Research article 11 Sep 2019
Research article | 11 Sep 2019
New approaches to modelling of local seismic amplification susceptibility using direct characteristics of influencing criteria: case study of Bam City, Iran
Reza Hassanzadeh et al.
Related subject area
Databases, GIS, Remote Sensing, Early Warning Systems and Monitoring Technologies
Assessing the accuracy of remotely sensed fire datasets across the southwestern Mediterranean Basin
Responses to severe weather warnings and affective decision-making
The object-specific flood damage database HOWAS 21
A spaceborne SAR-based procedure to support the detection of landslides
GIS-based DRASTIC and composite DRASTIC indices for assessing groundwater vulnerability in the Baghin aquifer, Kerman, Iran
Predicting power outages caused by extratropical storms
Near Real-Time Automated Classification of Seismic Signals of Slope Failures with Continuous Random Forests
Review article: The spatial dimension in the assessment of urban socio-economic vulnerability related to geohazards
Design and implementation of a mobile device app for network-based earthquake early warning systems (EEWSs): application to the PRESTo EEWS in southern Italy
CCAF-DB: the Caribbean and Central American active fault database
Evaluation of a combined drought indicator and its potential for agricultural drought prediction in southern Spain
Study on real-time correction of site amplification factor
Three-dimensional rockfall shape back analysis: methods and implications
Effects of high-resolution geostationary satellite imagery on the predictability of tropical thunderstorms over Southeast Asia
InSAR technique applied to the monitoring of the Qinghai–Tibet Railway
Understanding the spatiotemporal development of human settlement in hurricane-prone areas on the US Atlantic and Gulf coasts using nighttime remote sensing
Pre-disaster mapping with drones: an urban case study in Victoria, British Columbia, Canada
SMC-Flood database: a high-resolution press database on flood cases for the Spanish Mediterranean coast (1960–2015)
Statistical analysis for satellite-index-based insurance to define damaged pasture thresholds
Monitoring the seasonal dynamics of soil salinization in the Yellow River delta of China using Landsat data
Towards early warning of gravitational slope failure with co-detection of microseismic activity: the case of an active rock glacier
Dangerous degree forecast of soil loss on highway slopes in mountainous areas of the Yunnan–Guizhou Plateau (China) using the Revised Universal Soil Loss Equation
Assessment of geodetic velocities using GPS campaign measurements over long baseline lengths
Response time to flood events using a social vulnerability index (ReTSVI)
Delimitation of flood areas based on a calibrated a DEM and geoprocessing: case study on the Uruguay River, Itaqui, southern Brazil
Identification and classification of urban micro-vulnerabilities in tsunami evacuation routes for the city of Iquique, Chile
Usability of aerial video footage for 3-D scene reconstruction and structural damage assessment
Using kites for 3-D mapping of gullies at decimetre-resolution over several square kilometres: a case study on the Kamech catchment, Tunisia
A new approach for land degradation and desertification assessment using geospatial techniques
Active tectonics of the onshore Hengchun Fault using UAS DSM combined with ALOS PS-InSAR time series (Southern Taiwan)
Geomorphological evolution of landslides near an active normal fault in northern Taiwan, as revealed by lidar and unmanned aircraft system data
Slope stability and rockfall assessment of volcanic tuffs using RPAS with 2-D FEM slope modelling
Use of a remotely piloted aircraft system for hazard assessment in a rocky mining area (Lucca, Italy)
A method for using unmanned aerial vehicles for emergency investigation of single geo-hazards and sample applications of this method
Brief communication: Vehicle routing problem and UAV application in the post-earthquake scenario
Multiple remote-sensing assessment of the catastrophic collapse in Langtang Valley induced by the 2015 Gorkha earthquake
GB-InSAR monitoring of slope deformations in a mountainous area affected by debris flow events
Big data managing in a landslide early warning system: experience from a ground-based interferometric radar application
Application of UAV-SfM photogrammetry and aerial lidar to a disastrous flood: repeated topographic measurement of a newly formed crevasse splay of the Kinu River, central Japan
Application of Landsat-8 and ALOS-2 data for structural and landslide hazard mapping in Kelantan, Malaysia
Direct local building inundation depth determination in 3-D point clouds generated from user-generated flood images
Signal frequency distribution and natural-time analyses from acoustic emission monitoring of an arched structure in the Castle of Racconigi
Probabilistic flood extent estimates from social media flood observations
Coseismic displacements of the 14 November 2016 Mw 7.8 Kaikoura, New Zealand, earthquake using the Planet optical cubesat constellation
TESSA: design and implementation of a platform for situational sea awareness
A multi-service data management platform for scientific oceanographic products
Natural hazard fatalities in Switzerland from 1946 to 2015
Tsunami arrival time detection system applicable to discontinuous time series data with outliers
Multi-objective optimization of typhoon inundation forecast models with cross-site structures for a water-level gauging network by integrating ARMAX with a genetic algorithm
GIS analysis of effects of future Baltic sea level rise on the island of Gotland, Sweden
Luiz Felipe Galizia, Thomas Curt, Renaud Barbero, and Marcos Rodrigues
Nat. Hazards Earth Syst. Sci., 21, 73–86, https://doi.org/10.5194/nhess-21-73-2021, https://doi.org/10.5194/nhess-21-73-2021, 2021
Short summary
Short summary
This paper aims to provide a quantitative evaluation of three remotely sensed fire datasets which have recently emerged as an important resource to improve our understanding of fire regimes. Our findings suggest that remotely sensed fire datasets can be used to proxy variations in fire activity on monthly and annual timescales; however, caution is advised when drawing information from smaller fires (< 100 ha) across the Mediterranean region.
Philippe Weyrich, Anna Scolobig, Florian Walther, and Anthony Patt
Nat. Hazards Earth Syst. Sci., 20, 2811–2821, https://doi.org/10.5194/nhess-20-2811-2020, https://doi.org/10.5194/nhess-20-2811-2020, 2020
Patric Kellermann, Kai Schröter, Annegret H. Thieken, Sören-Nils Haubrock, and Heidi Kreibich
Nat. Hazards Earth Syst. Sci., 20, 2503–2519, https://doi.org/10.5194/nhess-20-2503-2020, https://doi.org/10.5194/nhess-20-2503-2020, 2020
Short summary
Short summary
The flood damage database HOWAS 21 contains object-specific flood damage data resulting from fluvial, pluvial and groundwater flooding. The datasets incorporate various variables of flood hazard, exposure, vulnerability and direct tangible damage at properties from several economic sectors. This paper presents HOWAS 21 and highlights exemplary analyses to demonstrate the use of HOWAS 21 flood damage data.
Giuseppe Esposito, Ivan Marchesini, Alessandro Cesare Mondini, Paola Reichenbach, Mauro Rossi, and Simone Sterlacchini
Nat. Hazards Earth Syst. Sci., 20, 2379–2395, https://doi.org/10.5194/nhess-20-2379-2020, https://doi.org/10.5194/nhess-20-2379-2020, 2020
Short summary
Short summary
In this article, we present an automatic processing chain aimed to support the detection of landslides that induce sharp land cover changes. The chain exploits free software and spaceborne SAR data, allowing the systematic monitoring of wide mountainous regions exposed to mass movements. In the test site, we verified a general accordance between the spatial distribution of seismically induced landslides and the detected land cover changes, demonstrating its potential use in emergency management.
Mohammad Malakootian and Majid Nozari
Nat. Hazards Earth Syst. Sci., 20, 2351–2363, https://doi.org/10.5194/nhess-20-2351-2020, https://doi.org/10.5194/nhess-20-2351-2020, 2020
Short summary
Short summary
The present study estimated the Kerman–Baghin aquifer vulnerability using DRASTIC and composite DRASTIC (CDRASTIC) indices with the aid of geographic information system (GIS) techniques. The aquifer vulnerability maps indicated very similar results, identifying the north-west parts of the aquifer as areas with high to very high vulnerability. According to the results, parts of the studied aquifer have a high vulnerability and require protective measures.
Roope Tervo, Ilona Láng, Alexander Jung, and Antti Mäkelä
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2020-205, https://doi.org/10.5194/nhess-2020-205, 2020
Revised manuscript accepted for NHESS
Short summary
Short summary
Predicting the number of power outages caused by extratropical storms is the key challenge for power grid operators. We introduce a novel method to predict the storm severity for the power grid employing ERA5 reanalysis data combined with forest inventory. The storms are first identified from the data and then classified using several machine learning methods. While there is plenty of room to improve, the results are already usable, Support Vector Classifier providing the best performance.
Michaela Wenner, Clément Hibert, Lorenz Meier, and Fabian Walter
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2020-200, https://doi.org/10.5194/nhess-2020-200, 2020
Revised manuscript accepted for NHESS
Short summary
Short summary
In mountainous areas, mass movements such as rockfalls, rock avalanches, and debris flows constitute a risk to property and human life. In this study we use machine learning to automatically detect and classify slope failure events using ground vibrations. We show that a near-real-time classification of seismogenic slope failures is feasible. Our approach enables us to detect the occurrence of rare events of high interest in a large data set of more than a million windowed seismic signals.
Diana Contreras, Alondra Chamorro, and Sean Wilkinson
Nat. Hazards Earth Syst. Sci., 20, 1663–1687, https://doi.org/10.5194/nhess-20-1663-2020, https://doi.org/10.5194/nhess-20-1663-2020, 2020
Short summary
Short summary
The socio-economic condition of the population determines their vulnerability to earthquakes, tsunamis, volcanic eruptions, landslides, soil erosion and land degradation. This condition is estimated mainly from population censuses. The lack to access to basic services, proximity to hazard zones, poverty and population density highly influence the vulnerability of communities. Mapping the location of this vulnerable population makes it possible to prevent and mitigate their risk.
Simona Colombelli, Francesco Carotenuto, Luca Elia, and Aldo Zollo
Nat. Hazards Earth Syst. Sci., 20, 921–931, https://doi.org/10.5194/nhess-20-921-2020, https://doi.org/10.5194/nhess-20-921-2020, 2020
Short summary
Short summary
We developed a mobile app for Android devices which receives the alerts generated by a network-based early warning system, predicts the expected ground-shaking intensity and the available lead time at the user position, and provides customized messages to inform the user about the proper reaction to the alert. The app represents a powerful tool for informing in real time a wide audience of end users and stakeholders about the potential damaging shaking in the occurrence of an earthquake.
Richard Styron, Julio García-Pelaez, and Marco Pagani
Nat. Hazards Earth Syst. Sci., 20, 831–857, https://doi.org/10.5194/nhess-20-831-2020, https://doi.org/10.5194/nhess-20-831-2020, 2020
Short summary
Short summary
The Caribbean and Central American region is both tectonically active and densely populated, leading to a large population that is exposed to earthquake hazards. Until now, no comprehensive fault data covering the region have been available. We present a new public fault database for Central America and the Caribbean that synthesizes published studies with new mapping from remote sensing to provide fault sources for the CCARA seismic hazard and risk analysis project and to aid future research.
María del Pilar Jiménez-Donaire, Ana Tarquis, and Juan Vicente Giráldez
Nat. Hazards Earth Syst. Sci., 20, 21–33, https://doi.org/10.5194/nhess-20-21-2020, https://doi.org/10.5194/nhess-20-21-2020, 2020
Short summary
Short summary
A new combined drought indicator (CDI) is proposed that integrates rainfall, soil moisture and vegetation dynamics. The performance of this indicator was evaluated against crop damage data from agricultural insurance schemes in five different areas in SW Spain. Results show that this indicator was able to predict important droughts in 2004–2005 and 2011–2012, marked by crop damage of between 70 % and 95 % of the total insured area. This opens important applications for improving insurance schemes.
Quancai Xie, Qiang Ma, Jingfa Zhang, and Haiying Yu
Nat. Hazards Earth Syst. Sci., 19, 2827–2839, https://doi.org/10.5194/nhess-19-2827-2019, https://doi.org/10.5194/nhess-19-2827-2019, 2019
Short summary
Short summary
This paper evaluates a new method for modeling the site amplification factor. Through implementing this method and making simulations for different cases, we find that this method shows better performance than the previous method and JMA report. We better understand the advantages and disadvantages of this method, although there are some problems that need to be considered carefully and solved; it shows good potential to be used in future earthquake early warning systems.
David A. Bonneau, D. Jean Hutchinson, Paul-Mark DiFrancesco, Melanie Coombs, and Zac Sala
Nat. Hazards Earth Syst. Sci., 19, 2745–2765, https://doi.org/10.5194/nhess-19-2745-2019, https://doi.org/10.5194/nhess-19-2745-2019, 2019
Short summary
Short summary
In mountainous regions around the world rockfalls pose a hazard to infrastructure and society. To aid in our understanding and management of these complex hazards, an inventory can be compiled. Three-dimensional remote sensing data can be used to locate the source zones of these events and generate models of areas which detached. We address the way in which the shape of a rockfall object can be measured. The shape of a rockfall has implications for forward modelling of potential runout zones.
Kwonmin Lee, Hye-Sil Kim, and Yong-Sang Choi
Nat. Hazards Earth Syst. Sci., 19, 2241–2248, https://doi.org/10.5194/nhess-19-2241-2019, https://doi.org/10.5194/nhess-19-2241-2019, 2019
Short summary
Short summary
This study examined the advances in the predictability of thunderstorms using geostationary satellite imageries. Our present results show that by using the latest geostationary satellite data (with a resolution of 2 km and 10 min), thunderstorms can be predicted 90–180 min ahead of their mature state. These data can capture the rapidly growing cloud tops before the cloud moisture falls as precipitation and enable prompt preparation and the mitigation of hazards.
Qingyun Zhang, Yongsheng Li, Jingfa Zhang, and Yi Luo
Nat. Hazards Earth Syst. Sci., 19, 2229–2240, https://doi.org/10.5194/nhess-19-2229-2019, https://doi.org/10.5194/nhess-19-2229-2019, 2019
Short summary
Short summary
Before the opening of the railway, the deformation of the Qinghai–Tibet Railway was very small and considered stable. After opening, the overall stability of the railway section was good. The main deformation areas are concentrated in the areas where railway lines turn and geological disasters are concentrated. In order to ensure the safety of railway operation, it is necessary to carry out long-term time series observation along the Qinghai–Tibet Railway.
Xiao Huang, Cuizhen Wang, and Junyu Lu
Nat. Hazards Earth Syst. Sci., 19, 2141–2155, https://doi.org/10.5194/nhess-19-2141-2019, https://doi.org/10.5194/nhess-19-2141-2019, 2019
Short summary
Short summary
This study examined the spatiotemporal dynamics of nighttime satellite-derived human settlement in response to different levels of hurricane proneness in a period from 1992 to 2013. It confirms the
Snow Belt-to-Sun BeltUS population shift trend. The results also suggest that hurricane-exposed human settlement has grown in extent and area, as more hurricane exposure has experienced a larger increase rate in settlement intensity.
Maja Kucharczyk and Chris H. Hugenholtz
Nat. Hazards Earth Syst. Sci., 19, 2039–2051, https://doi.org/10.5194/nhess-19-2039-2019, https://doi.org/10.5194/nhess-19-2039-2019, 2019
Short summary
Short summary
We performed pre-disaster 3-D mapping with a drone in downtown Victoria, BC, Canada. This was the first drone mapping mission over a Canadian city approved by Canada’s aviation authority. We were legally constrained to using a specific drone. The goal was to assess the quality of the 3-D map. Results indicate that the spatial accuracies achieved with this drone would allow for sub-meter building collapse detection, but the non-tilting camera was insufficient for mapping buildings in 3-D.
