Articles | Volume 20, issue 11
https://doi.org/10.5194/nhess-20-3019-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-20-3019-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
La Palma landslide tsunami: calibrated wave source and assessment of impact on French territories
Stéphane Abadie
CORRESPONDING AUTHOR
Universite de Pau et des Pays de l’Adour, E2S UPPA, SIAME, Anglet, France
Alexandre Paris
Universite de Pau et des Pays de l’Adour, E2S UPPA, SIAME, Anglet, France
CEA, DAM, DIF, Arpajon, France
Riadh Ata
LHSV, Ecole des Ponts, CEREMA, EDF R&D, Chatou, France
Sylvestre Le Roy
BRGM, DRP/R3C, Orléans, France
Gael Arnaud
Université des Antilles, Laboratoire LARGE, Campus de Fouillole, Pointe-à-Pitre, Guadeloupe
Adrien Poupardin
CEA, DAM, DIF, Arpajon, France
Institut de Recherche en Constructibilité, Université Paris-Est, ESTP Paris, Cachan, France
Lucie Clous
Universite de Pau et des Pays de l’Adour, E2S UPPA, SIAME, Anglet, France
Philippe Heinrich
CEA, DAM, DIF, Arpajon, France
Jeffrey Harris
LHSV, Ecole des Ponts, CEREMA, EDF R&D, Chatou, France
Rodrigo Pedreros
BRGM, DRP/R3C, Orléans, France
Yann Krien
Université des Antilles, Laboratoire LARGE, Campus de Fouillole, Pointe-à-Pitre, Guadeloupe
Related authors
No articles found.
Sophie Lecacheux, Jeremy Rohmer, Eva Membrado, Rodrigo Pedreros, Andrea Filippini, Déborah Idier, Servane Gueben-Vénière, Denis Paradis, Alice Dalphinet, and David Ayache
EGUsphere, https://doi.org/10.5194/egusphere-2024-3615, https://doi.org/10.5194/egusphere-2024-3615, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
This study comparer three data-driven methodologies to overcome the computational burden of numerical simulations for early warning purpose. They are all based on the statistical analysis of pre-calculated databases, to downscale total sea levels and predict marine flooding maps from offshore metocean forecasts. Conclusions highlight the relevance of metamodel-based approaches for fast prediction and the added value of precalculated databases during the prepardness phase.
Clément Houdard, Adrien Poupardin, Philippe Sergent, Abdelkrim Bennabi, and Jena Jeong
Nat. Hazards Earth Syst. Sci., 23, 3111–3124, https://doi.org/10.5194/nhess-23-3111-2023, https://doi.org/10.5194/nhess-23-3111-2023, 2023
Short summary
Short summary
We developed a system able to to predict, knowing the appropriate characteristics of the flood defense structure and sea state, the return periods of potentially dangerous events as well as a ranking of parameters by order of uncertainty.
The model is a combination of statistical and empirical methods that have been applied to a Mediterranean earthen dike. This shows that the most important characteristics of the dyke are its geometrical features, such as its height and slope angles.
Ryota Wada, Jeremy Rohmer, Yann Krien, and Philip Jonathan
Nat. Hazards Earth Syst. Sci., 22, 431–444, https://doi.org/10.5194/nhess-22-431-2022, https://doi.org/10.5194/nhess-22-431-2022, 2022
Short summary
Short summary
Characterizing extreme wave environments caused by tropical cyclones in the Caribbean Sea near Guadeloupe is difficult because cyclones rarely pass near the location of interest. STM-E (space-time maxima and exposure) model utilizes wave data during cyclones on a spatial neighbourhood. Long-duration wave data generated from a database of synthetic tropical cyclones are used to evaluate the performance of STM-E. Results indicate STM-E provides estimates with small bias and realistic uncertainty.
Gonéri Le Cozannet, Déborah Idier, Marcello de Michele, Yoann Legendre, Manuel Moisan, Rodrigo Pedreros, Rémi Thiéblemont, Giorgio Spada, Daniel Raucoules, and Ywenn de la Torre
Nat. Hazards Earth Syst. Sci., 21, 703–722, https://doi.org/10.5194/nhess-21-703-2021, https://doi.org/10.5194/nhess-21-703-2021, 2021
Short summary
Short summary
Chronic flooding occurring at high tides under calm weather conditions is an early impact of sea-level rise. This hazard is a reason for concern on tropical islands, where coastal infrastructure is commonly located in low-lying areas. We focus here on the Guadeloupe archipelago, in the French Antilles, where chronic flood events have been reported for about 10 years. We show that the number of such events will increase drastically over the 21st century under continued growth of CO2 emissions.
