Articles | Volume 19, issue 4
https://doi.org/10.5194/nhess-19-757-2019
https://doi.org/10.5194/nhess-19-757-2019
Research article
 | 
12 Apr 2019
Research article |  | 12 Apr 2019

Dangerous degree forecast of soil loss on highway slopes in mountainous areas of the Yunnan–Guizhou Plateau (China) using the Revised Universal Soil Loss Equation

Yue Li, Shi Qi, Bin Liang, Junming Ma, Baihan Cheng, Cong Ma, Yidan Qiu, and Qinyan Chen

Related authors

Soil erosion evolution and spatial correlation analysis in a typical karst geomorphology using RUSLE with GIS
Cheng Zeng, Shijie Wang, Xiaoyong Bai, Yangbing Li, Yichao Tian, Yue Li, Luhua Wu, and Guangjie Luo
Solid Earth, 8, 721–736, https://doi.org/10.5194/se-8-721-2017,https://doi.org/10.5194/se-8-721-2017, 2017
Short summary
Evaluating of the spatial heterogeneity of soil loss tolerance and its effects on erosion risk in the carbonate areas of southern China
Yue Li, Xiao Yong Bai, Shi Jie Wang, Luo Yi Qin, Yi Chao Tian, and Guang Jie Luo
Solid Earth, 8, 661–669, https://doi.org/10.5194/se-8-661-2017,https://doi.org/10.5194/se-8-661-2017, 2017
Short summary

Related subject area

Databases, GIS, Remote Sensing, Early Warning Systems and Monitoring Technologies
Earthquake building damage detection based on synthetic-aperture-radar imagery and machine learning
Anirudh Rao, Jungkyo Jung, Vitor Silva, Giuseppe Molinario, and Sang-Ho Yun
Nat. Hazards Earth Syst. Sci., 23, 789–807, https://doi.org/10.5194/nhess-23-789-2023,https://doi.org/10.5194/nhess-23-789-2023, 2023
Short summary
Assessing riverbank erosion in Bangladesh using time series of Sentinel-1 radar imagery in the Google Earth Engine
Jan Freihardt and Othmar Frey
Nat. Hazards Earth Syst. Sci., 23, 751–770, https://doi.org/10.5194/nhess-23-751-2023,https://doi.org/10.5194/nhess-23-751-2023, 2023
Short summary
Quantifying unequal urban resilience to rainfall across China from location-aware big data
Jiale Qian, Yunyan Du, Jiawei Yi, Fuyuan Liang, Nan Wang, Ting Ma, and Tao Pei
Nat. Hazards Earth Syst. Sci., 23, 317–328, https://doi.org/10.5194/nhess-23-317-2023,https://doi.org/10.5194/nhess-23-317-2023, 2023
Short summary
Comparison of machine learning techniques for reservoir outflow forecasting
Orlando García-Feal, José González-Cao, Diego Fernández-Nóvoa, Gonzalo Astray Dopazo, and Moncho Gómez-Gesteira
Nat. Hazards Earth Syst. Sci., 22, 3859–3874, https://doi.org/10.5194/nhess-22-3859-2022,https://doi.org/10.5194/nhess-22-3859-2022, 2022
Short summary
Development of black ice prediction model using GIS-based multi-sensor model validation
Seok Bum Hong, Hong Sik Yun, Sang Guk Yum, Seung Yeop Ryu, In Seong Jeong, and Jisung Kim
Nat. Hazards Earth Syst. Sci., 22, 3435–3459, https://doi.org/10.5194/nhess-22-3435-2022,https://doi.org/10.5194/nhess-22-3435-2022, 2022
Short summary

Cited articles

Alexakis, D., Diofantos, G., and Hadjimitsis, A.: Integrated use of remote sensing, GIS and precipitation data for the assessment of soil erosion rate in the catchment area of “Yialias” in Cyprus, Atmos. Res., 131, 108–124, 2013. 
Alkharabsheh, M. M., Alexandridis, T. K., Bilasb, G., and Misopolinos, N.: Impact of land cover change on soil erosion hazard in northern Jordan using remote sensing and GIS, Four decades of progress in monitoring and modeling of processes in the soil-plant-atmosphere system: applications and challenges, Procedia Environ. Sci., 19, 912–921, 2013. 
Angulo-Martínez, M. and Beguería, S.: Estimating rainfall erosivity from daily precipitation records: a comparison among methods using data from the ebro basin (NE spain), J. Hydrol., 379, 111–121, 2009. 
Bakr, N., Weindorf, D. C., Zhu, Y. D., Arceneaux, A. E., and Selim, H. M.: Evaluation of compost/mulch as highway embankment erosion control in louisiana at the plotscale, J. Hydrol., 468, 257–267, 2012. 
Bosco, C., de Rigo, D., Dewitte, O., Poesen, J., and Panagos, P.: Modelling soil erosion at European scale: towards harmonization and reproducibility, Nat. Hazards Earth Syst. Sci., 15, 225–245, https://doi.org/10.5194/nhess-15-225-2015, 2015. 
Download

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Short summary
This study fully considers the characteristics of expressways in mountain areas. The catchment area is considered a prediction unit. The method of slope division is improved, and a method of improving the parameters in the model is proposed. Comparison and analysis with actual observation data show that the method of soil and water loss prediction adopted in this paper has less error and higher prediction accuracy than other models and can satisfy prediction requirements.
Altmetrics
Final-revised paper
Preprint