Salvador Gil-Guirado, Alfredo Pérez-Morales, and Francisco Lopez-Martinez
Nat. Hazards Earth Syst. Sci., 19, 1955–1971, https://doi.org/10.5194/nhess-19-1955-2019, https://doi.org/10.5194/nhess-19-1955-2019, 2019
Short summary
Short summary
In this study the SMC-Flood database for the municipalities of the Mediterranean coast of mainland Spain is presented. This database has enabled the reconstruction of 3008 cases of flooding on a municipal scale between 1960 and 2015. The data analysis reveals a growing trend in the frequency and area affected by flood cases. The main novelty lies in the fact that we have detected a clear latitudinal gradient of growing intensity and severity of flood cases with a north–south direction.
Juan José Martín-Sotoca, Antonio Saa-Requejo, Rubén Moratiel, Nicolas Dalezios, Ioannis Faraslis, and Ana María Tarquis
Nat. Hazards Earth Syst. Sci., 19, 1685–1702, https://doi.org/10.5194/nhess-19-1685-2019, https://doi.org/10.5194/nhess-19-1685-2019, 2019
Short summary
Short summary
Vegetation indices based on satellite images, such as the normalized difference vegetation index (NDVI), have been used for damaged pasture insurance. The occurrence of damage is usually defined by NDVI thresholds mainly based on normal statistics. In this work a pasture area in Spain was delimited by MODIS images. A statistical analysis of NDVI was applied to search for alternative distributions. Results show that generalized extreme value distributions present a better fit than normal ones.
Hongyan Chen, Gengxing Zhao, Yuhuan Li, Danyang Wang, and Ying Ma
Nat. Hazards Earth Syst. Sci., 19, 1499–1508, https://doi.org/10.5194/nhess-19-1499-2019, https://doi.org/10.5194/nhess-19-1499-2019, 2019
Short summary
Short summary
Using Landsat data, the inversion model of soil salt content (SSC) for different seasons was determined in the Kenli District in the Yellow River Delta region of China. The SSC exhibited a gradual increasing trend from the southwest to northeast. The SSC accumulated in spring, decreased in summer, increased in autumn and reached its peak at the the end of winter. The results can provide data for the control of soil salt hazards and utilization of saline–alkali soil.
Jérome Faillettaz, Martin Funk, Jan Beutel, and Andreas Vieli
Nat. Hazards Earth Syst. Sci., 19, 1399–1413, https://doi.org/10.5194/nhess-19-1399-2019, https://doi.org/10.5194/nhess-19-1399-2019, 2019
Short summary
Short summary
We developed a new strategy for real-time early warning of
gravity-driven slope failures (such as landslides, rockfalls, glacier break-off, etc.). This method enables us to investigate natural slope stability based on continuous monitoring and interpretation of seismic waves generated by the potential instability. Thanks to a pilot experiment, we detected typical patterns of precursory events prior to slide events, demonstrating the potential of this method for real-word applications.
Yue Li, Shi Qi, Bin Liang, Junming Ma, Baihan Cheng, Cong Ma, Yidan Qiu, and Qinyan Chen
Nat. Hazards Earth Syst. Sci., 19, 757–774, https://doi.org/10.5194/nhess-19-757-2019, https://doi.org/10.5194/nhess-19-757-2019, 2019
Short summary
Short summary
This study fully considers the characteristics of expressways in mountain areas. The catchment area is considered a prediction unit. The method of slope division is improved, and a method of improving the parameters in the model is proposed. Comparison and analysis with actual observation data show that the method of soil and water loss prediction adopted in this paper has less error and higher prediction accuracy than other models and can satisfy prediction requirements.
Huseyin Duman and Dogan Ugur Sanli
Nat. Hazards Earth Syst. Sci., 19, 571–582, https://doi.org/10.5194/nhess-19-571-2019, https://doi.org/10.5194/nhess-19-571-2019, 2019
Short summary
Short summary
Research has been done to assess the performance of relative positioning over long baseline lengths in determining the accuracy of site velocities from GPS campaign measurements. GPS campaign measurements were generated from the IGS data, and the results were compared with PPP-derived findings. A major outcome of this study is that relative positioning over long baseline lengths produces similar accuracies to PPP. A newly proposed refinement method also improves the available PPP accuracy.
Alvaro Hofflinger, Marcelo A. Somos-Valenzuela, and Arturo Vallejos-Romero
Nat. Hazards Earth Syst. Sci., 19, 251–267, https://doi.org/10.5194/nhess-19-251-2019, https://doi.org/10.5194/nhess-19-251-2019, 2019
Short summary
Short summary
In this work, we propose a novel methodology (ReTSVI) to integrate a social vulnerability index into flood hazard methodologies. ReTSVI combines a series of modules that are pieces of information that interact during an evacuation, such as evacuation rate curves, mobilization, inundation models, and social vulnerability indexes, to create an integrated map of the evacuation rate in a given location.
Paulo Victor N. Araújo, Venerando E. Amaro, Robert M. Silva, and Alexandre B. Lopes
Nat. Hazards Earth Syst. Sci., 19, 237–250, https://doi.org/10.5194/nhess-19-237-2019, https://doi.org/10.5194/nhess-19-237-2019, 2019
Short summary
Short summary
This paper aims to map flood hazard areas under the influence of the Uruguay River, Itaqui (southern Brazil), using a calibrated digital elevation model (DEM), historic river level data and geoprocessing techniques. Assessment of the areas that can potentially be flooded can help to reduce the negative impact of flood events by supporting the process of land-use planning in areas exposed to flood hazards.
Gonzalo Álvarez, Marco Quiroz, Jorge León, and Rodrigo Cienfuegos
Nat. Hazards Earth Syst. Sci., 18, 2027–2039, https://doi.org/10.5194/nhess-18-2027-2018, https://doi.org/10.5194/nhess-18-2027-2018, 2018
Short summary
Short summary
Evacuation planning has been recognized as one of the best tools for safeguarding the population against tsunami hazards. In this work we develop a novel methodology to identify and classify urban micro-vulnerabilities that may difficult pedestrian evacuation processes resulting from problems in urban design or informal uses of the public space. The correct identification and correction of these issues could make the difference in saving lives when the available time for evacuation is short.
Johnny Cusicanqui, Norman Kerle, and Francesco Nex
Nat. Hazards Earth Syst. Sci., 18, 1583–1598, https://doi.org/10.5194/nhess-18-1583-2018, https://doi.org/10.5194/nhess-18-1583-2018, 2018
Short summary
Short summary
Aerial multi-perspective images can be used for the effective assessment of post-disaster structural damage. Alternatively, rapidly available video data can be processed for the same purpose. However, video quality characteristics are different than those of images taken with still cameras. The use of video data in post-disaster damage assessment has not been demonstrated. Based on a comparative assessment, our findings support the application of video data in post-disaster damage assessment.
Denis Feurer, Olivier Planchon, Mohamed Amine El Maaoui, Abir Ben Slimane, Mohamed Rached Boussema, Marc Pierrot-Deseilligny, and Damien Raclot
Nat. Hazards Earth Syst. Sci., 18, 1567–1582, https://doi.org/10.5194/nhess-18-1567-2018, https://doi.org/10.5194/nhess-18-1567-2018, 2018
Short summary
Short summary
We present a method for acquiring very-high-resolution images for 3-D mapping of gullies over kilometre-square areas using kites. Kites used in appropriate conditions can be an advantageous alternative to light unmanned aircraft when local regulations or weather conditions hamper their use. We proved that kites can acquire images, allowing for high-quality 3-D coverage of large areas. We automatically detected and mapped gullies from a decimetre kite DEM with 74 % accuracy of the length.
Masoud Masoudi, Parviz Jokar, and Biswajeet Pradhan
Nat. Hazards Earth Syst. Sci., 18, 1133–1140, https://doi.org/10.5194/nhess-18-1133-2018, https://doi.org/10.5194/nhess-18-1133-2018, 2018
Short summary
Short summary
The paper attempts to create a new technique for assessing the current state of land degradation. Assessment of land degradation is difficult, because it includes a complex process. This assessment, using RS and GIS seems to be more realistic in finding the degree of degradation, because it is more related to its impact on land productivity. It is hoped that this attempt, which is the first attempt of its kind in the world, will be found applicable for other regions.
Benoit Deffontaines, Kuo-Jen Chang, Johann Champenois, Kuan-Chuan Lin, Chyi-Tyi Lee, Rou-Fei Chen, Jyr-Ching Hu, and Samuel Magalhaes
Nat. Hazards Earth Syst. Sci., 18, 829–845, https://doi.org/10.5194/nhess-18-829-2018, https://doi.org/10.5194/nhess-18-829-2018, 2018
Short summary
Short summary
To better settle the location and quantify the activity of the Hengchun Fault, we integrate UAS for geomorphologic data acquisitions, photograph and morphotectonic interpretation. Then PS-InSAR results, validated with GPS and leveling data, allow characterizing and quantifying the surface displacements. We confirm the geometry, characterization and quantification of the active sinistral transpressive Hengchun fault. The potential hazards are worthy of further investigation.
Kuo-Jen Chang, Yu-Chang Chan, Rou-Fei Chen, and Yu-Chung Hsieh
Nat. Hazards Earth Syst. Sci., 18, 709–727, https://doi.org/10.5194/nhess-18-709-2018, https://doi.org/10.5194/nhess-18-709-2018, 2018
Short summary
Short summary
Several remote sensing techniques, i.e., aerial photographs, drone images, and airborne lidar, were used in this study to decipher the morphological features of obscure landslides in volcanic regions and how the observed features may be used for understanding landslide occurrence, subsequent geomorphological evolution, and potential hazards. Two large-scale landslides were characterized and quantified in this study.
Ákos Török, Árpád Barsi, Gyula Bögöly, Tamás Lovas, Árpád Somogyi, and Péter Görög
Nat. Hazards Earth Syst. Sci., 18, 583–597, https://doi.org/10.5194/nhess-18-583-2018, https://doi.org/10.5194/nhess-18-583-2018, 2018
Short summary
Short summary
The present study demonstrates the application of drones and terrestrial laser scanner in stability assessment of steep, hardly accessible rock slopes that can endanger human lives. These technologies can be deployed very quickly, but data processing requires time. For reliable hazard evaluation, besides these techniques, engineering geological field work, laboratory tests of the mechanical properties of rocks and computer simulations are also necessary.
Riccardo Salvini, Giovanni Mastrorocco, Giuseppe Esposito, Silvia Di Bartolo, John Coggan, and Claudio Vanneschi
Nat. Hazards Earth Syst. Sci., 18, 287–302, https://doi.org/10.5194/nhess-18-287-2018, https://doi.org/10.5194/nhess-18-287-2018, 2018
Short summary
Short summary
Remotely Piloted Aircraft System was used for the engineering geological investigation of a marble mine area in Italy. High resolution images were processed by using SfM techniques for obtaining an accurate and detailed three-dimensional model of the area. Geological and geometrical information was used for a preliminary stability analysis with focus on investigating the contribution of potential rock bridges of two large blocks that pose a potential hazard issue for the workforce.
Haifeng Huang, Jingjing Long, Wu Yi, Qinglin Yi, Guodong Zhang, and Bangjun Lei
Nat. Hazards Earth Syst. Sci., 17, 1961–1979, https://doi.org/10.5194/nhess-17-1961-2017, https://doi.org/10.5194/nhess-17-1961-2017, 2017
Short summary
Short summary
Unmanned aerial vehicles are widely used in the emergency investigations of major natural hazards in a large area, but less commonly for single geo-hazards. Based on a number of successful practices in the Three Gorges Reservoir area, China, a complete UAV-based emergency investigation method of single geo-hazards is concluded. It can not only greatly reduce the time, strength and risks, but can also provide high-accuracy, high-definition valuable information to support emergency responses.
Marco Cannioto, Antonino D'Alessandro, Giosuè Lo Bosco, Salvatore Scudero, and Giovanni Vitale
Nat. Hazards Earth Syst. Sci., 17, 1939–1946, https://doi.org/10.5194/nhess-17-1939-2017, https://doi.org/10.5194/nhess-17-1939-2017, 2017
Short summary
Short summary
Immediately after an earthquake it is crucial to perform the fastest recognition of the damaged area to rescue as much people is possible and to assess and map the damage scenario. We apply the vehicle routing problem (VRP) to a fleet of unmanned aerial vehicles (UAVs) to find the shortest routes and the best take-off sites. The simulation, performed with different autonomy ranges, is carried out in the town of Acireale (Italy), where a real-time accelerometric network has been installed.
Hiroto Nagai, Manabu Watanabe, Naoya Tomii, Takeo Tadono, and Shinichi Suzuki
Nat. Hazards Earth Syst. Sci., 17, 1907–1921, https://doi.org/10.5194/nhess-17-1907-2017, https://doi.org/10.5194/nhess-17-1907-2017, 2017
Short summary
Short summary
We demonstrated an assessment of the sediments caused by a catastrophic avalanche, induced by the main shock of the 2015 Gorkha Earthquake in Nepal. A Japanese space-borne sensor, PALSAR-2, have a high potential for delineating the hazardous zone. Comparison of pre- and post-high-resolution topographic data estimates the avalanche-induced sediment volume as 5.51 × 106 m3. High-resolution satellite imagery revealed that it has multiple layers of sediment with different physical properties.
William Frodella, Teresa Salvatici, Veronica Pazzi, Stefano Morelli, and Riccardo Fanti
Nat. Hazards Earth Syst. Sci., 17, 1779–1793, https://doi.org/10.5194/nhess-17-1779-2017, https://doi.org/10.5194/nhess-17-1779-2017, 2017
Short summary
Short summary
A local scale GB-InSAR system was implemented for mapping and monitoring slope landslide residual deformations and for early warning purposes in case of landslide reactivations, with the aim of assuring the safety of the valley inhabitants and the personnel involved in the post-event recovery phase. The here presented methodology could represent a useful contribution to a better understanding of landslide phenomena and decision making process during the post-emergency management activities.
Emanuele Intrieri, Federica Bardi, Riccardo Fanti, Giovanni Gigli, Francesco Fidolini, Nicola Casagli, Sandra Costanzo, Antonio Raffo, Giuseppe Di Massa, Giovanna Capparelli, and Pasquale Versace
Nat. Hazards Earth Syst. Sci., 17, 1713–1723, https://doi.org/10.5194/nhess-17-1713-2017, https://doi.org/10.5194/nhess-17-1713-2017, 2017
Short summary
Short summary
Landslides are a threat not only to people but also to important infrastructure, like highways. Nowadays there are several monitoring systems that are able to detect slope displacements in order to give prompt alarms. On the other hand, such instruments produce a huge amount of information, which is often not totally used and which can also represent an issue for data storage and transmission. In this paper we explain how we dealt with the large quantity of data provided by one of these tools.
Atsuto Izumida, Shoichiro Uchiyama, and Toshihiko Sugai
Nat. Hazards Earth Syst. Sci., 17, 1505–1519, https://doi.org/10.5194/nhess-17-1505-2017, https://doi.org/10.5194/nhess-17-1505-2017, 2017
Short summary
Short summary
Geomorphic impact of the 2015 flood of the Kinu River, which created a new crevasse splay on its floodplain, was quantified by volumetric calculations using three topographic data obtained by aerial laser scanning (ALS) and UAV photogrammetry. Topographic changes on the order of 0.1 m were detected, and the erosive character of the crevasse splay was revealed. The results suggest that a combination of ALS and UAV is useful for quantification of sudden topographic changes through disasters.
