Articles | Volume 17, issue 11
https://doi.org/10.5194/nhess-17-1939-2017
https://doi.org/10.5194/nhess-17-1939-2017
Brief communication
 | 
15 Nov 2017
Brief communication |  | 15 Nov 2017

Brief communication: Vehicle routing problem and UAV application in the post-earthquake scenario

Marco Cannioto, Antonino D'Alessandro, Giosuè Lo Bosco, Salvatore Scudero, and Giovanni Vitale

Related authors

Automated Detection of Recent Mud Extrusions Using UAV Imagery and Deep Learning: A Comparative Analysis of Traditional and CNN-Based Approaches
Massimiliano Guastella, Antonino Pisciotta, Raffaele Martorana, and Antonino D’Alessandro
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-M-7-2025, 169–179, https://doi.org/10.5194/isprs-archives-XLVIII-M-7-2025-169-2025,https://doi.org/10.5194/isprs-archives-XLVIII-M-7-2025-169-2025, 2025
The mud volcanoes at Santa Barbara and Aragona (Sicily, Italy): a contribution to risk assessment
Alessandro Gattuso, Francesco Italiano, Giorgio Capasso, Antonino D'Alessandro, Fausto Grassa, Antonino Fabio Pisciotta, and Davide Romano
Nat. Hazards Earth Syst. Sci., 21, 3407–3419, https://doi.org/10.5194/nhess-21-3407-2021,https://doi.org/10.5194/nhess-21-3407-2021, 2021
Short summary
Retrieval of Ocean Bottom and Downhole Seismic sensors orientation using integrated MEMS gyroscope and direct rotation measurements
A. D'Alessandro and G. D'Anna
Adv. Geosci., 40, 11–17, https://doi.org/10.5194/adgeo-40-11-2014,https://doi.org/10.5194/adgeo-40-11-2014, 2014
Urban MEMS based seismic network for post-earthquakes rapid disaster assessment
A. D'Alessandro, D. Luzio, and G. D'Anna
Adv. Geosci., 40, 1–9, https://doi.org/10.5194/adgeo-40-1-2014,https://doi.org/10.5194/adgeo-40-1-2014, 2014
Integration of onshore and offshore seismic arrays to study the seismicity of the Calabrian Region: a two steps automatic procedure for the identification of the best stations geometry
A. D'Alessandro, I. Guerra, G. D'Anna, A. Gervasi, P. Harabaglia, D. Luzio, and G. Stellato
Adv. Geosci., 36, 69–75, https://doi.org/10.5194/adgeo-36-69-2014,https://doi.org/10.5194/adgeo-36-69-2014, 2014

Related subject area

Databases, GIS, Remote Sensing, Early Warning Systems and Monitoring Technologies
Prediction of the volume of shallow landslides due to rainfall using data-driven models
Jérémie Tuganishuri, Chan-Young Yune, Gihong Kim, Seung Woo Lee, Manik Das Adhikari, and Sang-Guk Yum
Nat. Hazards Earth Syst. Sci., 25, 1481–1499, https://doi.org/10.5194/nhess-25-1481-2025,https://doi.org/10.5194/nhess-25-1481-2025, 2025
Short summary
Monitoring snow depth variations in an avalanche release area using low-cost lidar and optical sensors
Pia Ruttner, Annelies Voordendag, Thierry Hartmann, Julia Glaus, Andreas Wieser, and Yves Bühler
Nat. Hazards Earth Syst. Sci., 25, 1315–1330, https://doi.org/10.5194/nhess-25-1315-2025,https://doi.org/10.5194/nhess-25-1315-2025, 2025
Short summary
Satellite-based data for agricultural index insurance: a systematic quantitative literature review
Thuy T. Nguyen, Shahbaz Mushtaq, Jarrod Kath, Thong Nguyen-Huy, and Louis Reymondin
Nat. Hazards Earth Syst. Sci., 25, 913–927, https://doi.org/10.5194/nhess-25-913-2025,https://doi.org/10.5194/nhess-25-913-2025, 2025
Short summary
A methodology to compile multi-hazard interrelationships in a data-scarce setting: an application to the Kathmandu Valley, Nepal
Harriet E. Thompson, Joel C. Gill, Robert Šakić Trogrlić, Faith E. Taylor, and Bruce D. Malamud
Nat. Hazards Earth Syst. Sci., 25, 353–381, https://doi.org/10.5194/nhess-25-353-2025,https://doi.org/10.5194/nhess-25-353-2025, 2025
Short summary
An automated approach for developing geohazard inventories using news: Integrating NLP, machine learning, and mapping
Aydoğan Avcıoğlu, Ogün Demir, and Tolga Görüm
EGUsphere, https://doi.org/10.5194/egusphere-2025-7,https://doi.org/10.5194/egusphere-2025-7, 2025
Short summary

Cited articles

Agatz, N., Bouman, P., and Schmidt, M.: Optimization Approaches for the Traveling Salesman Problem with Drone, ERIM Report Series Reference No. ERS-2015-011-LIS, SSRN: available at: https://ssrn.com/abstract=2639672 or https://doi.org/10.2139/ssrn.2639672, 2016.
Azzaro, R., Barbano, M. S., Antichi, B., and Rigano, R.: Catalogo macrosismico dei terremoti etnei dal 1832 al 1998, Acta Vulcanol., 122, 3–36, 2000.
Chou, T. Y., Yeh, M. L., Chen, Y. C., and Chen, Y. H.: Disaster monitoring and management by the unmanned aerial vehicle technology, in: ISPRS TC VII Symposium – 100 Years ISPRS, edited by: Wagner, W. and Szekely, B., Vienna, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 137–142. 2010.
D'Alessandro, A.: Monitoring of earthquakes using MEMS sensors, Current Science, 107, 733–734, 2014.
D'Alessandro, A.: Drones: New tools for natural risk mitigation and disaster response, Current Science, 110, 958–959, 2016a.
Download
Short summary
Immediately after an earthquake it is crucial to perform the fastest recognition of the damaged area to rescue as much people is possible and to assess and map the damage scenario. We apply the vehicle routing problem (VRP) to a fleet of unmanned aerial vehicles (UAVs) to find the shortest routes and the best take-off sites. The simulation, performed with different autonomy ranges, is carried out in the town of Acireale (Italy), where a real-time accelerometric network has been installed.
Share
Altmetrics
Final-revised paper
Preprint