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Abstract. In this paper we simulate unmanned aerial vehicle
(UAV) recognition after a possible case of diffuse damage
after a seismic event in the town of Acireale (Sicily, Italy).
Given a set of sites (84 relevant buildings) and the range of
the UAV, we are able to find a number of vehicles to em-
ploy and the shortest survey path. The problem of finding the
shortest survey path is an operational research problem called
the vehicle routing problem (VRP). which has a solution that
is known to be computationally time-consuming. We used
the simulated annealing (SA) heuristic, which is able to pro-
vide stable solutions in a relatively short computing time. We
also examined the distribution of the cost of the solutions
varying the depot on a regular grid in order to find the best
area for executing the survey.

1 Introduction

In the very last decade some strong earthquakes struck
central Italy (L’ Aquila, 2009; Emilia, 2012; and Amatrice,
2016), causing relevant social and economical consequences
(Moretti et al., 2016). In the immediate aftermath of the event
it is crucial to perform the fastest possible recognition of the
damaged area in order to rescue as many people as possible
and to assess and map the damage scenario.

At the same time, in the last decade, the unmanned aerial
vehicle (UAV) greatly diffused because of its versatility
(D’ Alessandro et al., 2015; Gomez and Purdie, 2016): UAVs
are able to self-navigate to complete a programmed mission
or can be remotely controlled and prompted to perform tasks,

because they have no obstacles, unlike other ground vehi-
cle. For all these features UAVs are becoming the safest,
fastest and most reliable means of carrying out observations,
surveys and mapping in various types of emergency impli-
cating large inaccessible areas (Griffin, 2004; Chou et al.,
2010; Obanawa et al., 2014; Giordan et al., 2015, 2017;
D’ Alessandro, 2016a; Dominici et al., 2017; Jurecka and
Niedzielski, 2016; Silvagni et al., 2016). Readiness and reli-
ability are key aspects in the post-earthquake scenario, when
the first problem is to detect the hotspots: the areas where
threatened people needing assistance or rescue are supposed
to be and the areas where the key infrastructures (e.g. hos-
pitals, schools) are. UAV recognitions are also essential to
finding accessible and safe routes for the rescue vehicles.
The tasks that the UAV (or a group of UAVs) has to ac-
complish should be optimized to avoid wasting time and re-
sources. Moreover, in emergency scenarios, some questions
arise: how many UAVs should be employed? What will the
autonomy be? How long will the survey take? Where is the
best take-off place? What is the best route for every UAV
in order to minimize the travel distance and the surveying
time? To solve all these questions we will apply the concepts
of the vehicle routing problem (VRP) to the UAV in a pos-
sible real scenario (Agatz et al., 2016; Golden et al., 2008;
Wang et al., 2017; Yu et al., 2017). In the case study we do
not have to consider the capacity of transport, since the UAVs
will not carry any goods; they will just have a survey task and
have to visit each site (given its geographical coordinates) as
quickly as possible, taking into account their own autonomy,
and return back to the depot: this VRP approach is “distance-
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constrained” (DVRP), which means that the main task is to
minimize the total length of the routes.

Our case study is the town of Acireale (Sicily, Italy) where
more than 52 000 people live. The city is located along the
eastern coast of Sicily, just on the flank of the Mt Etna vol-
cano. During historic times the town of Acireale experienced
severe damages, deaths and even almost complete destruc-
tion after several strong earthquakes (Azzaro et al., 2000;
Rovida et al., 2016), and according to the Italian seismic
hazard map it is among the areas where the highest peak
ground accelerations (up to 0.25 g) are expected (Ordinanza
PCM, 2006). For these reasons, a pilot urban dense seis-
mic network realized with Micro Electro-Mechanical Sys-
tems (MEMS) sensors is being installed in the town for early
warning purposes and rapid damage assessment after strong
seismic events (D’Alessandro, 2014, 2016b; D’ Alessandro
et al.,, 2014). MEMS accelerometers are deployed in the
most vulnerable buildings such as hospitals, schools and all
the facilities devoted to public security (D’Alessandro and
D’ Anna, 2003). In this paper we will test a routing algorithm
in order to find the best solutions for a complete recognition
of the 84 selected sites within the town of Acireale.