Amin Beiranvand Pour and Mazlan Hashim
Nat. Hazards Earth Syst. Sci., 17, 1285–1303, https://doi.org/10.5194/nhess-17-1285-2017, https://doi.org/10.5194/nhess-17-1285-2017, 2017
Short summary
Short summary
L-band SAR remote sensing data are used for identification of high potential risk and susceptible zones for natural hazards of geological origin in tropical environments. Results of this investigation have great potential in terms of a solution to flood disaster management in tropical environments by providing important information to assess the natural hazards of geological origin.
Luisa Griesbaum, Sabrina Marx, and Bernhard Höfle
Nat. Hazards Earth Syst. Sci., 17, 1191–1201, https://doi.org/10.5194/nhess-17-1191-2017, https://doi.org/10.5194/nhess-17-1191-2017, 2017
Short summary
Short summary
This study provides a new method for flood documentation based on user-generated flood images. We demonstrate how flood elevation and building inundation depth can be derived from photographs by means of 3-D reconstruction of the scene. With an accuracy of 0.13 m ± 0.10 m, the derived building inundation depth can be used to facilitate damage assessment.
Gianni Niccolini, Amedeo Manuello, Elena Marchis, and Alberto Carpinteri
Nat. Hazards Earth Syst. Sci., 17, 1025–1032, https://doi.org/10.5194/nhess-17-1025-2017, https://doi.org/10.5194/nhess-17-1025-2017, 2017
Short summary
Short summary
An architectural element of the Royal Castle of Racconigi (northwestern Italy, 17th century) is subjected to nondestructive testing for structural integrity evaluation. It is found that the so-called acoustic emissions – high-frequency vibrations emitted as tiny cracks that develop inside stone and concrete – correlate with those of small nearby earthquakes, suggesting new approaches to monitoring gradual damage accumulation inflicted by such earthquakes on architectural heritage and monuments.
Tom Brouwer, Dirk Eilander, Arnejan van Loenen, Martijn J. Booij, Kathelijne M. Wijnberg, Jan S. Verkade, and Jurjen Wagemaker
Nat. Hazards Earth Syst. Sci., 17, 735–747, https://doi.org/10.5194/nhess-17-735-2017, https://doi.org/10.5194/nhess-17-735-2017, 2017
Short summary
Short summary
The increasing number and severity of floods, driven by e.g. urbanization, subsidence and climate change, create a growing need for accurate and timely flood maps. At the same time social media is a source of much real-time data that is still largely untapped in flood disaster management. This study illustrates that inherently uncertain data from social media can be used to derive information about flooding.
Andreas Kääb, Bas Altena, and Joseph Mascaro
Nat. Hazards Earth Syst. Sci., 17, 627–639, https://doi.org/10.5194/nhess-17-627-2017, https://doi.org/10.5194/nhess-17-627-2017, 2017
Short summary
Short summary
We evaluate for the first time a new class of optical satellite images for measuring Earth surface displacements due to earthquakes – images from cubesats. The PlanetScope cubesats used in this study are 10 cm × 10 cm × 30 cm small and standardized satellites. Around 120 of these cubesats orbit around Earth and are about to provide daily 2–4 m resolution images of the entire land surface of the Earth.
Mario Scalas, Palmalisa Marra, Luca Tedesco, Raffaele Quarta, Emanuele Cantoro, Antonio Tumolo, Davide Rollo, and Marco Spagnulo
Nat. Hazards Earth Syst. Sci., 17, 185–196, https://doi.org/10.5194/nhess-17-185-2017, https://doi.org/10.5194/nhess-17-185-2017, 2017
Alessandro D'Anca, Laura Conte, Paola Nassisi, Cosimo Palazzo, Rita Lecci, Sergio Cretì, Marco Mancini, Alessandra Nuzzo, Maria Mirto, Gianandrea Mannarini, Giovanni Coppini, Sandro Fiore, and Giovanni Aloisio
Nat. Hazards Earth Syst. Sci., 17, 171–184, https://doi.org/10.5194/nhess-17-171-2017, https://doi.org/10.5194/nhess-17-171-2017, 2017
Short summary
Short summary
Updated situational sea awareness requires an advanced technological system to make data available for decision makers, improving the capacity of intervention and supporting users in managing emergency situations due to natural hazards. The TESSA data platform meets the request of near-real-time access to heterogeneous data with different accuracy, resolution or degrees of aggregation providing efficient and secure data access and strong support to operational oceanographic high-level services.
Alexandre Badoux, Norina Andres, Frank Techel, and Christoph Hegg
Nat. Hazards Earth Syst. Sci., 16, 2747–2768, https://doi.org/10.5194/nhess-16-2747-2016, https://doi.org/10.5194/nhess-16-2747-2016, 2016
Short summary
Short summary
A database of fatalities caused by natural hazards in Switzerland was compiled for the period from 1946 to 2015: in 70 years, 635 events occurred causing 1023 fatalities. The most common causes of death were snow avalanches (37 %), followed by lightning (16 %), floods (12 %), windstorms (10 %), rockfalls (8 %) and landslides (7 %). The annual number of victims showed a distinct decrease over time. In comparison to other countries, the natural hazard mortality rate in Switzerland is quite low.
Jun-Whan Lee, Sun-Cheon Park, Duk Kee Lee, and Jong Ho Lee
Nat. Hazards Earth Syst. Sci., 16, 2603–2622, https://doi.org/10.5194/nhess-16-2603-2016, https://doi.org/10.5194/nhess-16-2603-2016, 2016
Short summary
Short summary
Water level sensors often experience unexpected gaps and outliers that cause major difficulties in detecting tsunamis. Thus, we propose a tsunami arrival time detection system applicable to discontinuous time-series data with outliers. We want to stress that the efficiency and simplicity of the system enable its wide application in tsunami monitoring areas.
Huei-Tau Ouyang
Nat. Hazards Earth Syst. Sci., 16, 1897–1909, https://doi.org/10.5194/nhess-16-1897-2016, https://doi.org/10.5194/nhess-16-1897-2016, 2016
Short summary
Short summary
Typhoon inundation forecast model for a gauging network is proposed. Model inputs are identified by cross-correlation and mutual information analysis. Optimal ARMAX model structures are searched for considering three objective functions, including the forecasting capacity in water level throughout the event, the accuracy in forecasting peak water levels and the time at which peak water levels are likely to occur. Characteristics of the resultant models subject to various objectives are examined.
Karin Ebert, Karin Ekstedt, and Jerker Jarsjö
Nat. Hazards Earth Syst. Sci., 16, 1571–1582, https://doi.org/10.5194/nhess-16-1571-2016, https://doi.org/10.5194/nhess-16-1571-2016, 2016
Short summary
Short summary
Future sea level rise is inevitable. We investigate the effects of 2 m sea level rise on the island of Gotland, Sweden. In a multi-criteria analysis we analyze the quantity of infrastructure that will be inundated, and the effect of saltwater intrusion in wells. Almost 100 km2 (3 %) of Gotland's land area will be inundated. Important touristic and nature values will be strongest affected. Well salinization will greatly increase. Administrative planning is needed to prepare for changes.
Cited articles
Akin, M. K., Topal, T., and Kramer, S. L.: A newly developed seismic
microzonation model of Erbaa (Tokat, Turkey) located on seismically active
eastern segment of the North Anatolian Fault Zone (NAFZ), Nat. Hazards, 65, 1411–1442, https://doi.org/10.1007/s11069-012-0420-1, 2013.
Askari, F., Azadi, A. M. D., Ghayamghamian, E. H., Hamzehloo, H., Jafari, M. K., Kamalian, M., Keshavarz, M., Ravanfar, O., and Shafiee, A., and Sohrabi-Bidar, A.: Preliminary Seismic Microzonation of Bam, J. Seismol. Earthq. Eng., 5, 69–80, 2004.
Assimaki, D., Steidl, J., and Liu, P.: Attenuation and Velocity Structure for Site Response Analyses via Downhole Seismogram Inversion, Pure Appl. Geophys., 163, 81–118, https://doi.org/10.1007/s00024-005-0009-7, 2006.