Raphaël Cécé, Didier Bernard, Yann Krien, Frédéric Leone, Thomas Candela, Matthieu Péroche, Emmanuel Biabiany, Gael Arnaud, Ali Belmadani, Philippe Palany, and Narcisse Zahibo
Nat. Hazards Earth Syst. Sci., 21, 129–145, https://doi.org/10.5194/nhess-21-129-2021, https://doi.org/10.5194/nhess-21-129-2021, 2021
Short summary
Short summary
The present innovative modeling aims to combine the most realistic simulated strongest gusts driven by tornado-scale vortices within the eyewall and the most realistic complex terrain effects. The present modeling method could be easily extended to other small mountainous islands to improve the understanding of observed past damage and to develop safer urban management and appropriate building standards.
Cited articles
Abadie, S., Harris, J. C., Grilli, S. T., and Fabre, R.: Numerical modeling of
tsunami waves generated by the flank collapse of the Cumbre Vieja
Volcano (La Palma, Canary Islands): Tsunami source and near field
effects, J. Geophys. Res., 117, https://doi.org/10.1029/2011JC007646,
2012. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y
Abadie, S., Paris, A., Ata, R., Roy, S. L., Arnaud, G., Poupardin, A., Clous,
L., Heinrich, P., Harris, J., Pederos, R., and Krien, Y.: La Palma landslide
tsunami: computation of the tsunami source with a calibrated multi-fluid
Navier-Stokes model and wave impact assessment with propagation models of
different types, SEANOE, https://doi.org/10.17882/61301, 2019. a, b
Athukorala, P.-c. and Resosudarmo, B. P.: The Indian Ocean tsunami: Economic
impact, disaster management, and lessons, Asian Econ. Pap., 4, 1–39,
2005. a
Büttner, G., Feranec, J., Jaffrain, G., Mari, L., Maucha, G., and Soukup,
T.: The CORINE land cover 2000 project, EARSeL eProceedings, 3, 331–346,
2004. a
Chen, Q.: Fully nonlinear Boussinesq-type equations for waves and currents
over porous beds, J. Eng. Mech., 132, 220–230, 2006. a
Clous, L. and Abadie, S.: Simulation of energy transfers in waves generated by
granular slides, Landslides, 16, 1663–1679, https://doi.org/10.1007/s10346-019-01180-0, 2019. a, b, c
Elsworth, D. and Day, S. J.: Flank collapse triggered by intrusion: the
Canarian and Cape Verde Archipelagoes, J. Volanol. Geoth. Res., 94, 323–340, 1999. a
Flather, R.: A tidal model of the northwest European continental shelf, Mem.
Soc. Roy. Sci. Liege, 10, 141–164, 1976. a
Gailler, A., Calais, E., Hébert, H., Roy, C., and Okal, E.: Tsunami
scenarios and hazard assessment along the northern coast of Haiti,
Geophys. J. Int., 203, 2287–2302, 2015. a
Grezio, A., Babeyko, A., Baptista, M. A., Behrens, J., Costa, A., Davies, G.,
Geist, E. L., Glimsdal, S., González, F. I., Griffin, J., Harbitz, C. B., LeVeque, R. J., Lorito, S., Løvholt, F., Omira, R., Mueller, C., Paris, R., Parsons, T., Polet, J., Power, W., Selva, J., Sørensen, M. B., and Thio, H. K.:
Probabilistic tsunami hazard analysis: Multiple sources and global
applications, Rev. Geophys., 55, 1158–1198, 2017. a
Grilli, S. T., Harris, J. C., Bakhsh, T. S. T., Masterlark, T. L.,
Kyriakopoulos, C., Kirby, J. T., and Shi, F.: Numerical simulation of the
2011 Tohoku tsunami based on a new transient FEM co-seismic source:
Comparison to far-and near-field observations, Pure Appl. Geophys.,
170, 1333–1359, 2013. a
Grilli, S. T., Grilli, A. R., David, E., and Coulet, C.: Tsunami hazard
assessment along the north shore of Hispaniola from far-and near-field
Atlantic sources, Nat. Hazards, 82, 777–810, 2016. a
Grilli, S. T., Shelby, M., Kimmoun, O., Dupont, G., Nicolsky, D., Ma, G.,
Kirby, J. T., and Shi, F.: Modeling coastal tsunami hazard from submarine
mass failures: effect of slide rheology, experimental validation, and case
studies off the US East Coast, Nat. Hazards, 86, 353–391, 2017. a, b, c, d, e