2 Methods and materials

The specific problem we want to solve belongs to the cate-
gory of operational research problems known as vehicle rout-
ing problems (VRPs). The VRP is a combinatorial optimiza-
tion and integers programming problem that generalizes the
travelling salesman problem (TSP). From a computational
point of view, the solution to this problem is informally iden-
tified as NP-hard (Garey and Johnson, 1990), i.e. an exhaus-
tive solution to the problem that can be performed in poly-
nomial time is not known. Due to such computational limita-
tions, we have decided to provide a solution by an incomplete
method for optimization called simulated annealing (SA).
This method has been chosen after being tested against the
genetic algorithm (GA). GA is another metaheuristic but in-
spired by the process of natural selection and is commonly
used to compute high-quality solutions to optimization and
search problems (Michalewicz, 1996). The implementation
of the GA we have used adopts the same representation (per-
mutations) and cost function of the SA, a binary tournament
selection process, a mutation which simply switches two el-
ements in the solution and a crossover operator that is usu-
ally used in the GA implementation of routing algorithms,
such as the traveller salesman problem. The GA was tested
using three different crossover methods (Davis, 1985; Gold-
berg and Linge, 1985; Oliver et al., 1987), each with a differ-
ent probability and a different mutation probability. A com-
parison between the two methods, SA and GA, showed that
the overall performances of the GA were clearly inferior. The
average computational time for the GA is more than double
with respect the time for the SA, and the costs of the solu-

Nat. Hazards Earth Syst. Sci., 17, 1939-1946, 2017

tions are systematically higher. SA is faster at exploring the
solutions space, because the GA suffers from always carry-
ing a more larger population of solutions. Therefore we chose
only the SA that is described here in detail, whereas GA is
not discussed here.

2.1 The simulated annealing for optimization problem
solution

The simulated annealing (SA) method is based on the anal-
ogy with the so-called annealing process i.e. the process con-
sisting of heating up and subsequently cooling down a solid
that consequently freezes into a minimum energy structure.
Kirkpatrick et al. (1983) introduced the method as an opti-
mization technique for combinatorial problems, but it takes
inspiration from later works by Metropolis et al. (1953) and
Pincus (1970). The annealing process starts providing high
temperatures to the solid. The effect is that the atoms of the
solid assume high-energy states so that they are more able
to arrange themselves. This atomic energy reduces while the
temperature is reduced until a minimum of energy state is
reached where the solid reaches the crystal structure. During
the whole cooling process, it is really important to apply a
slow cooling: a very quick one does not involve a minimum
energy state of the solid, and some kind of irregularity and
defects appear suddenly in the crystal structure.

In the case of thermal equilibrium at a temperature 7', the
Boltzmann distribution gives the probability P (7,s) that the
system is in a given configuration:

o—E®)/kT

> cs¢ B@/RT

where E(s) is the energy of the configuration, k is the Boltz-
mann’s constant and S indicates the set of all possible con-
figurations. A system of particles in thermal equilibrium at a
given temperature 7' can be simulated using a technique de-
veloped by Metropolis et al. (1953). Suppose at time 7, the
system is in configuration ¢, and a new candidate configura-
tion r is generated randomly at time ¢+ 1. The configuration
r is accepted or rejected according to the ratio p between the
probabilities of being in r and in g:

P(Ts) = (1)

p= P _ e~ (EM—E@)/kT @)
P(T,q)

In particular, if p>1 (E(r) < E(q)), then r is accepted as the
new configuration attime t+ 1. If p<=1(E () > E(q)), r is
accepted as the new configuration with probability p. In this
process configurations with higher energy can be achieved.
Moreover, it has been shown that as time ¢+ — oo, the proba-
bility that the system is in a given configuration s is P(7,s),
regardless of the starting configuration.

When dealing with a generic global optimization problem,
the analogy is done by considering the states of the solid
S as the feasible space and the energy of the states E(s)
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as the objective optimization function. The solution of the
problem is the minimum energy state. The SA algorithm is
iterative and it uses the relaxation technique by Metropolis
described above as a strategy for finding the solution. The
implementation of the SA algorithm for the solution of a
specific optimization problem, involves the following funda-
mental choices:

i. Representation of the solution space: by mapping S —
R of the feasible space S of the optimization problem
onto a new space R, a new representation of the solution
is provided.

ii. Cost function: the cost function C measures the quality
of a given solution.

iii. Transition mechanism: to move from one state to the
next, a transition mechanism P that slightly modifies
the current solution is needed.

iv. Cooling schedule: the temperature at initial state, the
temperature-updating rule and the number of iterations
to be carried out at each step of the cooling are funda-
mental for the cooling process of simulated annealing.
A stopping criterion for the termination of the search
process is needed.

SA’s major advantage over other incomplete methods is the
ability to avoid becoming trapped in local minima. The al-
gorithm adopts a particular random search which accepts
changes that can locally improve or worsen the optimiza-
tion function. It can be shown that, for any given finite prob-
lem, the probability that the simulated annealing algorithm
terminates with the global optimal solution approaches 1 as
the annealing schedule is extended. This theoretical result is,
however, not particularly helpful, since the annealing time
required to ensure a significant probability of success will
usually exceed the time required for a complete search of the
solution space.

In order to implement the SA solution for the VRP, we rep-
resent the solutions by permutations of / + J — 2 elements
where [ indicates the number of sites and J the number
of UAVs. This representation is such that all the indices k&
of s verifying s (k) > I — 1 delimitate L (j)j =1,.., J sub-
set of indices in s, which represent the routes of the j-th
UAV. Taking into consideration that each UAV must take off
and land from the same depot d, the final route of the j-th
UAV will be {d, L (j),d}. This representation takes inspira-
tion from the SA matlab implementation of VRP provided
at http://www.yarpiz.com and freely available to download.
The starting solution is set as a random permutation, and at
each iteration of the algorithm the maximum distance MD
run by the UAVs and their total distance TD are computed.
Note that it can occur that the algorithm sets a solution that
assigns a route to an UAV whose total distance is greater than
its autonomy. To avoid this situation, the binary vector of the
feasible UAVs is computed so that F (j) = 0 means that the
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drone j could not complete its route. Finally the cost of a
solution is defined:

TD +9-MD
C=(+—

0 )‘(1+5'M(F)), 3)

where w (F) is the mean of the values in F. The goal of the
SA algorithm is to minimize the function C. The adopted
transition mechanisms consist of adopting one of these oper-
ations, chosen at random:

i. Swap: swap two elements in s at random positions i and
J-

ii. Reversion: reverse the entire content of the vector s
bounded by two random indices i and ;.

iii. Move: move a random elements (i) into a random posi-
tion j

The transition mechanism is applied m times in order to find
a set N (s) that contains m neighbours of a solution s. Among
them, the best one in terms of minimum cost is selected as
the new solution. The initial temperature has been set to 100.
At each iteration the temperature is updated following the
rule Tyew = 0.98-T. The maximum number of iterations have
been set to 1000. All these parameters, together with the in-
teger values in the cost function C, have been chosen after a
trial and error phase.

2.2 The mission and the vehicle

The main objective of the mission is to survey the poten-
tially damaged area as fast as possible immediately after
the earthquake in order to verify the state of damage of the
buildings. The adopted method is able to find the best sur-
veying solutions for a set of sites (given their geographical
coordinates), identify the best depot for the UAVs and min-
imize the number of vehicles. The surveying sites are the
nodes of the accelerometric network installed in the town
of Acireale (Sicily, Italy) and some other noteworthy build-
ings (D’ Alessandro, 2016b), for a total of 84 sites (Fig. 1).
The damage assessment at every site is assessed at first by
means of the accelerometric sensors installed at each site
(D’ Alessandro et al., 2017) and is then precisely verified by
the UAV’s survey. The pictures taken during the recognition
will allow a rapid image comparison between the archived
images data set and the observed scenario.

In this case study some assumptions are necessary. First,
we do not intend to perform photogrammetric images for 3-D
reconstruction and damage assessment of the buildings. The
execution would be obviously dependent on the size of the
buildings themselves and is a time consuming (tens-of-hours
to days) operation. Second, the surveying time over each tar-
get site can be considered equal despite the different areal
extension of the sites. At notable flying height (i.e. >50m,
the minimum ground distance for a safe survey in an urban
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Figure 1. Location map of the town of Acireale, Italy (a) and of the 84 survey sites (b).
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Figure 2. Examples of SA solutions for 6 km autonomy (a) and 30 km autonomy (b).

area), the overflight time above a site could even be neglected
considering the optical characteristics of the UAV camera.

The selected UAV is a commercial and low-cost model
called Phoenix. It is able to communicate with an operative
centre located up to 20 km away, accomplish preprogrammed
missions by bypassing eventual obstacles and executes real-
time variations of a route ordered from the operative centre.
Phoenix is equipped with a gimbal camera, visual positioning
system, micro-USB port, micro-SD slot, obstacle detection
system, LEDs, four engines, a telemetry system and other
systems able to provide information about the base-vehicle
connection and the battery charge status. The UAV is able to
reach speeds of 20 m s~! and the battery ensures an energetic
autonomy of about 30 min. Therefore, in ideal conditions it
could travel as far as 36 km.
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3 Results

For the selected UAVs the maximum considered travel dis-
tance is 30 km. However, when taking into account any pos-
sible unfavourable atmospheric phenomena, the relevant dif-
ference in elevation between some sites and a margin of
safety, we repeated the tests with progressively increasing
steps of 3km (3, 6, 9, 12, 15, 18, 21, 24, 27 and 30 km).

No solution was found for an autonomy of 3 km. For an
autonomy of 6km the solution is found with the use of
three UAVs whereas, for all the other autonomy values, the
solution considers the enrollment of two UAVs. All the so-
lutions have comparable travel distances but the estimated
best depot varies. Among the performed solutions, we show
the ones relative to the shortest and longest autonomies: 6
and 30km respectively (Fig. 2). The tested method showed
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Table 1. UAV number, cost, computing time and distances for the best SA solutions.

Autonomy UAV Cost  Computing time  Total distance ~ Average distance
number (s) (km) (km)
3 _ _ _ _ _
6 3 6.2952 31.0703 15.5446 5.1815
9 2 79211 29.1417 14.3876 7.1938
12 2 7.8579 29.0943 14.1802 7.0901
15 2 79304 29.1680 14.3926 7.1963
18 2 8.0011 29.1712 14.4301 7.216
21 2 8.0591 29.1685 14.6524 7.3162
24 2 7.7269 29.1657 14.048 7.024
27 2 8.0356 29.1776 14.6039 7.302
30 2 79703 29.2260 14.4767 7.2384
Table 2. Cost-solution varying autonomy and UAV number.
UAV number
Autonomy 2 3 4 5 6 7 8 9 10
3 — _ _ _ _ _ _ — —
6 — 6.295 5365 4942 4928 4937 4913 4798 4.908
9 7.921 6361 5359 5075 4.848 4853 4.892 4.888 4.944
12 7.858 6.3 5228 5.092 5.004 4803 4947 4.839 4.996
15 793 6277 5492 4905 4915 4924 4884 4924 4846
18 8.001 6.483 541 5.104 492 4.846 4881 4905 5.017
21 8.059 6412 5326 5.062 4963 4988 4982 4887 4.864
24 7.727 6.089 5383 5.037 4915 4834 4934 4836 4.876
27 8.036  6.267 5.299 5.059 4.831 4.898 4886 4.897 5
30 797 6281 5445 4985 4977 4935 4952 4.83 4.891

a good velocity of convergence reaching a stable solution
within about 30s for all the selected autonomies. Table 1
summarizes, for each UAV range autonomy, the number of
UAV, the cost and computing time of the solution, the dis-
tance travelled by the fleet and the average distance travelled
by every single UAV. The values of the cost, computing time
and distances are almost constant and do not show any rele-
vant dependence with a different range of autonomy, except
for the autonomy of 6 km. In this case, because a third UAV
is considered, the values of all the parameters are sensibly
out of the range of the other considered autonomies.
Immediately after an earthquake some areas will not be ac-
cessible from the ground; therefore we should also take into
account a possible set of depots for the UAVs. For this rea-
son, after the first phase, in which we calculated the best de-
pot, we executed the algorithm from all the nodes of a regular
grid. In this second phase we thus evaluated the behaviour of
the algorithm given the autonomy, varying the depot within a
10 x 10 grid (~ 8 km?) of depot superimposed onto the sur-
vey area (Fig. 1). The grid size has been chosen to have a den-
sity comparable to the survey sites. We obtained the distribu-
tion of the cost for the solution executed at every grid point
for the different considered autonomy. Furthermore, the re-
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sults are interpolated and the maps for the shortest and the
longest autonomy (i.e. 6 and 30km) are shown in Fig. 3,
where the lighter shades indicate areas where the cost is
lower (i.e. solutions are better) than areas with darker shades.
The blue circles indicate the depot where the algorithm did
not provide any solution, while among all the feasible solu-
tions represented by the red circles, the green circle indicates
the best solution (lowest cost). Solutions for all 100 nodes of
the depot grid were found with autonomies greater than 9 km
and the cost pattern is somehow comparable, since the solu-
tions with the lowest costs are located in the inner part of the
grid. However, for some values of autonomy this pattern is
not evident and a patchy map of the cost is obtained.

4 Discussion and conclusions

The SA algorithm was able to find solutions with only
two UAVs (i.e. best solutions), even though solutions up to
10 UAVs were explored. Considering a more populous UAV
fleet, the computing time needed to get a stable solution
steadily increases. Conversely, when increasing the number
of UAVs, the cost of the solution sharply decreases at the be-
ginning, and later is almost constant (Table 2).

Nat. Hazards Earth Syst. Sci., 17, 1939-1946, 2017
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Figure 3. On the left is the map of depots and sites, and on the right are the isosurfaces showing the cost of the solutions for all the depots on
the grid. The lighter the colour of an isosurface, the better the solutions that start from the enclosed depots. Examples of 6 km autonomy (a)

and 30 km autonomy (b).
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The algorithm is able to provide the best solution in terms
of number of UAVs and selection of the depot given the au-
tonomy range of the vehicle but we also took into account the
eventual impossibility of operating the survey starting from
the best depot in the post-earthquake scenario. We thus ex-
amined the spatial distribution of the cost for the solution
executed from a grid of depots (Fig. 3). Moreover, we com-
puted an interpolation of the averaged cost values of all the
solutions at the different autonomy values and for each grid
node: the pattern of the distribution is concentric and the best
solutions are around the central part of the study area (Fig. 4).
In a post-earthquake scenario, the depots from the inner part
of the town will be considered first, if exploitable, and later
the depots from the outskirt will be considered. Even though
they have greater costs, solutions from the outer depots are
valid and the UAVs taking off from these depots will be able
to accomplish their tasks.
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The SA proved to be a good method for the routing prob-
lem in terms of computing time and reliability of the solu-
tions. Our results also indicate that the selected UAV type is
suitable to perform the survey of the area and, finally, results
suggest that, under equal conditions (i.e. same UAV type an
number) it would be possible to carry out a survey over a
wider area. Therefore, the same procedure could also be op-
erational during the planned expansion for the acceleromet-
ric network in the town of Acireale. In the same way it could
be implemented in other areas in analogous post-earthquake
scenarios or in general post-emergency scenarios.
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