Atkinson, G. M. and Boore, D. M.: Earthquake ground-motion prediction
equations for eastern North America, Bull. Seismol. Soc. Am., 96, 2181–2205, 2006.
Atkinson, G. M., Ghofrani, H., and Assatourians, K.: Impact of induced
seismicity on the evaluation of seismic hazard: Some preliminary considerations, Seismol. Res. Lett., 86, 1009–1021, 2015.
Aucelli, P. P. C., Di Paola, G., Valente, E., Amato, V., Bracone, V., Cesarano, M., Di Capua, G., Scorpio, V., Capalbo, A., and Pappone, G.: First
assessment of the local seismic amplification susceptibility of the Isernia
Province (Molise Region, Southern Italy) by the integration of geological and geomorphological studies related to the first level seismic microzonation project, Environ. Earth Sci., 77, 118, 2018.
Beck, J. L. and Hall, J. F.: Factors contributing to the catastrophe in Mexico City during the earthquake of September 19, 1985, Geophys. Res. Lett., 13, 593–596, 1986.
Biernacki, P. and Waldorf, D.: Snowball sampling: Problems and techniques of chain referral sampling, Sociol. Meth. Res., 10, 141–163, 1981.
Bisch, P., Carvalho, E., Degee, H., Fajfar, P., Fardis, M., Franchin, P.,
Kreslin, M., Pecker, A., Pinto, P., and Plumier, A.: Eurocode 8: seismic design of buildings worked examples, Joint Research Centre European Union,
Luxembourg, 2012.
Boore, D. M.: Simulation of ground motion using the stochastic method, in:
Seismic Motion, Lithospheric Structures, Earthquake and Volcanic Sources:
The Keiiti Aki Volume, edited by: Ben-Zion, Y., Birkhäuser, Basel, 635–676, 2003.
Boostan, E., Tahernia, N., and Shafiee, A.: Fuzzy – probabilistic seismic
hazard assessment, case study: Tehran region, Iran, Nat, Hazards, 77, 525–541, 2015.
Bouckovalas, G. D. and Papadimitriou, A. G.: Numerical evaluation of slope
topography effects on seismic ground motion, Soil Dynam. Earthq. Eng., 25, 547–558, 2005.
Campbell, K. W.: Prediction of strong ground motion using the hybrid empirical method and its use in the development of ground-motion (attenuation) relations in eastern North America, Bull. Seismol. Soc. Am., 93, 1012–1033, 2003.
Capilleri, P., Cavallaro, A., and Maugeri, M.: Static and dynamic soil
characterization at Roio Piano (AQ), Ital. Geotech. J., 35, 38–52, 2014.
CAPRA – Probabilistic Risk Assessment: Risk Assessment, available at: https://www.ecapra.org/software, last access: 17 April 2017.
Castelli, F., Cavallaro, A., Grasso, S., and Lentini, V.: Seismic microzoning from synthetic ground motion earthquake scenarios parameters: the case study of the City of Catania (Italy), Soil Dynam. Earthq. Eng., 88, 307–327, 2016a.
Castelli, F., Cavallaro, A., Grasso, S., and Ferraro, A.: In situ and
laboratory tests for site response analysis in the ancient city of Noto (Italy), in: Proceedings of the 1st IMEKO TC4 International Workshop on
Metrology for Geotechnics, Benevento, Italy, 17–18, 2016.
Cavallaro, A., Ferraro, A., Grasso, S., and Maugeri, M.: Site response
analysis of the Monte Po Hill in the City of Catania, AIP Conference
Proceedings, 2008, 240-251,
Cavallaro, A., Ferraro, A., Grasso, S., and Maugeri, M.: Topographic effects
on the Monte Po hill in Catania (Italy), Soil Dynam. Earthq. Eng., 43, 97–113, 2012.
Cavallaro, A., Capilleri, P., and Grasso, S.: Site characterization by dynamic in situ and laboratory tests for liquefaction potential evaluation
during Emilia Romagna earthquake, Geosciences, 8, 242, 2018.
CEN European Committee for Standardisation: Eurocode 8. Design Provisions for Earthquake Resistance of Structures – Part 5: Foundations, Retaining Structures and Geotechnical Aspects, ENV 1998-5, Brussels, 1994.
Cheng, E. W. L. and Li, H.: Construction partnering process and associated
critical success factors: quantitative investigation, J. Manage. Eng., 18, 194–202, 2002.
Congalton, R. G. and Green, K.: Assessing the accuracy of remotely sensed data: principles and practices, CRC Press, Taylor & Francis Group, Boca Raton, 2008.
Congalton, R. G. and Green, K.: Assessing the Accuracy of Remotely Sensed Data: Principles and Practices, CRC Press, Boca Raton, FL, USA, 2009.
Cornell, C. A.: Engineering seismic risk analysis, Bull. Seismol. Soc. Am., 58, 1583–1606, 1968.
Czaplewski, R. L.: Misclassification bias in areal estimates, Photogram. Eng. Remote Sens., 58, 189–192, 1992.
Demicco, R. V., and Klir, G. J.: Fuzzy logic in geology, Elsevier Academic Press, Amsterdam, Boston, 347 pp., 2003.
Ding, Z., Chen, Y., and Panza, G.: Estimation of site effects in Beijing City, Pure Appl. Geophys., 161, 1107–1123, 2004.
Dobry, R., Borcherdt, R. D., Crouse, C. B., Idriss, I. M., Joyner, W. B.,
Martin, G. R., Power, M. S., Rinne, E. E., and Seed, R. B.: New site
coefficients and site classification system used in recent building seismic
code provisions, Earthq. Spectra, 16, 41–67, 2000.
Drobne, S. and Lisec, A.: Multi-attribute Decision Analysis in GIS: Weighted Linear Combination and Ordered Weighted Averaging, Informatica (Slovenia), 33, 459–474, 2009.
Fäh, D., Rüttener, E., Noack, T., and Kruspan, P.: Microzonation of
the city of Basel, J. Seismol., 1, 87–102, https://doi.org/10.1023/a:1009774423900, 1997.
FEMA – Federal Emergency Management Agency: Multi-hazard Loss Estimation
Methodology, Earthquake Model, HAZUS® MH MR5, User Manual, FEMA, Washington, D.C., 2014.
Figueira, J., Mousseau, V., and Roy, B.: ELECTRE methods, in: Multiple criteria decision analysis: State of the art surveys, Springer Science & Business Media, 133–153, 2005.
Fraume, M., Cristina, M., Carreño Tibaduiza, M. L., Cardona Arboleda, O.
D., Ordaz Schroeder, M. G., and Barbat Barbat, H. A.: Probabilistic earthquake risk assessment of Barcelona using CAPRA, in: Second European
Conference on Earthquake Engineering and Seismology, 24–29 August 2014, Istanbul, Turkey, 1–3, 2014.
Geli, L., Bard, P.-Y., and Jullien, B.: The effect of topography on earthquake ground motion: a review and new results, Bull. Seismol. Soc. Am., 78, 42–63, 1988.
GEM – Global Earthquake Model: The OpenQuake-engine User Manual, Global
Earthquake Model (GEM) Technical Report 2017-02, GEM Foundation, 193 pp., 2017.
Geological Survey of Iran: Geological Map of Iran, 1:100 000 Series, Sheet 7648, Bam, Iran, 1993.
Grelle, G., Bonito, L., Revellino, P., Guerriero, L., and Guadagno, F. M.: A hybrid model for mapping simplified seismic response via a GIS-metamodel approach, Nat. Hazards Earth Syst. Sci., 14, 1703–1718, https://doi.org/10.5194/nhess-14-1703-2014, 2014.
Grelle, G., Bonito, L., Lampasi, A., Revellino, P., Guerriero, L., Sappa, G., and Guadagno, F. M.: SiSeRHMap v1.0: a simulator for mapped seismic response using a hybrid model, Geosci. Model Dev., 9, 1567–1596, https://doi.org/10.5194/gmd-9-1567-2016, 2016.
Hassanzadeh, R. and Nedovic-Budic, Z.: Where to go first: prioritization of
damaged areas for allocation of Urban Search and Rescue (USAR) operations (PI-USAR model), Geomat. Nat. Hazards Risk, 7, 1337–1366,
https://doi.org/10.1080/19475705.2015.1058861, 2016.
Hassanzadeh, R., Nedović- Budić, Z., Alavi Razavi, A., Norouzzadeh, M., and Hodhodkian, H.: Interactive approach for GIS-based earthquake scenario development and resource estimation (Karmania hazard model), Int. J. Comput. Geosci., 51, 324–338, https://doi.org/10.1016/j.cageo.2012.08.016, 2013.
Hinlopen, E., Nijkamp, P., and Rietveld, P.: Qualitative discrete multiple
criteria choice models in regional planning, Reg. Sci. Urban Econ., 13, 77–102, 1983.
Hisada, Y., Shibayama, A., and Ghayamghamian, M. R.: Building damage and
seismic intensity in Bam city from the 2003 Iran, Bam, earthquake, Bull.
Earthquake Res. Inst., Univ. Tokyo, Tokyo, 81–94, 2005.
Hoek, E. and Brown, E. T.: Practical estimates of rock mass strength, Int. J. Rock Mech. Min. Sci., 34, 1165–1186, 1997.
Iguchi, Y. and Tainosho, Y.: Characteristics of distribution of groundwater
level in the seismic damaged zone in eastern part of Kobe city due to the
1995 Hyogo-Ken Nanbu Earthquake, Bull. Facult. Human Dev., 5, 403–415, 1998.
Jafari, M. K., Ghayamghamian, M. R., Davoodi, M., Kamalian, M., and
Sohrabi-Bidar, A.: Site Effects of the 2003 Bam, Iran, Earthquake, Earthq. Spectra, 21, 125–136, https://doi.org/10.1193/1.2098266, 2005.
Jamieson, S.: Likert Scales: How to (Ab)use Them, Med. Educ., 38, 1217–1218, 2004.
Keeney, R. L. and Raiffa, H.: Decisions with multiple objectives: preferences and value trade-offs, Cambridge University Press, Cambridge, 993.
Klir, G. J.: Chapter 2 – Fuzzy Logic: A Specialized Tutorial, in: Fuzzy
Logic in Geology, Academic Press, Burlington, 11–61, 2004.
Lam, K. and Zhao, X.: An application of quality function deployment to improve the quality of teaching, Int. J. Qual. Reliab. Manage., 15, 389–413, 1998.
LashkariPour, G. R., Sadegh, H., and Sevizi, Z.: Comparison of predominant
frequency of Bam city using seismic facies and ratio of H∕V of foreshocks
earthquakes, in: 10th Symposium of Geological Society of Iran, 4–6 August 2006, Tehran, Iran, 2006.
Lee, S.-J., Komatitsch, D., Huang, B.-S., and Tromp, J.: Effects of topography on seismic-wave propagation: An example from northern Taiwan, Bull. Seismol. Soc. Am., 99, 314–325, 2009.
Likert, R.: A Technique for the Measurement of Attitudes, Arch. Psychol., 140, 44–53, 1932.
Malczewski, J.: GIS and Multicriteria Decision Analysis, John Wiley and
Sons, New York, 1999.
Malczewski, J.: A GIS-based multicriteria decision analysis: A survey of the
literature, Int. J. Geogr. Inform. Sci., 20, 703–726, 2006.
Mancini, I. M., Masi, S., Caniani, D., and Lioi, D. S.: Fuzzy logic and
neuro-fuzzy networks for environmental hazard assessment, in: Fuzzy
Logic-Emerging Technologies and Applications, InTech, IntechOpen, London, 2012.
Marie Nolte, E.: Earthquake risk map development using GIS and optical
satellite imagery: case study for rural areas on Java, Indonesia, Center for
Disaster Management and Risk Reduction Technology Projektbericht Hertz,
Karlsruhe, 112 pp., 2010.
Marinos, P., Marinos, V., and Hoek, E.: Geological Strength Index (GSI). A
characterization tool for assessing engineering properties for rock masses,
Underground works under special conditions, Taylor and Francis, Lisbon, 13–21, 2007.
Marulanda, M., Carreño, M., Cardona, O., and Barbat, A.: Probabilistic
assessment of seismic risk of Barcelona, Spain, using the CAPRA platform,
Buletinul Institutului Politehnic din lasi, Sectia Constructii, Arhitectura,
58, 8–25, 2012.
MERM: Microzonation Manual, World Institute for Disaster Risk Management,
Turkey, 2003.
Michel, C., Fäh, D., Edwards, B., and Cauzzi, C.: Site amplification at
the city scale in Basel (Switzerland) from geophysical site characterization
and spectral modelling of recorded earthquakes, Phys. Chem. Earth A/B/C, 98, 27–40, 2017.
Mohanty, W. K. and Walling, M. Y.: First Order Seismic Microzonation of Haldia, Bengal Basin (India) Using a GIS Platform, Pure Appl. Geophys., 165,
1325–1350, https://doi.org/10.1007/s00024-008-0360-6, 2008.
Mohanty, W. K., Walling, M. Y., Nath, S. K., and Pal, I.: First Order Seismic Microzonation of Delhi, India Using Geographic Information System (GIS), Nat. Hazards, 40, 245–260, https://doi.org/10.1007/s11069-006-0011-0, 2007.
Molina, S., Lang, D. H., and Lindholm, C. D.: SELENA – An open-source tool
for seismic risk and loss assessment using a logic tree computation procedure, Comput. Geosci., 36, 257–269, https://doi.org/10.1016/j.cageo.2009.07.006, 2010.
Monaco, P., Totani, G., Barla, G., Cavallaro, A., Costanzo, A., d'Onofrio, A., Evangelista, L., Foti, S., Grasso, S., and Lanzo, G.: Geotechnical
aspects of the L'Aquila earthquake, in: Special topics in earthquake
geotechnical engineering, Springer Netherlands, 66 pp., 2012.
Moro, M., Saroli, M., Salvi, S., Stramondo, S., and Doumaz, F.: The relationship between seismic deformation and deep-seated gravitational
movements during the 1997 Umbria–Marche (Central Italy) earthquakes,
Geomorphology, 89, 297–307, 2007.
Motamed, R., Ghalandarzadeh, A., Tawhata, I., and Tabatabaei, S. H.: Seismic
Microzonation and Damage Assessment of Bam City, Southeastern Iran, J. Earthq. Eng., 11, 110–132, https://doi.org/10.1080/13632460601123164, 2007.
Moustafa, S. S. R., Al-Arifi, N., Jafri, M. K., Naeem, M., Alawadi, E. A., and A. Metwaly, M.: First level seismic microzonation map of Al-Madinah
province, western Saudi Arabia using the geographic information system
approach, Environ. Earth Sci., 75, 251, https://doi.org/10.1007/s12665-015-5073-4, 2016.
Mundepi, A., Galiana-Merino, J., and Lindholm, C.: Soil characteristics and
site effect assessment in the city of Delhi (India) using H∕V and f−k methods, Soil Dynam. Earthq. Eng., 30, 591–599, 2010.
Nath, S. K. and Thingbaijam, K. K. S.: Seismic hazard assessment – a holistic microzonation approach, Nat. Hazards Earth Syst. Sci., 9, 1445–1459, https://doi.org/10.5194/nhess-9-1445-2009, 2009.
NCCI – National Cartographic Center of Iran: Report on the Bam earthquake,
Tehran, 98 pp., 2003.
NDMA – National Disaster Management Authority: Technical Document on Geotechnical and Geophysical Investigation for Seismic Microzonation Studies of Urban Centers in India, National Disaster Management Authority (NDMA), Bhawan, Safdarjung Enclave, New Delhi, 123 pp., 2011.
Noack, T. and Fah, D.: Earthquake Microzonation: site effects and local geology; A case study for the Kanton of Basel-Stadt, ETH Hönggerberg, Hönggerberg, 19 pp., 2001.
Novák, V., Perfilieva, I., and Mockor, J.: Mathematical principles of
fuzzy logic, Springer Science & Business Media, Germany, 2012.
Nwe, Z. Z. and Tun, K. T.: Seismic Hazard Analysis using AHP-GIS, Int.
J. Res. Chem. Metallurg. Civ. Eng., 3, 1442–1450, 2016.
O'Sullivan, D. and Unwin, D. J.: Putting Maps Together – Map Overlay, in:
Geographic Information Analysis, John Wiley & Sons, Inc., New Jersey, USA, 315–340, 2010.
Panza, G. F., La Mura, C., Peresan, A., Romanelli, F., and Vaccari, F.: Chapter three-seismic hazard scenarios as preventive tools for a disaster
resilient society, Adv. Geophys., 53, 93–165, 2012.
Paolucci, R.: Amplification of earthquake ground motion by steep topographic
irregularities, Earthq. Eng. Struct. Dynam., 31, 1831–1853, https://doi.org/10.1002/eqe.192, 2002.
Petersen, M. D., Mueller, C. S., Moschetti, M. P., Hoover, S. M., Llenos, A.
L., Ellsworth, W. L., Michael, A. J., Rubinstein, J. L., McGarr, A. F., and
Rukstales, K. S.: Seismic-Hazard Forecast for 2016 Including Induced and
Natural Earthquakes in the Central and Eastern United States, Seismol. Res. Lett., 87, 1327–1341, 2016.
Phoon, K., Nadim, F., Uzielli, M., and Lacasse, S.: Soil variability analysis for geotechnical practice, in: Characterisation and Engineering Properties of Natural Soils, Taylor & Francis, London, 2006.
Ramazi, H. and Jigheh, H. S.: The Bam (Iran) Earthquake of December 26,
2003: From an engineering and seismological point of view, J. Asian Earth Sci., 27, 576–584, 2006.
Rehman, F., El-Hady, S. M., Atef, A., and Harbi, H. M.: Probablistic Seismic Hazard Assessment Methodelogy And Site Response Analysis Application To Seismic Microzonation, Sci. Int., 28, 2593–2606, 2016.
Rezaei, K., Guest, B., Friedrich, A., Fayazi, F., Nakhaei, M., Beitollahi, A., and Fatemi Aghda, S.: Feed forward neural network and interpolation
function models to predict the soil and subsurface sediments distribution in
Bam, Iran, Acta Geophys., 57, 271–293, https://doi.org/10.2478/s11600-008-0073-3, 2009.
Rinner, C. and Malczewski, J.: Web-enabled spatial decision analysis using
ordered weighted averaging, J. Geogr. Syst., 4, 385–403, 2002.
Roy, B.: Multicriteria methodology for decision aiding, Kluwer Academic
Publishers, Dordrecht, 1996.
Saaty, T. L.: The Analytic Hierarchy Process: planning, priority setting,
resource allocation, McGraw-Hill International, USA, 1980.
Saaty, T. L.: An Exposition of the AHP in Reply to the Paper “Remarks on
the Analytic Hierarchy Process”, Manage. Sci., 36, 259–268,
https://doi.org/10.1287/mnsc.36.3.259, 1990.
Sabetta, F. and Bommer, J.: Modification of the spectral shapes and subsoil
conditions in Eurocode 8, in: 12th European Conference on Earthquake
Engineering, London, UK, 2002.
Sen, Z.: Rapid visual earthquake hazard evaluation of existing buildings by
fuzzy logic modeling, Expert Syst. Appl., 37, 5653–5660, 2010.
Sim, J. and Wright, C. C.: The kappa statistic in reliability studies: use,
interpretation, and sample size requirements, Phys. Therapy, 85, 257–268,
2005.
Sitharam, T. G. and Anbazhagan, P.: Seismic microzonation: principles, practices and experiments, in: EJGE Special Volume Bouquet, Elect. J. Geotech. Eng., 8, 1–61, 2008.
SM Working Group: Guidelines for Seismic Microzonation, Civil Protection
Department and Conference of Regions and Autonomous Provinces of Italy,
Civil Protection Department, Rome, 2015.
Stewart, J.: Key Geotechnical Aspects of the 1989 Loma Prieta Earthquake,
National Information Service for Earthquake Engineering, University of
California, Berkeley, California, 1997.
Talebian, M., Fielding, E. J., Funning, G. J., Ghorashi, M., Jackson, J.,
Nazari, H., Parsons, B., Priestley, K., Rosen, P. A., Walker, R., and Wright, T. J.: The 2003 Bam (Iran) earthquake: Rupture of a blind strike-slip fault, Geophys. Res. Lett., 31, L11611, https://doi.org/10.1029/2004gl020058, 2004.
Tang, A. K.: Izmit (Kocaeli), Turkey, Earthquake of August 17, 1999
Including Duzce Earthquake of November 12, 1999: Lifeline Performance, ASCE
Publications, American Society of Civil Engineers, Reston, VA, 2000.
Teramo, A., Termini, D., Marullo, A., and Marino, A.: Fuzzy interpolators
for a quick seismic microzonation, CIMSA, in: 2005 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications, 20–22 July 2005, Sicily, Italy, 107–108, 2005.
Tinsley, J. C., Youd, T. L., Perkins, D. M., and Chen, A. T. F.: Evaluating liquefaction potential, in: Evaluating Earthquake Hazards in the Los Angeles Region – An Earth-Science Perspective, US Geological Survey Professional Paper 1360, USGS, USA, 263–315, 1985.
Trifunac, M. D.: Site conditions and earthquake ground motion – A review,
Soil Dynam. Earthq. Eng., 90, 88–100, https://doi.org/10.1016/j.soildyn.2016.08.003, 2016.
Voogd, H.: Multicriteria Evaluation for Urban and Regional Planning, Pion, Ltd, London, 1983.
Wald, D. J.: Slip history of the 1995 Kobe, Japan, earthquake determined from strong motion, teleseismic, and geodetic data, J. Phys. Earth, 44, 489–503, 1996.
Wang, Z., Carpenter, N. S., and Zhang, L.: Assessing Potential Seismic Hazards from Induced Earthquakes in the Central and Eastern United States,
in: AAPG Eastern Section Meeting, 25–27 September 2016, Lexington, Kentucky, 2016.
Wang, Z., Carpenter, N. S., Zhang, L., and Woolery, E. W.: Assessing Potential Ground-Motion Hazards from Induced Earthquakes, Nat. Hazards Rev., 18, 04017018, https://doi.org/10.1061/(ASCE)NH.1527-6996.0000264, 2017.
Yager, R. R.: On ordered weighted averaging aggregation operators in
multi-criteria decision making, IEEE T. Syst. Man Cybernet. B, 18, 183–190, 1988.
Zadeh, L. A.: Fuzzy sets, Inform. Control, 8, 338–353, 1965.
Zadeh, L. A.: Fuzzy logic and approximate reasoning, Synthese, 30, 407–428,
1975.
Zhu, X. and Dale, A. P.: JavaAHP: a Web-based decision analysis tool for
natural resource and environmental management, Environ. Model. Softw., 16, 251–262, 2001.
Short summary
This paper proposes a new model for evaluating local seismic amplification susceptibility by considering direct characteristics of influencing criteria and dealing with uncertainty of modelling through production of fuzzy membership functions and GIS. This model helps planners and decision makers easily produce local seismic amplification susceptibility to be incorporated in designing development plans of urban areas and to evaluate safety measures of existing infrastructure.
This paper proposes a new model for evaluating local seismic amplification susceptibility by...
Altmetrics
Final-revised paper
Preprint