Grilli, S. T., Tappin, D. R., Carey, S., Watt, S. F., Ward, S. N., Grilli,
A. R., Engwell, S. L., Zhang, C., Kirby, J. T., Schambach, L., Grilli, S. T., Tappin, D. R., Carey, S., Watt, S. F. L., Ward, S. N., Grilli, A. R., Engwell, S. L., Zhang, C., Kirby, J. T., Schambach, L., and Muin, M.:
Modelling of the tsunami from the December 22, 2018 lateral collapse of Anak
Krakatau volcano in the Sunda Straits, Indonesia, Sci. Rep., 9,
1–13, 2019. a, b
Hebert, H.: the TANDEM project Team, 2014, Project TANDEM (Tsunamis in the
Atlantic and the English ChaNnel: Definition of the Effects through numerical
Modeling) (2014–2018): a French initiative to draw lessons from the Tohoku-oki
tsunami on French coastal nuclear facilities, EGU, Vienna, Austria, 27 April–2 May 2014. a
Horrillo, J., Wood, A., Kim, G.-B., and Parambath, A.: A simplified 3-D
Navier-Stokes numerical model for landslide-tsunami: Application to the Gulf
of Mexico, J. Geophys. Res.-Oceans, 118, 6934–6950, 2013. a
Jop, P., Forterre, Y., and Pouliquen, O.: A constitutive law for dense granular flows, Nature, 441, 727–730, https://doi.org/10.1038/nature04801, 2006. a
Kennedy, A. B., Kirby, J. T., Chen, Q., and Dalrymple, R. A.: Boussinesq-type
equations with improved nonlinear performance, Wave Motion, 33, 225–243,
2001. a
Kim, J., Løvholt, F., Issler, D., and Forsberg, C. F.: Landslide Material
Control on Tsunami Genesis – The Storegga Slide and Tsunami (8,100 Years BP),
J. Geophys. Res.-Oceans, 4, 3607–3627, https://doi.org/10.1029/2018JC014893, 2019. a
Kirby, J. T., Shi, F., Tehranirad, B., Harris, J. C., and Grilli, S. T.:
Dispersive tsunami waves in the ocean: Model equations and sensitivity to
dispersion and Coriolis effects, Ocean Modell., 62, 39–55, 2013. a
Kirby, J. T., Shi, F., Nicolsky, D., and Misra, S.: The 27 April 1975 Kitimat,
British Columbia, submarine landslide tsunami: a comparison of modeling
approaches, Landslides, 13, 1421–1434, 2016. a
Lagrée, P.-Y., Staron, L., and Popinet, S.: The granular column collapse
as a continuum: validity of a two-dimensional Navier–Stokes model with a
μ(I)-rheology, J. Fluid. Mech., 686, 378–408, 2011. a
Løvholt, F., Pedersen, G., and Gisler, G.: Oceanic propagation of a
potential tsunami from the La Palma Island, J. Geophys. Res.-Oceans, 113, https://doi.org/10.1029/2007JC004603, 2008. a, b, c, d
Løvholt, F., Bondevik, S., Laberg, J. S., Kim, J., and Boylan, N.: Some
giant submarine landslides do not produce large tsunamis, Geophys. Res. Lett., 44, 8463–8472, 2017. a
Ma, G., Kirby, J. T., Hsu, T.-J., and Shi, F.: A two-layer granular landslide
model for tsunami wave generation: Theory and computation, Ocean Modell.,
93, 40–55, 2015. a
Mikami, T., Shibayama, T., Esteban, M., and Matsumaru, R.: Field survey of the
2011 Tohoku earthquake and tsunami in Miyagi and Fukushima prefectures,
Coast. Eng. Journal, 54, 1250011-1–1250011-26, https://doi.org/10.1142/S0578563412500118, 2012. a
Pararas-Carayannis, G.: Evaluation of the threat of mega tsunami generation
from postulated massive slope failures of island stratovolcanoes on La Palma,
Canary Islands, and on the island of Hawaii, Science of Tsunami Hazards, 20,
251–277, 2002. a
Paris, A., Heinrich, P., Paris, R., and Abadie, S.: The December 22, 2018 Anak
Krakatau, Indonesia, Landslide and Tsunami: Preliminary Modeling Results,
Pure Appl. Geophys., 177, 571–590, 2020. a
Paris, R., Ramalho, R. S., Madeira, J., Ávila, S., May, S. M., Rixhon, G.,
Engel, M., Brückner, H., Herzog, M., Schukraft, G., Perez-Torrado, F. J., Rodriguez-Gonzales, A., Carracedo, J. C., and Giachetti, T.: Mega-tsunami
conglomerates and flank collapses of ocean island volcanoes, Mar. Geol.,
395, 168–187, 2018. a
Poupardin, A., Heinrich, P., Frère, A., Imbert, D., Hébert, H., and
Flouzat, M.: The 1979 submarine landslide-generated tsunami in Mururoa,
French Polynesia, Pure Appl. Geophys., 174, 3293–3311, 2017. a
Poupardin, A., Heinrich, P., Hébert, H., Schindelé, F., Jamelot, A.,
and Reymond, D.: Traveltime delay relative to the maximum energy of the wave
train for dispersive tsunamis propagating across the Pacific Ocean: the case
of 2010 and 2015 Chilean Tsunamis, Geophys. J. Int., 214,
1538–1555, 2018. a
Ryan, W. B. F., Carbotte, S. M., Coplan, J. O., O'Hara, S., Melkonian, A.,
Arko, R., Weissel, R. A., Ferrini, V., Goodwillie, A., Nitsche, F.,
Bonczkowski, J., and Zemsky, R.: Global Multi-Resolution Topography
synthesis, Geochem. Geophys. Geosys., 10, q03014, https://doi.org/10.1029/2008GC002332, 2009. a
Shi, F., Kirby, J. T., Harris, J. C., Geiman, J. D., and Grilli, S. T.: A
high-order adaptive time-stepping TVD solver for Boussinesq modeling of
breaking waves and coastal inundation, Ocean Modell., 43–44, 36–51, 2012. a
Si, P., Shi, H., and Yu, X.: Development of a mathematical model for submarine
granular flows, Phys. Fluids, 30, 083302, https://doi.org/10.1063/1.5030349, 2018a. a
Si, P., Shi, H., and Yu, X.: A general numerical model for surface waves
generated by granular material intruding into a water body, Coast. Eng., 142, 42–51, 2018b. a
Tappin, D., Grilli, S., Ward, S., Day, S., Grilli, A., Carey, S., Watt, S.,
Engwell, S., and Muslim, M.: The devastating eruption tsunami of Anak
Krakatau – 22nd December 2018, EGU General Assembly Conference Abstracts,
21, p. 18326, 2019. a
Tehranirad, B., Shi, F., Kirby, J., Harris, J., and Grilli, S.: Tsunami
benchmark results for fully nonlinear Boussinesq wave model FUNWAVE-TVD,
Tech. rep., Version 1.0. Technical report, No. CACR-11-02, Center for Applied
Coastal Research, University of Delaware, 2011. a
Tehranirad, B., Harris, J. C., Grilli, A. R., Grilli, S. T., Abadie, S., Kirby,
J. T., and Shi, F.: Far-Field Tsunami Impact in the North Atlantic
Basin from Large Scale Flank Collapses of the Cumbre Vieja
Volcano, La Palma, Pure Appl. Geophys., 172, 3589–3616,
https://doi.org/10.1007/s00024-015-1135-5, 2015.
a, b, c, d, e, f
Viroulet, S., Sauret, A., and Kimmoun, O.: Tsunami generated by a granular
collapse down a rough inclined plane, EPL (Europhysics Letters), 105,
34004, https://doi.org/10.1209/0295-5075/105/34004, 2014. a, b, c
Wei, G., Kirby, J. T., Grilli, S. T., and Subramanya, R.: A fully nonlinear
Boussinesq model for surface waves. Part 1. Highly nonlinear unsteady waves,
J. Fluid Mech., 294, 71–92, 1995. a
Wynn, R. and Masson, D.: Canary Islands landslides and tsunami generation: Can
we use turbidite deposits to interpret landslide processes?, in: Submarine
mass movements and their consequences, pp. 325–332, Springer, Dordrecht, 2003. a
Zhang, Y. and Baptista, A. M.: SELFE: a semi-implicit Eulerian–Lagrangian
finite-element model for cross-scale ocean circulation, Ocean Modell., 21,
71–96, 2008a. a
Zhang, Y. J. and Baptista, A. M.: An efficient and robust tsunami model on
unstructured grids. Part I: Inundation benchmarks, Pure Appl. Geophys., 165, 2229–2248, 2008b. a
Zhang, Y. J., Ye, F., Stanev, E. V., and Grashorn, S.: Seamless cross-scale
modeling with SCHISM, Ocean Modell., 102, 64–81, 2016. a
Short summary
The tsunami which could be generated by a potential flank collapse of the Cumbre Vieja volcano in La Palma, Canary Islands, is evaluated through a numerical simulation based on an advanced and finely calibrated model. Then the consequences of such an event for Europe, France and Guadeloupe island are investigated using different numerical models for propagation. The impacts vary from negligible to very significant depending on the location considered.
The tsunami which could be generated by a potential flank collapse of the Cumbre Vieja volcano...
Altmetrics
Final-revised paper
Preprint