mw 8.8; Iquique 2014, Mw 8.2; Illapel 2015, Mw 8.3). These findings relate to microcracks within the lithosphere due to stress state changes. This physical evidence should be thought of as a last stage of the earthquake preparation process.
This article is included in the Encyclopedia of Geosciences
Corey M. Scheip and Karl W. Wegmann
Nat. Hazards Earth Syst. Sci., 21, 1495–1511, https://doi.org/10.5194/nhess-21-1495-2021, https://doi.org/10.5194/nhess-21-1495-2021, 2021
Short summary
Short summary
For many decades, natural disasters have been monitored by trained analysts using multiple satellite images to observe landscape change. This approach is incredibly useful, but our new tool, HazMapper, offers researchers and the scientifically curious public a web-accessible
cloud-based tool to perform similar analysis. We intend for the tool to both be used in scientific research and provide rapid response to global natural disasters like landslides, wildfires, and volcanic eruptions.
This article is included in the Encyclopedia of Geosciences
Hui Liu, Ya Hao, Wenhao Zhang, Hanyue Zhang, Fei Gao, and Jinping Tong
Nat. Hazards Earth Syst. Sci., 21, 1179–1194, https://doi.org/10.5194/nhess-21-1179-2021, https://doi.org/10.5194/nhess-21-1179-2021, 2021
Short summary
Short summary
We trained a recurrent neural network model to classify microblogging posts related to urban waterlogging and establish an online monitoring system of urban waterlogging caused by flood disasters. We manually curated more than 4400 waterlogging posts to train the RNN model so that it can precisely identify waterlogging-related posts of Sina Weibo to timely determine urban waterlogging.
This article is included in the Encyclopedia of Geosciences
Roope Tervo, Ilona Láng, Alexander Jung, and Antti Mäkelä
Nat. Hazards Earth Syst. Sci., 21, 607–627, https://doi.org/10.5194/nhess-21-607-2021, https://doi.org/10.5194/nhess-21-607-2021, 2021
Short summary
Short summary
Predicting the number of power outages caused by extratropical storms is a key challenge for power grid operators. We introduce a novel method to predict the storm severity for the power grid employing ERA5 reanalysis data combined with a forest inventory. The storms are first identified from the data and then classified using several machine-learning methods. While there is plenty of room to improve, the results are already usable, with support vector classifier providing the best performance.
This article is included in the Encyclopedia of Geosciences
Michaela Wenner, Clément Hibert, Alec van Herwijnen, Lorenz Meier, and Fabian Walter
Nat. Hazards Earth Syst. Sci., 21, 339–361, https://doi.org/10.5194/nhess-21-339-2021, https://doi.org/10.5194/nhess-21-339-2021, 2021
Short summary
Short summary
Mass movements constitute a risk to property and human life. In this study we use machine learning to automatically detect and classify slope failure events using ground vibrations. We explore the influence of non-ideal though commonly encountered conditions: poor network coverage, small number of events, and low signal-to-noise ratios. Our approach enables us to detect the occurrence of rare events of high interest in a large data set of more than a million windowed seismic signals.
This article is included in the Encyclopedia of Geosciences
Luiz Felipe Galizia, Thomas Curt, Renaud Barbero, and Marcos Rodrigues
Nat. Hazards Earth Syst. Sci., 21, 73–86, https://doi.org/10.5194/nhess-21-73-2021, https://doi.org/10.5194/nhess-21-73-2021, 2021
Short summary
Short summary
This paper aims to provide a quantitative evaluation of three remotely sensed fire datasets which have recently emerged as an important resource to improve our understanding of fire regimes. Our findings suggest that remotely sensed fire datasets can be used to proxy variations in fire activity on monthly and annual timescales; however, caution is advised when drawing information from smaller fires (< 100 ha) across the Mediterranean region.
This article is included in the Encyclopedia of Geosciences
Philippe Weyrich, Anna Scolobig, Florian Walther, and Anthony Patt
Nat. Hazards Earth Syst. Sci., 20, 2811–2821, https://doi.org/10.5194/nhess-20-2811-2020, https://doi.org/10.5194/nhess-20-2811-2020, 2020
Patric Kellermann, Kai Schröter, Annegret H. Thieken, Sören-Nils Haubrock, and Heidi Kreibich
Nat. Hazards Earth Syst. Sci., 20, 2503–2519, https://doi.org/10.5194/nhess-20-2503-2020, https://doi.org/10.5194/nhess-20-2503-2020, 2020
Short summary
Short summary
The flood damage database HOWAS 21 contains object-specific flood damage data resulting from fluvial, pluvial and groundwater flooding. The datasets incorporate various variables of flood hazard, exposure, vulnerability and direct tangible damage at properties from several economic sectors. This paper presents HOWAS 21 and highlights exemplary analyses to demonstrate the use of HOWAS 21 flood damage data.
This article is included in the Encyclopedia of Geosciences
Giuseppe Esposito, Ivan Marchesini, Alessandro Cesare Mondini, Paola Reichenbach, Mauro Rossi, and Simone Sterlacchini
Nat. Hazards Earth Syst. Sci., 20, 2379–2395, https://doi.org/10.5194/nhess-20-2379-2020, https://doi.org/10.5194/nhess-20-2379-2020, 2020
Short summary
Short summary
In this article, we present an automatic processing chain aimed to support the detection of landslides that induce sharp land cover changes. The chain exploits free software and spaceborne SAR data, allowing the systematic monitoring of wide mountainous regions exposed to mass movements. In the test site, we verified a general accordance between the spatial distribution of seismically induced landslides and the detected land cover changes, demonstrating its potential use in emergency management.
This article is included in the Encyclopedia of Geosciences
Mohammad Malakootian and Majid Nozari
Nat. Hazards Earth Syst. Sci., 20, 2351–2363, https://doi.org/10.5194/nhess-20-2351-2020, https://doi.org/10.5194/nhess-20-2351-2020, 2020
Short summary
Short summary
The present study estimated the Kerman–Baghin aquifer vulnerability using DRASTIC and composite DRASTIC (CDRASTIC) indices with the aid of geographic information system (GIS) techniques. The aquifer vulnerability maps indicated very similar results, identifying the north-west parts of the aquifer as areas with high to very high vulnerability. According to the results, parts of the studied aquifer have a high vulnerability and require protective measures.
This article is included in the Encyclopedia of Geosciences
Diana Contreras, Alondra Chamorro, and Sean Wilkinson
Nat. Hazards Earth Syst. Sci., 20, 1663–1687, https://doi.org/10.5194/nhess-20-1663-2020, https://doi.org/10.5194/nhess-20-1663-2020, 2020
Short summary
Short summary
The socio-economic condition of the population determines their vulnerability to earthquakes, tsunamis, volcanic eruptions, landslides, soil erosion and land degradation. This condition is estimated mainly from population censuses. The lack to access to basic services, proximity to hazard zones, poverty and population density highly influence the vulnerability of communities. Mapping the location of this vulnerable population makes it possible to prevent and mitigate their risk.
This article is included in the Encyclopedia of Geosciences
Simona Colombelli, Francesco Carotenuto, Luca Elia, and Aldo Zollo
Nat. Hazards Earth Syst. Sci., 20, 921–931, https://doi.org/10.5194/nhess-20-921-2020, https://doi.org/10.5194/nhess-20-921-2020, 2020
Short summary
Short summary
We developed a mobile app for Android devices which receives the alerts generated by a network-based early warning system, predicts the expected ground-shaking intensity and the available lead time at the user position, and provides customized messages to inform the user about the proper reaction to the alert. The app represents a powerful tool for informing in real time a wide audience of end users and stakeholders about the potential damaging shaking in the occurrence of an earthquake.
This article is included in the Encyclopedia of Geosciences
Richard Styron, Julio García-Pelaez, and Marco Pagani
Nat. Hazards Earth Syst. Sci., 20, 831–857, https://doi.org/10.5194/nhess-20-831-2020, https://doi.org/10.5194/nhess-20-831-2020, 2020
Short summary
Short summary
The Caribbean and Central American region is both tectonically active and densely populated, leading to a large population that is exposed to earthquake hazards. Until now, no comprehensive fault data covering the region have been available. We present a new public fault database for Central America and the Caribbean that synthesizes published studies with new mapping from remote sensing to provide fault sources for the CCARA seismic hazard and risk analysis project and to aid future research.
This article is included in the Encyclopedia of Geosciences
María del Pilar Jiménez-Donaire, Ana Tarquis, and Juan Vicente Giráldez
Nat. Hazards Earth Syst. Sci., 20, 21–33, https://doi.org/10.5194/nhess-20-21-2020, https://doi.org/10.5194/nhess-20-21-2020, 2020
Short summary
Short summary
A new combined drought indicator (CDI) is proposed that integrates rainfall, soil moisture and vegetation dynamics. The performance of this indicator was evaluated against crop damage data from agricultural insurance schemes in five different areas in SW Spain. Results show that this indicator was able to predict important droughts in 2004–2005 and 2011–2012, marked by crop damage of between 70 % and 95 % of the total insured area. This opens important applications for improving insurance schemes.
This article is included in the Encyclopedia of Geosciences
Quancai Xie, Qiang Ma, Jingfa Zhang, and Haiying Yu
Nat. Hazards Earth Syst. Sci., 19, 2827–2839, https://doi.org/10.5194/nhess-19-2827-2019, https://doi.org/10.5194/nhess-19-2827-2019, 2019
Short summary
Short summary
This paper evaluates a new method for modeling the site amplification factor. Through implementing this method and making simulations for different cases, we find that this method shows better performance than the previous method and JMA report. We better understand the advantages and disadvantages of this method, although there are some problems that need to be considered carefully and solved; it shows good potential to be used in future earthquake early warning systems.
This article is included in the Encyclopedia of Geosciences
David A. Bonneau, D. Jean Hutchinson, Paul-Mark DiFrancesco, Melanie Coombs, and Zac Sala
Nat. Hazards Earth Syst. Sci., 19, 2745–2765, https://doi.org/10.5194/nhess-19-2745-2019, https://doi.org/10.5194/nhess-19-2745-2019, 2019
Short summary
Short summary
In mountainous regions around the world rockfalls pose a hazard to infrastructure and society. To aid in our understanding and management of these complex hazards, an inventory can be compiled. Three-dimensional remote sensing data can be used to locate the source zones of these events and generate models of areas which detached. We address the way in which the shape of a rockfall object can be measured. The shape of a rockfall has implications for forward modelling of potential runout zones.
This article is included in the Encyclopedia of Geosciences
Kwonmin Lee, Hye-Sil Kim, and Yong-Sang Choi
Nat. Hazards Earth Syst. Sci., 19, 2241–2248, https://doi.org/10.5194/nhess-19-2241-2019, https://doi.org/10.5194/nhess-19-2241-2019, 2019
Short summary
Short summary
This study examined the advances in the predictability of thunderstorms using geostationary satellite imageries. Our present results show that by using the latest geostationary satellite data (with a resolution of 2 km and 10 min), thunderstorms can be predicted 90–180 min ahead of their mature state. These data can capture the rapidly growing cloud tops before the cloud moisture falls as precipitation and enable prompt preparation and the mitigation of hazards.
This article is included in the Encyclopedia of Geosciences
Qingyun Zhang, Yongsheng Li, Jingfa Zhang, and Yi Luo
Nat. Hazards Earth Syst. Sci., 19, 2229–2240, https://doi.org/10.5194/nhess-19-2229-2019, https://doi.org/10.5194/nhess-19-2229-2019, 2019
Short summary
Short summary
Before the opening of the railway, the deformation of the Qinghai–Tibet Railway was very small and considered stable. After opening, the overall stability of the railway section was good. The main deformation areas are concentrated in the areas where railway lines turn and geological disasters are concentrated. In order to ensure the safety of railway operation, it is necessary to carry out long-term time series observation along the Qinghai–Tibet Railway.
This article is included in the Encyclopedia of Geosciences
Xiao Huang, Cuizhen Wang, and Junyu Lu
Nat. Hazards Earth Syst. Sci., 19, 2141–2155, https://doi.org/10.5194/nhess-19-2141-2019, https://doi.org/10.5194/nhess-19-2141-2019, 2019
Short summary
Short summary
This study examined the spatiotemporal dynamics of nighttime satellite-derived human settlement in response to different levels of hurricane proneness in a period from 1992 to 2013. It confirms the
This article is included in the Encyclopedia of Geosciences
Snow Belt-to-Sun BeltUS population shift trend. The results also suggest that hurricane-exposed human settlement has grown in extent and area, as more hurricane exposure has experienced a larger increase rate in settlement intensity.
Cited articles
Abel, F., Hauff, C., Houben, G., Stronkman, R., and Tao, K.: Twitcident:
fighting fire with information from social web streams, in: Proceedings of the 21st international conference on world wide web, 16 April 2012, pp. 305–308, Lyon, France, 2012. a
ACDR: Asian Disaster Reduction Centre, GLobal IDEntifier Number,
available at: http://glidenumber.net (last access: 28 April 2021), 2019. a
Alam, F., Ofli, F., and Imran, M.: Descriptive and visual summaries of disaster events using artificial intelligence techniques: case studies of Hurricanes Harvey, Irma, and Maria, Behav. Inform. Technol., 39, 288–318, https://doi.org/10.1080/0144929X.2019.1610908, 2020. a
Alexander, D. E.: Social Media in Disaster Risk Reduction and Crisis
Management, Sci. Eng. Ethics, 20, 717–733, https://doi.org/10.1007/s11948-013-9502-z, 2014. a
Ashktorab, Z., Brown, C., Nandi, M., and Culotta, A.: Tweedr: Mining Twitter
to Inform Disaster Response, in: 11th Proceedings of the International Conference on Information Systems for Crisis Response and Management,
University Park, Pennsylvania, USA, 18–21 May 2014, 354–358, 2014. a
Aslam, J. A., Diaz, F., Ekstrand-Abueg, M., McCreadie, R., Pavlu, V., and
Sakai, T.: TREC 2015, Temporal Summarization Track Overview, in: Proceedings of The Twenty-Fourth Text REtrieval Conference, TREC 2015, Gaithersburg, Maryland, USA, 17–20 November 2015, National Institute of Standards and Technology (NIST), 2015. a
Assumpção, T. H., Popescu, I., Jonoski, A., and Solomatine, D. P.: Citizen observations contributing to flood modelling: opportunities and challenges, Hydrol. Earth Syst. Sci., 22, 1473–1489, https://doi.org/10.5194/hess-22-1473-2018, 2018. a
Below, R., Wirtz, A., and Guha-Sapir, D.: Disaster Category Classification
and Peril Terminology for Operational Purposes,
http://cred.be/sites/default/files/DisCatClass_264.pdf (last access: 1 June 2020), 2009. a
Below, R., Wirtz, A., and Guha-Sapir, D.: Moving towards Harmonization of
Disaster Data: A Study of Six Asian Databases, Centre for Research on the Epidemiology of Disasters, Brussels, http://www.cred.be/sites/default/files/WP272.pdf (last access: 1 June 2020), 2010. a
BGS: British Geological Survey, Volcano Global Risk Identification and
Analysis Project (VOGRIPA), available at: http://www.bgs.ac.uk/vogripa/index.cfm, last access: 1 June 2020. a
Brotzge, J. and Donner, W.: The Tornado Warning Process: A Review of Current Research, Challenges, and Opportunities,
B. Am. Meteorol. Soc., 94, 1715–1733, https://doi.org/10.1175/BAMS-D-12-00147.1, 2013. a
Cameron, M. A., Power, R., Robinson, B., and Yin, J.: Emergency Situation
Awareness from Twitter for crisis management, in: Proceedings of the 21st World Wide Web Conference, WWW 2012 – Companion, 695–698, Lyon, France, 16–20 April 2012, https://doi.org/10.1145/2187980.2188183, 2012. a
Carter, W.: Disaster Management: A Disaster Manager's Handbook, Asian
Development Bank, Manila, Philippines, 416 pp., http://hdl.handle.net/11540/5035 (last access: 28 April 2021), ISBN 971-561-006-4 and 978-971-561-006-3, 2008. a
Castillo, C., Mendoza, M., and Poblete, B.: Information credibility on twitter, in: Proceedings of the 20th International Conference on World Wide Web, WWW 2011, Hyderabad, India,
28 March–1 April 2011, 675–684, 2011. a
Chen, C. and Terejanu, G.: Sub-event Detection on Twitter Network, in: IFIP
Advances in Information and Communication Technology,
Springer New York LLC, New York, USA, vol. 519, 50–60, https://doi.org/10.1007/978-3-319-92007-8_5, 2018. a, b
CRED: Centre for Research on the Epidemiology of Disasters, The Emergency
Events Database (EM-DAT), available at: https://www.emdat.be/, last access: 1 June 2020. a
Crooks, A., Croitoru, A., Stefanidis, A., and Radzikowski, J.: #Earthquake:
Twitter as a Distributed Sensor System, T. GIS, 17, 124–147,
https://doi.org/10.1111/j.1467-9671.2012.01359.x, 2013. a
ECDC: European Centre for Disease Prevention and Control, Publications &
Data, available at: https://www.ecdc.europa.eu/en/publications-data, last access: 1 June 2020. a
EDO: European Drought Observatory, European Drought Observatory,
available at: https://edo.jrc.ec.europa.eu, last access: 1 June 2020. a
EFAS: European Flood Awareness System, Data access,
available at: https://www.efas.eu/en/data-access, last access: 1 June 2020. a
EFFIS: European Forest Fire Information System, Data & Services,
available at: https://effis.jrc.ec.europa.eu/applications/data-and-services, last access: 1 June 2020. a
EFSA: European Food Safety Authority, Biological Hazards Reports,
available at: https://www.efsa.europa.eu/en/biological-hazards-data/reports,
last access: 6 January 2020. a
Eismann, K., Posegga, O., and Fischbach, K.: Collective behaviour, social
media, and disasters: A systematic literature review, in: 24th European Conference on Information Systems, ECIS 2016, Istanbul, Turkey, 12–15 June 2016. a
Enenkel, M., Brown, M. E., Vogt, J. V., McCarty, J. L., Reid Bell, A.,
Guha-Sapir, D., Dorigo, W., Vasilaky, K., Svoboda, M., Bonifacio, R.,
Anderson, M., Funk, C., Osgood, D., Hain, C., and Vinck, P.: Why predict
climate hazards if we need to understand impacts? Putting humans back into
the drought equation, Climatic Change, 162, 1161–1176, https://doi.org/10.1007/s10584-020-02878-0, 2020. a
EU-JRC: Joint Research Center of the European Union, Copernicus Emergency
Management Service, available at: https://emergency.copernicus.eu/, last access: 1 June 2020. a
Fang, J., Hu, J., Shi, X., and Zhao, L.: Assessing disaster impacts and
response using social media data in China: A case study of 2016 Wuhan
rainstorm, Int. J. Disast. Risk Re., 34, 275–282, https://doi.org/10.1016/j.ijdrr.2018.11.027, 2019. a
Flores, J. A. M., Guzman, J., and Poblete, B.: A Lightweight and Real-Time
Worldwide Earthquake Detection and Monitoring System Based on Citizen
Sensors, in: Proceedings of the Fifth AAAI Conference on Human Computation and Crowdsourcing, HCOMP, 23–26 October 2017, AAAI Press, Quebec City, Quebec, Canada, 137–146, 2017. a
Fohringer, J., Dransch, D., Kreibich, H., and Schröter, K.: Social media as an information source for rapid flood inundation mapping, Nat. Hazards Earth Syst. Sci., 15, 2725–2738, https://doi.org/10.5194/nhess-15-2725-2015, 2015. a
GFW: Global Forest Watch Fires, available at: https://fires.globalforestwatch.org, last access: 1 June 2020. a
Ghermandi, A. and Sinclair, M.: Passive crowdsourcing of social media in
environmental research: A systematic map, Global Environ. Chang., 55, 36–47, https://doi.org/10.1016/j.gloenvcha.2019.02.003, 2019. a
GLOFAS: Global Flood Awareness System, JRC Science Hub, available at:
http://www.globalfloods.eu, last access: 1 June 2020. a
GVP: Global Volcanism Program, Smithsonian Institution, National Institution of Natural History, available at: https://volcano.si.edu, last access: 1 June 2020. a
GWIS: Global Wildfire Information System,
https://gwis.jrc.ec.europa.eu/applications/data-and-services, last access: 28 April 2021. a
Hao, H. and Wang, Y.: Leveraging multimodal social media data for rapid
disaster damage assessment, Int. J. Disast. Risk Re., 51, 101760, https://doi.org/10.1016/j.ijdrr.2020.101760, 2020. a
Huang, Y. L., Starbird, K., Orand, M., Stanek, S. A., and Pedersen, H. T.:
Connected Through Crisis: Emotional Proximity and the Spread of
Misinformation Online, in: 18th ACM Conference on Computer Supported Cooperative Work and Social Computing, Vancouver, BC, Canada, March 2015, 969–980, https://doi.org/10.1145/2675133.2675202, 2015. a
IBTrACS: International Best Track Archive for Climate Stewardship, availale at:
https://www.ncdc.noaa.gov/ibtrac, last access: 29 April 2020. a
IFRC: International Federation of Red Cross and Red Crescent Societies, What is a disaster?, available at:
http://www.ifrc.org/en/what-we-do/disaster-management/about-disasters/what-is-a-disaster (last access: 1 June 2020), 2017. a
Imran, M., Castillo, C., Lucas, J., Meier, P., and Vieweg, S.: AIDR:
artificial intelligence for disaster response, in: 23rd International World Wide Web Conference, WWW '14, Seoul, Republic of Korea, 7–11 April 2014, Companion Volume, 159–162, https://doi.org/10.1145/2567948.2577034, 2014. a
Imran, M., Castillo, C., Diaz, F., and Vieweg, S.: Processing Social Media
Messages in Mass Emergency, in: WWW'18: Companion Proceedings of The Web Conference 2018, Lyon, France, 23–27 April 2018, 507–511, https://doi.org/10.1145/3184558.3186242, 2018. a
IRDR: Integrated Research on Disaster Risk, Peril Classification and Hazard
Glossary (IRDR DATA
Publication No. 1), Integrated Research on Disaster Risk, Beijing, available at: http://www.irdrinternational.org/wp-content/uploads/2014/04/IRDR_DATA-Project-Report-No.-1.pdf,
last access: 1 June 2020. a
IRIS: Incorporated Research Institutions for Seismology, available at:
http://service.iris.edu, last access: 1 June 2020. a
Juang, C. S., Stanley, T. A., and Kirschbaum, D. B.: Using citizen science to
expand the global map of landslides: Introducing the Cooperative Open Online
Landslide Repository (COOLR), PloS one, 14, e0218657, https://doi.org/10.1371/journal.pone.0218657, 2019. a
Klein, B., Castanedo, F., Elejalde, I., López-de-Ipiña, D., and Nespral, A. P.: Emergency Event Detection in Twitter Streams Based on Natural Language Processing, in: Ubiquitous Computing and Ambient Intelligence: Context-Awareness and Context-Driven Interaction – 7th International Conference, UCAmI 2013, Carrillo, Costa Rica, 2–6 December 2013, https://doi.org/10.1007/978-3-319-03176-7_31, 2013. a
Kovarich, S., Ceriani, L., Ciacci, A., Baldin, R., Perez Miguel, M., Gibin, D., Carnesecchi, E., Roncaglioni, A., Mostrag, A., Tarkhov, A., Di Piazza, G., Pasinato, L., Sartori, L., Benfenati, E., Yang, C., Livaniou, A., and Dorne, J. L.: OpenFoodTox: EFSA's chemical hazards database, Zenodo,
https://doi.org/10.5281/zenodo.3693783, 2020. a
La Red: Inventory system of the effects of disasters (DesInventar),
available at: https://www.desinventar.org/ (last access: 1 June 2020), 2019. a
Lampos, V. and Cristianini, N.: Nowcasting Events from the Social Web with
Statistical Learning, ACM Transactions on Intelligent Systems and Technology (TIST), 3, 1–22, https://doi.org/10.1145/2337542.2337557, 2012. a
Leetaru, K. and Schrodt, P. A.: GDELT: Global Data on Events, Location and
Tone, 1979–2012, SA Annual Convention, 3 April 2013, 2, 1–49, International Studies Association, 2013. a
Lorini, V., Rando, J., Saez-Trumper, D., and Castillo, C.: Uneven Coverage of Natural Disasters in Wikipedia: the Case of Flood,
in: 17th International Conference on Information Systems for Crisis Response and Management (ISCRAM), 688–703, Blacksburg, VA, USA, 2020. a
Lukoianova, T. and Rubin, V. L.: Veracity Roadmap: Is Big Data Objective,
Truthful and Credible?, Advances in Classification Research Online, 24, 4, https://doi.org/10.7152/acro.v24i1.14671, 2013. a
McCreadie, R., Macdonald, C., and Ounis, I.: EAIMS: Emergency Analysis
Identification and Management System, in: Proceedings of the 39th International ACM SIGIR conference on Research and Development in Information Retrieval, 7 July 2016, 1101–1104, https://doi.org/10.1145/2911451.2911460, 2016. a, b, c
Meek, S., Jackson, M. J., and Leibovici, D. G.: A flexible framework for
assessing the quality of crowdsourced data, in: Proceedings of the AGILE'2014 International Conference on Geographic Information Science, Castellón, 3–6 June 2014, 2014. a
Mehta, A. M., Bruns, A., and Newton, J.: Trust, but verify: social media models for disaster management, Disasters, 41, 549–565, https://doi.org/10.1111/disa.12218, 2017. a
Middleton, S. E., Middleton, L., and Modafferi, S.: Real-Time Crisis Mapping of Natural Disasters Using Social Media, IEEE Intelligent Systems, 29, 9–17, https://doi.org/10.1109/MIS.2013.126, 2014. a
Mondal, T., Pramanik, P., Bhattacharya, I., Boral, N., and Ghosh, S.: Analysis and Early Detection of Rumors in a Post Disaster Scenario,
Inform. Syst. Front., 20, 961–979, 2018. a
MRCC: Midwestern Regional Climate Center, available at:
https://mrcc.illinois.edu/gismaps/cntytorn.htm (last access: 1 June 2020), 2019. a
MunichRe: NatCatSERVICE – Natural catastrophe know-how for risk management and research, available at: https://natcatservice.munichre.com/ (last access: 1 June 2020), 2019. a
NCEI-EQ: National Geophysical Data Center/World Data Service (NGDC/WDS),
Significant Earthquake Database, available at:
https://www.ngdc.noaa.gov/hazel/view/hazards/earthquake/search,
last access: 1 June 2020. a
NCEI-T: National Geophysical Data Center/World Data Service, Global
Historical Tsunami Database, available at:
https://www.ngdc.noaa.gov/hazel/view/hazards/tsunami/event-search,
last access: 1 June 2020. a
NCTR: NOAA Center for Tsunami Research, available at:
https://nctr.pmel.noaa.gov/Dart/, last access: 1 June 2020. a
NDMC: National Drought Mitigation Center, Global Drought Information System GDIS, available at: https://www.drought.gov, last access: 1 June 2020. a
Nguyen, D. T., Ofli, F., Imran, M., and Mitra, P.: Damage Assessment from
Social Media Imagery Data During Disasters, in: Proceedings of the 2017 IEEE/ACM international conference on advances in social networks analysis and mining, 31 July 2017, 569–576, https://doi.org/10.1145/3110025.3110109, 2017. a
NIFC: National Interagency Fire Center, available at:
https://www.nifc.gov/fireInfo/fireInfo_statistics.html, last access: 1 June 2020. a
NOAA: National Oceanic and Atmospheric Administration, About the National
Centers for Environmental Information, available at:
https://www.ncei.noaa.gov/about (last access: 1 June 2020), 2019. a
Nugent, T., Petroni, F., Raman, N., Carstens, L., and Leidner, J. L.: A
Comparison of Classification Models for Natural Disaster and Critical Event
Detection from News, in: 2017 IEEE International Conference on Big Data (Big Data), 11 Dec 2017, 3750–3759, https://doi.org/10.1109/BigData.2017.8258374, 2017. a
Nurse, J. R., Rahman, S. S., Creese, S., Goldsmith, M., and Lamberts, K.:
Information quality and trustworthiness: A topical state-of-the-art review, in: The International Conference on Computer Applications and Network Security (ICCANS), 2011, IEEE, 492–500, 2011. a
OCHA: United Nations Office for the Coordination of Humanitarian Affairs,
What is ReliefWeb?, available at: https://reliefweb.int/about (last access: 1 June 2020), 2019. a
Ogie, R. I., Forehead, H., Clarke, R. J., and Perez, P.: Participation Patterns and Reliability of Human Sensing in Crowd-Sourced Disaster Management, Inform. Syst. Front., 20, 713–728, 2018. a
Ogie, R. I., Clarke, R. J., Forehead, H., and Perez, P.: Crowdsourced social
media data for disaster management: Lessons from the PetaJakarta.org
project, Comput. Environ. Urban, 73, 108–117, https://doi.org/10.1016/j.compenvurbsys.2018.09.002, 2019. a, b, c, d
Palen, L., Anderson, K. M., Mark, G., Martin, J., Sicker, D., Palmer, M., and
Grunwald, D.: A vision for technology-mediated support for public
participation and assistance in mass emergencies and disasters, in: ACM-BCS Visions of Computer Science, Edinburgh, United Kingdom, 14–16 April 2010, 1–12, 2010. a
Plotnick, L. and Hiltz, S. R.: Barriers to Use of Social Media by Emergency
Managers, J. Homel. Secur. Emerg., 13, 247–277, https://doi.org/10.1515/jhsem-2015-0068, 2016. a
Poblete, B., Guzman, J., Maldonado, J., and Tobar, F.: Robust Detection of
Extreme Events Using Twitter: Worldwide Earthquake Monitoring,
IEEE T. Multimedia, 20, 2551–2561, https://doi.org/10.1109/TMM.2018.2855107, 2018. a
Rashid, M. T., Zhang, D. Y., and Wang, D.: SocialDrone: An Integrated Social
Media and Drone Sensing System for Reliable Disaster Response, in: IEEE INFOCOM 2020 – IEEE Conference on Computer Communications, 218–227, https://doi.org/10.1109/INFOCOM41043.2020.9155522, 2020. a
Reuter, C. and Kaufhold, M. A.: Fifteen years of social media in emergencies: A retrospective review and future directions for crisis Informatics, J. Conting. Crisis Man., 26, 41–57, https://doi.org/10.1111/1468-5973.12196, 2017. a, b
Reuter, C., Ludwig, T., Kaufhold, M., and Spielhofer, T.: Emergency services'
attitudes towards social media: A quantitative and qualitative survey
across Europe, Int. J. Hum.-Comput. St., 95, 96–111, https://doi.org/10.1016/j.ijhcs.2016.03.005, 2016. a
Reuter, C., Hughes, A. L., and Kaufhold, M. A.: Social Media in Crisis
Management: An Evaluation and Analysis of Crisis Informatics Research,
Int. J. Hum.-Comput. Int., 34, 280–294, https://doi.org/10.1080/10447318.2018.1427832, 2018. a
Robinson, B., Power, R., and Cameron, M.: A Sensitive Twitter Earthquake
Detector, in: Proceedings of the 22nd international conference on world wide web, 13 May 2013, 999–1002, https://doi.org/10.1145/2487788.2488101, 2013. a
RSOE: Hungarian National Association of Radio Distress-Signalling and
Infocommunications, Emergency and Disaster Information Service (EDIS),
available at: http://hisz.rsoe.hu/, last access: 1 June 2020. a
Rudra, K., Banerjee, S., Ganguly, N., Goyal, P., Imran, M., and Mitra, P.:
Summarizing Situational Tweets in Crisis Scenario, in: Proceedings of the 27th ACM conference on hypertext and social media, 10 July 2016, 137–147, https://doi.org/10.1145/2914586.2914600, 2016. a
Rudra, K., Ganguly, N., Goyal, P., and Ghosh, S.: Extracting and Summarizing
Situational Information from the Twitter Social Media during Disasters, ACM Transactions on the Web (TWEB), 17 July 2018, 12, 1–35, https://doi.org/10.1145/3178541, 2018. a, b
Sakaki, T., Okazaki, M., and Matsuo, Y.: Earthquake Shakes Twitter Users:
Real-time Event Detection by Social Sensors, in: Proceedings of the 19th international conference on World wide web, 26 April 2010, 851–860, https://doi.org/10.1145/1772690.1772777, 2010. a
Sakaki, T., Okazaki, M., and Matsuo, Y.: Tweet analysis for real-time event
detection and earthquake reporting system development, IEEE Transactions on Knowledge and Data Engineering, 14 February 2012, 25, 919–931, https://doi.org/10.1109/TKDE.2012.29, 2013. a, b
Senaratne, H., Mobasheri, A., Ali, A. L., Capineri, C., and Haklay, M.: A
review of volunteered geographic information quality assessment methods,
Int. J. Geogr. Inf. Sci., 31, 139–167, https://doi.org/10.1080/13658816.2016.1189556, 2017. a
Shapira, O., Ronen, H., Adler, M., Amsterdamer, Y., Bar-Ilan, J., and Dagan,
I.: Interactive Abstractive Summarization for Event News Tweets, in: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing: System Demonstrations, September 2017, 109–114, https://doi.org/10.18653/v1/d17-2019, 2017. a, b
SPC: NOAA Storm Prediction Center, Severe Weather Database, available at:
https://www.spc.noaa.gov/wcm/#data (last access: 1 June 2020), 2019. a
Starbird, K. and Palen, L.: “Voluntweeters”: self-organizing by digital
volunteers in times of crisis, edited by: Tan, D. S., Amershi, S.,
Begole, B., Kellogg, W. A., and Tungare, M., in: Proceedings of the SIGCHI conference on human factors in computing systems, 7 May 2011, 1071–1080, https://doi.org/10.1145/1978942.1979102, 2011. a
Stieglitz, S., Mirbabaie, M., Fromm, J., and Melzer, S.: The Adoption of
Social Media Analytics for Crisis Management – Challenges and
Opportunities, in: 26th European Conference on Information Systems: Beyond Digitization – Facets of Socio-Technical Change, ECIS 2018, Portsmouth, UK, 23-28 June 2018, available at: https://aisel.aisnet.org/ecis2018_rp/4 (last access: 29 April 2021), 2018. a
SwissRe: Sigma Explorer, available at: https://www.sigma-explorer.com/, last access: 1 June 2020. a
Tapia, A. H. and Moore, K.: Good Enough is Good Enough: Overcoming Disaster
Response Organizations' Slow Social Media Data Adoption,
Comput. Supp. Coop. W. J., 23, 483–512, https://doi.org/10.1007/s10606-014-9206-1, 2014. a
Thomas, C., McCreadie, R., and Ounis, I.: Event Tracker: A Text Analytics
Platform for Use During Disasters, in: Proceedings of the 42nd international ACM SIGIR conference on research and development in information retrieval, 18 July 2019, 1341–1344, https://doi.org/10.1145/3331184.3331406, 2019. a, b, c
Ubyrisk Consultants: The NATural DISasters (NATDIS) Database, available at: https://www.catnat.net/natdis-database, last access: 1 June 2020. a
USGS: U.S. Geological Survey, Did You Feel It?, available at:
https://earthquake.usgs.gov/data/dyfi/, last access: 1 June 2020a. a
USGS: Earthquakes Hazards Program, https://earthquake.usgs.gov,
last access: 1 June 2020b. a
Verma, R., Crane, D., and Gnawali, O.: Phishing During and After
Disaster: Hurricane Harvey, in: 2018 Resilience Week (RWS), 20 August 2018, 88–94, IEEE, https://doi.org/10.1109/RWEEK.2018.8473509, 2018. a
Vieweg, S., Hughes, A. L., Starbird, K., and Palen, L.: Microblogging during
two natural hazards events: What twitter may contribute to situational
awareness, in: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Atlanta, Georgia, USA, 10 Apr 2010, 1079–1088, https://doi.org/10.1145/1753326.1753486, 2010. a
Wald, D. J., Earle, P. S., and Shanley, L. A.: Transforming Earthquake
Detection and Science Through Citizen Seismology, Woodrow Wilson International Center for Scholars, Washington, DC, available at: https://www.wilsoncenter.org/publication/transforming-earthquake-detection-and-science-through-citizen-seismology (last access: 29 April 2021), 2013. a
Wang, W., Wang, Y., Zhang, X., Li, Y., Jia, X., and Dang, S.: WeChat, a Chinese social media, may early detect the SARS-CoV-2 outbreak in 2019, medRxiv, 2020. a
Wang, Z., Lam, N. S. N., Obradovich, N., and Ye, X.: Are vulnerable communities digitally left behind in social responses to natural disasters? An evidence from Hurricane Sandy with Twitter data, Appl. Geogr., 108, 1–8, https://doi.org/10.1016/j.apgeog.2019.05.001, 2019. a
Wiggins, A., Newman, G., Stevenson, R. D., and Crowston, K.: Mechanisms for
Data Quality and Validation in Citizen Science, in: IEEE Seventh International Conference on e-Science Workshops, 5 December 2011, 14–19, IEEE, https://doi.org/10.1109/eScienceW.2011.27, 2011. a
Wikimedians for Disaster Response: WikiProject Humanitarian Wikidata/Recent disasters, available at: https://www.wikidata.org/wiki/Wikidata:WikiProject_Humanitarian_Wikidata/Recent_disasters (last access: 29 April 2021), 2017. a
Wikinews: Disasters and Accidents, available at:
https://en.wikinews.org/wiki/Category:Disasters_and_accidents,
last access: 1 June 2020. a
Wikipedia: Category:Natural disasters by year, available at:
https://en.wikipedia.org/wiki/Category:Natural_disasters_by_year,
last access: 1 June 2020. a
Xiao, Y., Huang, Q., and Wu, K.: Understanding social media data for disaster
management, Nat. Hazards, 79, 1663–1679, 2015. a
Zhang, X. and Ghorbani, A. A.: An Overview of Online Fake News:
Characterization, Detection, and Discussion, Inform. Process. Manag., 57, 102025, https://doi.org/10.1016/j.ipm.2019.03.004, 2020. a
Short summary
In this paper, we study when social media is an adequate source to find metadata about incidents that cannot be acquired by traditional means. We identify six major use cases: impact assessment and verification of model predictions, narrative generation, recruiting citizen volunteers, supporting weakly institutionalized areas, narrowing surveillance areas, and reporting triggers for periodical surveillance.
In this paper, we study when social media is an adequate source to find metadata about incidents...
Altmetrics
Final-revised paper
Preprint