Articles | Volume 17, issue 9
https://doi.org/10.5194/nhess-17-1573-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue:
https://doi.org/10.5194/nhess-17-1573-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Transposing an active fault database into a seismic hazard fault model for nuclear facilities – Part 1: Building a database of potentially active faults (BDFA) for metropolitan France
IRSN, Institute of Radiological protection and Nuclear Safety, BP17, 92262 Fontenay-aux-roses CEDEX, France
Edward Marc Cushing
IRSN, Institute of Radiological protection and Nuclear Safety, BP17, 92262 Fontenay-aux-roses CEDEX, France
Luigi Palumbo
Neodyme, Joue les Tours, 37300, France
Stéphane Baize
IRSN, Institute of Radiological protection and Nuclear Safety, BP17, 92262 Fontenay-aux-roses CEDEX, France
Claire David
Neodyme, Joue les Tours, 37300, France
Thomas Chartier
IRSN, Institute of Radiological protection and Nuclear Safety, BP17, 92262 Fontenay-aux-roses CEDEX, France
now at: Département de Géosciences, Ecole Normale Supérieure, Paris, 75005, France
Related authors
Roberto Basili, Laurentiu Danciu, Céline Beauval, Karin Sesetyan, Susana Pires Vilanova, Shota Adamia, Pierre Arroucau, Jure Atanackov, Stéphane Baize, Carolina Canora, Riccardo Caputo, Michele Matteo Cosimo Carafa, Edward Marc Cushing, Susana Custódio, Mine Betul Demircioglu Tumsa, João C. Duarte, Athanassios Ganas, Julián García-Mayordomo, Laura Gómez de la Peña, Eulàlia Gràcia, Petra Jamšek Rupnik, Hervé Jomard, Vanja Kastelic, Francesco Emanuele Maesano, Raquel Martín-Banda, Sara Martínez-Loriente, Marta Neres, Hector Perea, Barbara Šket Motnikar, Mara Monica Tiberti, Nino Tsereteli, Varvara Tsironi, Roberto Vallone, Kris Vanneste, Polona Zupančič, and Domenico Giardini
Nat. Hazards Earth Syst. Sci., 24, 3945–3976, https://doi.org/10.5194/nhess-24-3945-2024, https://doi.org/10.5194/nhess-24-3945-2024, 2024
Short summary
Short summary
This study presents the European Fault-Source Model 2020 (EFSM20), a dataset of 1248 geologic crustal faults and four subduction systems, each having the necessary parameters to forecast long-term earthquake occurrences in the European continent. This dataset constituted one of the main inputs for the recently released European Seismic Hazard Model 2020, a key instrument to mitigate seismic risk in Europe. EFSM20 adopts recognized open-standard formats, and it is openly accessible and reusable.
Mathilde Banjan, Christian Crouzet, Hervé Jomard, Pierre Sabatier, David Marsan, and Erwan Messager
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-83, https://doi.org/10.5194/nhess-2024-83, 2024
Preprint under review for NHESS
Short summary
Short summary
This research shows how lake sediments reveal seismic activity history over extended periods, surpassing historical records. Sediment analysis from Lake Aiguebelette in the Western Alps found 32 layers likely caused by earthquakes over the Holocene. Robust dating methods correlated these layers with known historical earthquakes. