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Abstract. Compiling and disseminating information about
incidents and disasters are key to disaster management and
relief. But due to inherent limitations of the acquisition pro-
cess, the required information is often incomplete or miss-
ing altogether. To fill these gaps, citizen observations spread
through social media are widely considered to be a promis-
ing source of relevant information, and many studies propose
new methods to tap this resource. Yet, the overarching ques-
tion of whether and under which circumstances social media
can supply relevant information (both qualitatively and quan-
titatively) still remains unanswered. To shed some light on
this question, we review 37 disaster and incident databases
covering 27 incident types, compile a unified overview of the
contained data and their collection processes, and identify the
missing or incomplete information. The resulting data col-
lection reveals six major use cases for social media analy-
sis in incident data collection: (1) impact assessment and
verification of model predictions, (2) narrative generation,
(3) recruiting citizen volunteers, (4) supporting weakly in-
stitutionalized areas, (5) narrowing surveillance areas, and
(6) reporting triggers for periodical surveillance. Further-
more, we discuss the benefits and shortcomings of using so-
cial media data for closing information gaps related to inci-
dents and disasters.

1 Introduction

A disaster is a hazardous incident, natural or man-made,
which causes damage to vulnerable communities that lack
sufficient coping and relief capabilities (Carter, 2008).1 Key
elements to disaster management are preparedness; early de-
tection; and monitoring a disaster from its sudden, unex-
pected onset to its unwinding and its aftermath. Disaster-
related data may be obtained from sensor telemetry, occur-
rence metadata, situation reports, and impact assessments.
Various stakeholders benefit from receiving such data, in-
cluding task forces, relief organizations, policymakers, in-
vestors, and (re-)insurers. Data not only about ongoing in-
cidents but also about past ones are crucial to enable fore-
casting efforts and to prepare for future incidents. The broad
range of potential incidents and their ambient conditions re-
quire an equally broad range of monitoring techniques, each
with their benefits and limitations: remote sensing provides
spatial coverage but is often heavily delayed and with low
resolution, ground-sensors and scientific staff are fast and
precise but costly and far from ubiquitous, and citizen ob-
servers are ubiquitously available but need training and in-
centivization to generate reliable observations. As a conse-

1The International Federation of Red Cross (IFRC, 2017) pro-
vides a more detailed definition: “A disaster is a sudden, calamitous
event that seriously disrupts the functioning of a community or so-
ciety and causes human, material, and economic or environmental
losses that exceed the community’s or society’s ability to cope us-
ing its resources. Though often caused by nature, disasters can have
human origins.”
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quence, disaster monitoring is often spatially sparse and tem-
porally offset, while underfunding causes further systematic
information gaps.

A rising trend in the disaster relief community is to fill
information gaps through citizen observations, ranging from
the registration of tornado sightings and the verification of
earthquake impact to reporting hail diameters and water lev-
els. The traditional way of acquiring this information is to
actively carry out surveys and to operate hotlines, requir-
ing significant staff and a high level of engagement by cit-
izens. In recent years, however, new information sources are
increasingly being tapped: blogs, websites, news (Leetaru
and Schrodt, 2013; Nugent et al., 2017), and “citizen sen-
sors” on social media. The promise of passively collecting
disaster-related information from social media has spawned
pioneering research, from detecting earthquakes to estimat-
ing the impact of a flood. However, despite several state-
ments of interest (GDACS, 2020) and early applications –
like “Did You Feel It?” (DYFI) by the USGS (2020a) to val-
idate an earthquake’s impact – most practical attempts to uti-
lize disaster-related information from social media have yet
to be acknowledged by professionals (Thomas et al., 2019).

Given the many approaches that have already been pro-
posed to exploit citizen observations from social media for
disaster-related tasks, it seems prudent to take inventory and
to refine our understanding of the information gaps that are
supposed to be closed. (1) What information is missing in the
current acquisition process and what information is too dif-
ficult or too expensive to acquire by relief organizations in a
complete and consistent way? (2) Can we expect to find this
information on social media? (3) What are the risks involved
when social media is integrated as a source in the acquisition
process? The paper in hand contributes to answering these
questions by collating the information extraction from social
media to date and the observable gaps in the incident infor-
mation collected by traditional means:

– We present a systematic survey of 37 disaster and inci-
dent databases, covering a broad range of disasters, haz-
ardous incidents, regions, and timescales. We formalize
the data acquisition process underlying the databases,
which produces six relevant data points from any of
three traditional information sources with a defined
spatio-temporal resolution.

– We review the information gaps left open by the ac-
quisition processes, i.e., their recall, by assessing the
comprehensiveness of each database. Six major oppor-
tunities for social-media-based citizen observations are
identified in this respect: (1) impact assessment and
model verification, (2) narrative generation, (3) recruit-
ing citizen volunteers, (4) supporting weakly institu-
tionalized areas, (5) narrowing surveillance areas, and
(6) reporting triggers for periodical surveillance.

– To assess the risks of using social media data to fill the
information gaps, we present an overview of the trade-
off between the limited recall of traditional information
sources revealed by our survey and the limited preci-
sion of information extracted from social media based
on clues given from past research in the field.

2 Related work

Since the current landscape of disaster information systems
has a variety of issues, there are also varied attempts at re-
solving them. Some organizations created curated collections
of disasters to provide a unified index (ACDR, 2019) and
harmonize disaster data (Below et al., 2010), to study disas-
ter epidemiology (CRED, 2020), to cover new regions (La
Red, 2019), or for profit (MunichRe, 2019; SwissRe, 2020;
Ubyrisk Consultants, 2020). Other organizations started col-
laborations (GDACS, 2020), unified subordinates (NOAA,
2019; EU-JRC, 2020), or other aggregate resources (OCHA,
2019; RSOE, 2020). Even citizens contribute collaboratively
through the recent-disaster list by Wikimedians for Disas-
ter Response (2017), the Wikinews (2020) collection on dis-
asters, and the ongoing events and disaster categories of
Wikipedia (2020).

Two recent meta-studies analyze the prerequisites of using
social media for relief efforts by outlining the general pat-
terns of social media usage during disasters: according to the
first study by Eismann et al. (2016), the primary use case is
always to acquire and redistribute factual information, fol-
lowed by any one of five incident-specific secondary uses:
(1) to disseminate information about relief efforts, fundrais-
ing activities, and early warnings and to raise awareness on
natural disasters; (2) to evaluate preparedness for natural dis-
asters and biological hazards; (3) to provide emotional sup-
port during natural disasters and societal incidents; (4) to
discuss causes, consequences, and implications of biolog-
ical hazards and technological and societal incidents; and
(5) to connect with affected citizens during societal inci-
dents. According to studies by Reuter et al. (2018) and Reuter
and Kaufhold (2017), these usage patterns can be catego-
rized in a sender–receiver matrix describing four communi-
cation channels: (1) information exchange between authori-
ties and citizens, (2) self-help communities between citizens,
(3) inter-organizational crisis management, and (4) evalua-
tion of citizen-provided information by authorities. The oper-
ators of disaster information systems consider primarily the
unidirectional channel of citizen-to-organization communi-
cation. One of those operators, the Global Disaster Alert and
Coordination System (GDACS, 2020) of the United Nations
and the European Commission, remarks that the extraction
of citizen observations is the key benefit of social media for
their own sensor-based information system, specifically re-
garding “assessing the impact of a disaster” on the popula-
tion to extend and verify traditional models and “assessing

Nat. Hazards Earth Syst. Sci., 21, 1431–1444, 2021 https://doi.org/10.5194/nhess-21-1431-2021



M. Wiegmann et al.: Opportunities and Risks of Disaster Data from Social Media 1433

the effectiveness of response”, including the extraction of
secondary events like building collapses. In another survey,
Reuter et al. (2016) assert that “the majority of emergency
services have positive attitudes towards social media.”

Most academic works since the pioneering publications
by, for example, Palen and Liu (2007) conform with the
assessment made by the Global Disaster Alert and Coor-
dination System (GDACS) and focus on extracting infor-
mation from citizen observations by studying how to in-
fer influenza infection rates (Lampos and Cristianini, 2012),
track secondary events (Chen and Terejanu, 2018; Cameron
et al., 2012), estimate damages and casualties (Ashktorab
et al., 2014), enhance the situational awareness of citizens
(Vieweg et al., 2010), coordinate official and public relief ef-
forts (Palen et al., 2010), disseminate information and refute
rumors (Huang et al., 2015), generate summaries (Shapira
et al., 2017), and create social cohesion via collaborative de-
velopment (Alexander, 2014). Other research scrutinizes the
problem of incident- or region-specific information systems
by studying methods to detect earthquakes (Wald et al., 2013;
Sakaki et al., 2010, 2013; Robinson et al., 2013; Flores et al.,
2017; Poblete et al., 2018), wildfires, cyclones, and tsunamis
(Klein et al., 2013) from Twitter streams; map citizen sen-
sor signals to locate these incidents (Sakaki et al., 2013;
Middleton et al., 2014); ingest disaster information systems
for flash floods and civil unrest exclusively with social me-
dia data (McCreadie et al., 2016); and explore the technical
possibilities of combining social media streams with tradi-
tional information sources in tailored information systems
(Thomas et al., 2019). A comprehensive survey of the aca-
demic work in crisis informatics has been presented by Im-
ran et al. (2018). Despite significant prior work on techniques
and algorithms to detect hazardous incidents from social me-
dia streams and to extract corresponding information, the
majority of approaches only explore a narrow selection of
disaster types, based on little systematic discussion of the
needs of traditional disaster information systems and ignor-
ing the wealth of established remote sensing methods. As of
yet, there is little understanding of the potential of social me-
dia in general and whether computational approaches gener-
alize to the full scope of hazardous incidents.

Several comprehensive monitoring systems have been pro-
posed to generalize from, studying particular events or focus-
ing on a singular region or analysis method, and to effectively
expose disaster management to social media data. Twitcident
(Abel et al., 2012) is a framework for filtering, searching, and
analyzing crisis-related information that offers functionali-
ties like incident detection, profiling, and iterative improve-
ment of the situational-information extraction. Data acquisi-
tion from Twitter based on keyword and a human-in-the-loop
tweet relevance classification and tagging have been imple-
mented for the Artificial Intelligence for Disaster Response
(AIDR) system (Imran et al., 2014). McCreadie et al. (2016)
propose an Emergency Analysis Identification and Manage-
ment System (EAIMS) to enable civil protection agencies

to easily make use of social media. The system comprises
a crawler, service, and user interface layer and enables real-
time detection of emergency events, related information find-
ing, and credibility analysis. Furthermore, machine learning
is employed, trained with data gathered from past disasters
to build effective models for identifying new events, tracking
their development to support decision-making at emergency
response agencies. Similarly, the recently proposed Event
Tracker (Thomas et al., 2019) aims at providing a unified
view of an event, integrating information from news sources,
emergency response officers, social media, and volunteers.

There is an apparent need to identify current information
gaps and issues of operational disaster information systems
as well as to investigate the potential of utilizing social me-
dia data to fill these gaps and to augment traditionally used
data sources, such as in situ data, satellite imagery, and news
feeds, with social media data. Recent research on event meta-
data extraction and management (McCreadie et al., 2016)
forms a starting point for their integration into established
disaster information systems.

3 Survey method

A key prerequisite for an in-depth analysis of the gaps in in-
cident information databases is a systematic review of the
data that are currently collected across disaster types. In a
first step, we narrowed the scope of disaster types to the
set of most relevant ones while maintaining diversity. We
started with the de facto standard, top-down taxonomy used
by Emergency Events Database (EM-DAT) (Below et al.,
2009), which is based on work from GLIDE, DesInven-
tar, NatCatSERVICE, and Sigma. It has also been closely
adapted by the IRDR (2020) and appears to be more sci-
entifically sound than, for example, the glossary of Preven-
tionWeb, the typology of the Hungarian National Associa-
tion of Radio Distress- Signalling and Infocommunications
(RSOE), and the bottom-up Wikipedia category graphs. We
reduced the dimensionality of the type spectrum to a man-
ageable degree by excluding exceedingly rare incident types
(i.e., meteorite impacts) and combining types that are also
commonly combined in the other databases (i.e., coastal and
riverine floods) without crossing over sub-type hierarchies.

Table 1 shows the resulting taxonomy of disasters and
the number of corresponding entries within EM-DAT and
GLIDE as the largest expert-built disaster databases with
global reach as well as on Wikipedia and Wikidata, rep-
resenting global bottom-up collaborative projects. The ta-
ble also lists the existing incident databases and information
systems of the major academic and public institutions and
NGOs for each disaster type and their cumulative number
of entries in the time frame. Only disasters between 2008
and 2019 were counted, where social media started to be
sufficiently widespread among the public and since all sur-
veyed databases had consistent coverage from 2008 onward.

https://doi.org/10.5194/nhess-21-1431-2021 Nat. Hazards Earth Syst. Sci., 21, 1431–1444, 2021



1434 M. Wiegmann et al.: Opportunities and Risks of Disaster Data from Social Media

Table 1. List of disaster groups along with corresponding disaster types and numbers of corresponding disasters in EM-DAT, GLIDE,
Wikipedia, Wikidata, and in 33 other incident databases (Incident DB) since 2008. Unavailable or not applicable information is marked with
–, and ∨ denotes that the disaster counts are added to the disaster in the next row due to type subsumption.

Disaster group Disaster type EM-DAT GLIDE Wikipedia Wikidata Incident DB Source

Biological Disease outbreak 301 312 – 67 33 667 CDC (2020), ECDC (2020)

Climatological Drought 182 94 37 27 29 922 SWDI (2020), EDO (2020), NDMC (2020)
Wildfire 105 34 195 393 3402 GWIS (2020), SWDI (2020), GFW (2020)

EFFIS (2020), NIFC (2020)

Geophysical Earthquake 273 196 1,147 1950 1.6 million SWDI (2020), USGS (2020b), IRIS (2020)
Landslide (dry) 6 94 117 78 6789 SWDI (2020), NASA (2020)
Tsunami 12 13 89 21 10 094 NCTR (2020)
Volcanic 44 53 60 72 82 NCEI-V (2020), BGS (2020), GVP (2020)

Hydrological Landslide (wet) 213 9 78 30 2011 SWDI (2020), ESSL (2020)
Flood 1680 848 169 196 61 558 SWDI (2020), Brakenridge (2020)

EFAS (2020), GLOFAS (2020)

Meteorological Blizzard 97 95 123 56 32 901 SWDI (2020), ESSL (2020)
Cold wave 130 – 75 30 16 737 SWDI (2020)
Dust storm 5 – 7 4 720 SWDI (2020)
Hail 16 – 103 13 99 002 SWDI (2020), ESSL (2020)
Heat wave 63 8 90 58 13 470 SWDI (2020)
Tornado 56 24 295 123 19 847 SPC (2019), ESSL (2020)

MRCC (2017)
Tropical storm 615 410 – 30 19 253 IBTrACS (2020)
Fog 1 – – 1 6528 SWDI (2020)
Thunderstorm 132 – – – 145 470 SWDI (2020)
Rain 1 – – – 13 230 SWDI (2020)
Wind 101 – – – 37 671 SWDI (2020)

Industrial Chemical 25 ∨ – 81 8655 EFSA (2020)
Radiation 0 ∨ 51 34 1173 CNS (2020)
Structure hazards 239 47 – 300 – eMARS (2020)

Transportational Aviation 183 ∨ – 2165 26 059 ICAO (2020)
Railway 98 ∨ – 20 2992 ERAIL (2020)
Maritime 486 ∨ – 49 2336 IMO (2020)
Traffic 764 154 – 66 – ITF (2020)

The table illustrates the differences in size between disasters
recorded by experts in EM-DAT and Glide and by citizens
on Wikipedia and Wikidata as well as the notion of incidents
in the other databases, where incident types are rarely sys-
tematically covered. In addition to the four mentioned dis-
aster databases, we surveyed 33 further ones and altogether
27 disaster types.

To obtain an overview of the available incident data, we
devised the taxonomy shown in Table 2, selected the largest
database of each incident type as a representative, and judged
the existence and completeness of each category in Table 3.
The taxonomy organizes the relevant information within
three dimensions relevant to our research questions. (1) The
data collected for each incident type show which information
is in demand and which is difficult to acquire. (2) The source
of the occurrence information and who detected the incident
show where citizen observations are meaningful and where
surveillance systems or experts are preferable. (3) The spa-
tial and temporal resolution shows the gaps in the acquisition
process that can be filled by social media data. Dimensions
beyond the scope of this survey include the typical presen-

tation used for analysis, the involvement of post-processing
and validation, and whether reports are qualitative or quanti-
tative.

Based on the categories shown in Table 2, we examined
the aforementioned databases regarding gaps in the collected
data by checking each database for the existence and com-
pleteness of information from each category. To acknowl-
edge the diversity of disaster types and to avoid exaggerated
expectations, a category was rated “existent” if the database
contained at least one piece of information from that cate-
gory and “incomplete” when less than 90 % of the entries
comprise the respective information. A source was rated “ex-
istent” if it contributes to the acquisition process, either with
a reference to the source in the database or by analyzing the
database owner’s description of the acquisition process. No
sources were found “incomplete,” but we noted the distri-
bution of the participating sources whenever possible. Spa-
tial resolution was rated “constrained” if only selected areas
are surveyed (e.g., airports or forests) and “dense” otherwise.
Temporal resolution was rated “periodical” if surveillance is
scheduled in intervals instead of on-demand and if it does not
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Table 2. Taxonomy of the information commonly collected about disasters.

Dimension Category Definition Examples

Data Metadata Structured data about an event Date, time, location, disaster type,
verification status, common name

Sensory Measured, type-specific information Magnitude, depth, and severity
Impact Effects on the population Damages caused, fatalities, injuries,

displacements
Causal relations Causes and effects of the event Trigger, follow-up
Narrative Detailed description of the event Episode narrative, description
Assessment Reaction to the event Response action taken, lessons learned

Source Surveillance system Automatic detection Seismographs, buoys
Expert Assessment by trained persons Meteorologists, park rangers
Citizen observations Observations by untrained persons Call-ins, social media, newspaper

Resolution Spatially dense All areas are surveilled Satellite imagery, weather stations
Spatially constrained Only relevant areas are surveilled Plate boundaries, plane terminals
Temporally periodical Area is preemptively surveilled, Seismograph, thermometer, buoys

without the need for a trigger

require a trigger event. The resolution was marked “incom-
plete” if the surveillance strategy does not fully cover the tar-
get, e.g., when some areas are not surveyed due to technical,
jurisdictional, or financial constraints, and if incidents might
be missed altogether.

4 Opportunities of social media data

From the results of the survey shown in Table 3, the follow-
ing six major opportunities of social media data for incident
databases can be inferred: (1) more precise assessment of
the impact of an incident across the board of disaster types;
(2) generation of narratives or short descriptions, especially
for droughts, geophysical incidents, and floods; (3) strength-
ening of the acquisition processes that already involve citi-
zens, which is the case for more than half of the natural dis-
asters surveyed; (4) support of weakly institutionalized re-
gions and extension of surveillance areas; (5) narrowing the
areas for spatially constrained surveillance; and (6) noticing
trigger events and enabling periodical surveillance.

The first opportunity – to more precisely assess the im-
pact of an incident – can be inferred from the difference
between existing impact data (in 93 % of all incidents) and
complete impact data (in 66 % of all incidents). This large
gap between existing and complete data suggests that these
data are frequently required but difficult to acquire. Deter-
mining the impact of an incident mostly happens by local ob-
servation. Thus, impact data are more difficult to obtain when
incidents are quantitatively surveilled, which is common for
natural disasters, while man-made incidents are often qual-
itatively recorded in written reports with a focus on impact
assessment. Deriving reliable impact data from quantitative
data is difficult, even more so for subtle incident types like
droughts (Enenkel et al., 2020). The required observations

are frequently shared on social media as images and discus-
sions as well as personal or third-party observations, creating
an opportunity to acquire the missing information.

The second opportunity – to generate narratives or short
descriptions – can also be inferred from the difference be-
tween existing (in 85 % of all incidents) and complete data
(in 70 % of all incidents). Narratives are short summaries
of the episode, and despite their frequent existence, gener-
ating narratives by incorporating social media data as an ad-
ditional source might serve to reduce the effort required from
the experts that create them manually. The incident types that
would profit most from narrative generation are geophysical
incidents such as earthquakes (showcased by Rudra et al.,
2016), droughts, and floods (showcased by Shapira et al.,
2017). Social media may be used as a basis to generate nar-
ratives due to the typically high velocity of information dis-
semination.

The third opportunity – to recruit citizen volunteers – can
be inferred from the surveyed sources (surveillance systems,
experts, and citizen observations), which describe how the
incidents were originally reported. Citizen observations con-
stitute a substantial part of the acquisition process in 75 %
of the surveyed natural disasters, particularly when surveil-
lance sources are scarce. Examples are the severe weather
reports collected by the National Oceanic and Atmospheric
Administration (NOAA) and within the European Severe
Weather Database (ESWD), NASA’s crowdsourcing of land-
slide data (Juang et al., 2019), and the flood impact obser-
vations within PetaJakarta (Ogie et al., 2019). Citizen obser-
vations are never noted as a source for man-made incidents.
Here, all entries are from involved parties, like train operators
or plane engineers. It is conceivable to involve citizens in the
acquisition of traffic, industrial, and extreme transportation
incidents. The data acquisition for these incident types is of-
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Table 3. Assessment of the information collected in incident databases following our information taxonomy in Table 2. The x denotes
existing and the ∗ incomplete information. The abbreviations correspond to the categories in the taxonomy. Data: metadata (M), sensor data
(S), impact data (I), relations (R), narrative (N), assessments (A). Sources: surveillance (S), experts (E), citizens (C). Resolution: spatially
dense (S/D) or constrained (S/P) and temporally periodical (T/P).

Group Type Data Source Resolution Reference

M S I R N A S E C S/D S/P T/P

Biological Disease outbreak x – x – x x – x – x* – – CDC (2020)

Climatological Drought x – x∗ x x∗ – 0.73 0.26 0.01 x∗ – x SWDI (2020)
Wildfire x – x∗ x x – – 0.83 0.17 – x∗ – SWDI (2020)

Geophysical Earthquake x x x∗ x x∗ – x – – – x x NCEI-EQ (2020)
Landslide (dry) x – x x∗ – – – 0.69 0.31 – x – NASA (2020)
Tsunami x x x∗ x x∗ – 0.22 0.56 0.22 – x x NCEI-T (2020)
Volcano x – x∗ x x∗ x∗ x x – – x x NCEI-V (2020)

Hydrological Landslide (wet) x – x x x – 0.01 0.83 0.16 – x – SWDI (2020)
Flood x – x∗ x – – 0.31 0.51 0.18 x∗ – x∗ Brakenridge (2020)

Meteorological Blizzard x – x∗ x x – 0.46 0.38 0.16 x – – SWDI (2020)
Cold wave x – x x x – 0.31 0.51 0.18 x∗ – x SWDI (2020)
Dust storm x – x – x – 0.06 0.73 0.21 x∗ – – SWDI (2020)
Hail x x x x x – 0.02 0.51 0.47 x∗ – x SWDI (2020)
Heat wave x – x∗ x x – 0.83 0.06 0.11 x∗ – x SWDI (2020)
Tornado x x x – x – – 0.86 0.14 – x∗ – SWDI (2020)
Tropical storm x x x∗ – x – 0.22 0.61 0.17 x – x SWDI (2020)
Fog x – x x x – 0.93 0.05 0.02 x∗ – x SWDI (2020)
Thunderstorm x x x∗ – x – 0.09 0.57 0.34 x – x∗ SWDI (2020)
Rain x – x∗ – x – 0.37 0.28 0.34 x∗ – x SWDI (2020)
Wind x x x∗ – x – 0.61 0.29 0.10 x∗ – x SWDI (2020)

Industrial Chemical – – – – – x – x – – x∗ x∗ Kovarich et al. (2020)
Radiation x x – – x – – x – – x∗ x∗ CNS (2020)
Structure hazards x – x x x x – x – – x∗ – eMARS (2020)

Transportational Aviation x – x – x x – x – – x x ICAO (2020)
Railway x – x x x x – x – – x x ERAIL (2020)
Maritime x – x x x x – x – – x x IMO (2020)
Traffic – – x – – – – x – – x∗ – ITF (2020)

Social media x∗ – x∗ x∗ x∗ x∗ – x∗ x x x x

ten limited by the ability to recruit volunteers or crowdwork-
ers, where the recruitment relies on citizen initiative, and par-
ticipation demands training with specialized tools, websites,
and workflows. Social media platforms simplify contacting
potential volunteers and may alleviate the burden of learning
specialized tools (Mehta et al., 2017).

The fourth opportunity – to support weakly institutional-
ized regions and extend surveillance areas – can be inferred
from the frequency of incomplete records (77 % of the to-
tal) of incident types requiring dense spatial surveillance. If
a dense surveillance infrastructure is necessary for a large
area, weakly institutionalized regions that are limited by per-
sonal, technical, jurisdictional, or financial issues fall behind.
The practical consequence is a frequent Western-world bias
in data collections as shown by Lorini et al. (2020) for the
unequal coverage of floods on Wikipedia. Similar problems
exist for meteorological surveillance in sparsely settled or

poor areas without a network of weather stations, for wildfire
monitoring without terrestrial camera networks, for droughts
without precipitation monitoring, and to a certain degree for
disease outbreaks.2 Social media can aid the acquisition pro-
cess of incidents requiring spatially dense surveillance in-
frastructure to a certain degree since it is also used in sparsely
settled and less developed regions.

The fifth opportunity – to narrow the areas for spatially
constrained surveillance – can be inferred from the frequency
of incomplete records (43 % of the total) of incident types re-
quiring constrained spatial surveillance, which typically oc-
cur in large, high-risk areas. Examples are fire watches, tor-
nado spotting, and substance pollution and structural-hazard
monitoring. Surveying these risk areas requires many dis-

2A study by Wang et al. (2020) suggests that Covid-19 could
have been detected via social media weeks before the acknowledg-
ment by official institutions.
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tributed, mostly human spotters (Brotzge and Donner, 2013),
which may be found ubiquitously on social media. In prac-
tice, these signals can be used to trigger detailed surveillance
systems, as showcased by Rashid et al. (2020), who used so-
cial media to route drones for disaster surveillance.

The sixth opportunity – to notice trigger events and start
periodical surveillance – can be inferred from the frequency
of incomplete records (33 % of the total) of incident types
requiring periodical temporal surveillance. These events typ-
ically require manually recognized trigger events to initiate
and guide detailed surveillance, like wildfires, floods, and
diseases. Social media can help to detect these trigger events
through shared first- and third-party observations. Similarly,
social media can assist 22 % of the periodically surveyed
incidents with potentially long intervals in their periodical
surveillance, like space-based earth observation or scheduled
contamination tests.

The survey also reveals two minor opportunities: estab-
lishing incident causality and assessing the response, recov-
ery, and mitigation efforts, although we are cautious to point
to social media data as a potential solution without signifi-
cant prior academic effort. Firstly, the causal relations in the
databases mostly mention the main cause, e.g., if a flood
has been caused by a hurricane. This knowledge is natu-
rally incomplete if the cause is the normal operation of earth
systems, for example, for earthquakes. However, causal in-
ference through social media data is sought after for sub-
events (Chen and Terejanu, 2018), like roadblocks caused
by a storm, which is in this granularity not captured by our
survey. Secondly, assessment of the response, recovery, and
mitigation efforts are frequent for man-made disasters, where
humans have more agency in prevention, but rare for natural
ones, where assessments are often only created for significant
incidents or in annual reports. There is an apparent value in
generating assessments for individual natural incidents, but
it is not yet clear how.

Furthermore, the survey hints at areas without an apparent
need to utilize social media data. Metadata are largely (93 %)
existent and complete if the incident is known. A similar ar-
gument can be made for sensory information; however, there
is pioneering work on crowdsourcing sensory information
from citizen observations, for example, inferring hail diam-
eters or flood levels from posted images (Assumpção et al.,
2018). Besides, there is no apparent need to use social me-
dia data to increase the spatial resolution if the incidents are
surveyed globally through earth observation techniques and
have reliable forecasting models, for example, in the case of
hurricanes. Also, there is no apparent need for incidents with
static or strictly tracked constrained extent, like the surveil-
lance of regionally limited incidents; earthquakes and vol-
cano eruptions; and the scrutiny of incidents that have reli-
able surveillance systems in place, like transportational inci-
dents.

In the opportunities derived above, the task in focus is
often the evaluation of citizen-provided information by au-

thorities. The prevalent communication type of the used so-
cial media content might indeed be related to citizens’ self-
coordination (Reuter and Kaufhold, 2017) and information
exchange. However, a more active approach of involvement
(e.g., digital volunteers; Starbird and Palen, 2011), official
information distribution (Plotnick and Hiltz, 2016), and par-
ticipation (i.e., a bi-directional communication between in-
volved actors and affected citizens) has the potential to sup-
port information gathering for resource planning and local
forecasting activities.

5 Risks of social media data

When modeling the acquisition process for incident infor-
mation as a process that derives relevant data from a given
source, the quality of this process can be judged in terms of
the well-known measures precision (correctness and reliabil-
ity) and recall (completeness) of the data derived. In general,
the risks of using social media as a source of information
are founded in the fact that, unlike the other sources, social
media is not inherently reliable. At present, using social me-
dia requires a trade-off between precision and recall since no
“perfect” solution for its analysis is available.

The survey results in Table 1 show that the traditional
sources of information (namely sensor-based surveillance
systems, experts, and citizen volunteers) often lack recall but
are optimized for precision through engineering, education,
and expert scrutiny. Our survey results in Sect. 4 show that
social media has the potential to increase the overall recall
of all other information sources combined, though. But as
a kind of “passive” crowdsourcing, the precision of social
media must be expected to be significantly lower than, for
example, that of “active” crowdsourcing using citizen vol-
unteers: social media users are anonymous, and only a pos-
teriori quality control is possible, whereas, as per Wiggins
et al. (2011),3 quality assurance strategies for traditional cit-
izen science projects can be applied before data collection
(e.g., training, vetting, and testing citizens), during data col-
lection (e.g., specialized tooling and evidence requirements),
after data collection (e.g., expert reviews, statistical analysis
of the participants and the data), and by contacting the citizen
volunteers.

Several studies outline the general data quality issues of
social media for disaster-related use cases, such as its credi-
bility (Castillo et al., 2011) and trustworthiness (Nurse et al.,
2011; Tapia and Moore, 2014). Stieglitz et al. (2018) refer
to the big data quality criteria (the “Big V’s”) for social me-
dia data, and in particular highlight variety and veracity as
problems. Here, as per the definition of Lukoianova and Ru-
bin (2013), veracity is understood as objectivity, truthfulness,
and credibility. However, no general guidelines or best prac-
tices for data quality assurance have been established yet.

3A similar analysis is presented by Meek et al. (2014) for other
kinds of crowdsourcing projects.
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Thus, the precision and the recall of social media as a source
of incident information must be traded off, and it remains to
be seen whether precision can be maximized without sacrific-
ing so much recall that this source of information practically
adds nothing new to the traditional ones combined. And this
may depend on the type of incident or disaster at hand, its
characteristics, and the opportunities pursued.

5.1 Trade-off when using social media

With the notion of incident data acquisition as a process that
produces data from the given sources within spatio-temporal
constraints in mind, assessing the risks of social media is
equivalent to studying the effects of including versus exclud-
ing social media data as an information source. Generally,
excluding social media data leads to the information gaps re-
vealed by our survey, and including social media data leads
to the issues studied by the aforementioned related work re-
lating to objectivity, truthfulness, credibility, and trust. Al-
though this general notion is macroscopically correct and
useful, the detailed trade-off in different scenarios is scarcely
explored and varies substantially. We illustrate the trade-off
of acquiring incident information from social media with im-
plications of our survey and clues from the related work, cat-
egorized within the scope of each opportunity, as summa-
rized in Table 4.

Within the first opportunity – to more precisely assess the
impact of an incident – excluding social media leads to miss-
ing information, possibly imprecise estimates, and expensive
excursions. Impact assessment requires substantial local ob-
servation, so the quality of the assessment often depends on
the number of trained observers and the existing support in-
frastructure. Since both are expensive and often unavailable,
estimations and modeling are frequently used tools, which
naturally introduce imprecision and are susceptible to biases.
These effects could be mitigated by including local observa-
tions shared through social media. The risks of including so-
cial media data are those of introducing other kinds of impre-
cision. Social media contains exclusively qualitative data,4

essential metadata are often coarse (like city-level geoloca-
tion instead of coordinates), and data such as shared imagery
are often too complex for impact models (Nguyen et al.,
2017; Ogie et al., 2019; Fang et al., 2019). Consequently, in
the related work, impact assessments derived from social me-
dia are often highly imprecise: for instance, Hao and Wang
(2020) resort to 500 m cells for flood mapping, and Fohringer
et al. (2015) report flood inundation mapping errors at the
scale of decimeters.

Within the second opportunity – to generate narratives or
short descriptions – excluding social media data leads to
missing narratives or narratives that miss the critical but not
previously observed facts. These effects can be mitigated by

4Crooks et al. (2013) refer to social media data as “ambient geo-
graphic information”, in contrast to “volunteered geographic infor-
mation”.

deriving the necessary facts or narrative steps from infor-
mation shared on social media. The risks of including so-
cial media data are distortions towards trivia, imprecision in
evolving situations, and imprecision in cross-lingual settings.
Since sharing sentiment and discussion is one of the primary
uses of social media in a crisis (Palen and Liu, 2007), fac-
tual information is easily drowned out, and narrative gener-
ation may become biased towards trivia and sentiment, as
noted by Alam et al. (2020). Similarly, Rudra et al. (2018)
note that extracting facts from social media relies on semi-
automated filtering, and, although these methods achieve ac-
curacies past the 90 % level, critical facts can still be lost.
They also conclude that, for example, impact facts change as
an incident progresses, and users may not share the most re-
cent information at a given time, so the chronological order
on social media may not correspond to the actual order of
events, giving rise to conflicting points of view. Rudra et al.
(2018) also demonstrate issues in cross-lingual settings since
social media discussions on a single topic feature multiple
languages and code-switching. Besides the unsolved algo-
rithmic challenges, this also poses challenges to human as-
sessors. Concluding, Aslam et al. (2015) note as a result of
the temporal summarization track of the Text REtrieval Con-
ference (TREC) 2015 that automated systems “either had a
fairly high precision or novelty with topic coverage, [. . .] and
it appears that attaining high precision is more difficult than
achieving recall”.

Within the third opportunity – to recruit citizen volunteers
– excluding social media data leads to fewer volunteers due
to the barriers of entry introduced by lack of awareness, com-
plex tooling, training requirements, and the required time
investment, which are partially related to the quality assur-
ance practices. These effects can partially be mitigated by
recruiting volunteers for simple tasks through social media.
The risks of recruiting volunteers through social media are
lack of motivation and biases of the users. Ogie et al. (2018)
show that the likelihood of participating and the likelihood
of contributing valuable information are lower for ordinary
citizens than for response personnel. They conclude that the
quality of crowdsourcing via social media heavily depends
on the user’s perception of the value of their data and the
user’s exposure to the incident (Ogie et al., 2019). In a review
of 169 studies of passive crowdsourcing in environmental re-
search, Ghermandi and Sinclair (2019) additionally conclude
that ethics and long-term availability are issues with volun-
teers on social media.

Within the fourth opportunity – to support weakly insti-
tutionalized regions – excluding social media data leads to
missing or imprecise incident data, particularly when sensors
or experts are sparse, and measures can only be triangulated
or estimated. These effects can be mitigated by including lo-
cal observations shared through social media. The risks of
including social media data are imprecision due to participa-
tory inequality and, as a consequence, susceptibility to out-
liers. Weakly institutionalized regions are highly susceptible
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Table 4. Overview of the trade-off when using social media data to gather incident information by application scenario. The risks of excluding
social media as an information source are due to lower recall, and those of including social media means are due to lower precision.

Opportunity Excluding social media Including social media

(1) Impact assessment Susceptible to model imprecision and bias. Impact is imprecise if source is too noisy.
and model verification Impact cannot be estimated if data are missing. Impact is imprecise if metadata are missing.

Field surveys are expensive.

(2) Narrative Narrative lacks critical facts. Narrative is dominated by trivia and sentiment.
generation Narrative is missing. Narrative is imprecise if facts change rapidly.

Narrative is imprecise in cross-lingual settings.

(3) Volunteer Few volunteers if task requires complex tooling. Volunteers may be biased (opportunism, misuse).
recruitment Few volunteers if task requires training. Data acquisition and use have unsolved ethical issues.

Few volunteers if task is time-consuming. (Long-term) availability is unclear.
Depends on availability of motivated users.

(4) Support weakly Incident is missed. Participatory inequality.
institutionalized areas Imprecision if sensors are sparse. Susceptible to outliers.

(5) Narrow Incident is missed. Area is imprecise if source is not geotagged.
surveillance area Susceptible to outliers.

(6) Report Incident is missed. Susceptible to outliers.
triggers Errors are expensive.

to participatory inequality (Ogie et al., 2019) in that fewer
but more educated and motivated users dominate social me-
dia in these regions, distorting the picture. Xiao et al. (2015)
and Wang et al. (2019) confirm that users from socially vul-
nerable areas share less information via social media and that
social media data may not reveal the true picture due to the
unequal access to social media and heterogeneous motiva-
tions in social media usage. As a consequence, the better-
situated areas within weakly institutionalized regions may
appear more vulnerable or more affected by incidents.

Within the fifth opportunity – to narrow the areas for spa-
tially constrained surveillance – excluding social media data
leads to missing incident data. These effects can be miti-
gated by determining areas for thorough surveillance based
on observations shared through social media. The risks of in-
cluding social media data are imprecision due to inconsistent
metadata and susceptibility to outliers. Metadata like geotags
are essential when drawing geographical conclusions from
social media data, like the area to survey. However, geotags
are often either optional, hence unavailable, or in a coarse,
city- or state-level resolution. If precise, spatial information
is required, it must be predicted or estimated, which reduces
precision. If sufficient observations are shared, the area for
spatially constrained surveillance can be triangulated to mit-
igate the imprecision (Senaratne et al., 2017). Without suf-
ficient observations, the conclusions are susceptible to out-
liers, particularly if the endangered area is large and unin-
habited so that observations naturally become sparse. These
outliers occur either when coordinates are wrongly estimated
or in the reported cases of misuse like phishing (Verma et al.,

2018), fake news (Zhang and Ghorbani, 2020), and rumors
or exaggerations (Mondal et al., 2018).

Within the sixth opportunity – to notice trigger events
and start periodical surveillance – the risks of excluding
or including social media data align with the fifth opportu-
nity. Noticing trigger events is susceptible to outliers in low-
activity regions and for low-impact incidents where online
discussion is limited. Wrongly noticing triggers for incident
types like wildfires, floods, and diseases may lead to expen-
sive surveillance campaigns, blocking resources, and harm-
ing citizen trust in institutions.

6 Conclusions

This work attempts to answer the role which social media
data can play in disaster management by systematically sur-
veying the currently available data in 37 disaster and inci-
dent databases, assessing the missing and sought-after infor-
mation, pointing out the opportunities of information spread
via social media to fill these gaps, and pondering the risks
of including social media data in the traditional acquisi-
tion process. The identified gaps hint at six primary oppor-
tunities: impact assessment and verification of model pre-
dictions, narrative generation, enabling enhanced citizen in-
volvement, supporting weakly institutionalized areas, nar-
rowing surveillance areas, and reporting triggers for peri-
odical surveillance. Additionally, we point to potential op-
portunities warranting further research: determining causal-
ity between incidents and sub-events and generating assess-
ments about the response, recovery, and mitigation efforts.
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Given proper awareness of the risks, seizing the determined
opportunities and including social-media-based citizen ob-
servations in incident data acquisition can greatly improve
our ability to analyze, cope with, and mitigate future disas-
ters. However, we conclude that social media should not be
included undifferentiated but as a tool to mitigate the weak-
nesses of traditional sources for specific data needs in spe-
cific incidents and application scenarios.

6.1 Limitations

In favor of following a reproducible and data-driven ap-
proach to surveying, we do not consider information that may
be needed but is never contained in any of the databases. This
also means that we do not suggest limiting innovation or re-
search when rejecting use cases like earthquake detection or
metadata extraction. There may be novel uses for social me-
dia data which are not revealed by our survey. Additionally,
our analysis does not consider the use of social media anal-
ysis to reduce detection times and applications that use so-
cial media to retrieve other sources, like shared news articles.
Note that we limited our conclusions about traffic incidents
due to the limited data in the International Road Traffic and
Accident Database (IRTAD) and that we mostly ignored un-
common and unforeseen events because of the naturally lim-
ited data to survey.
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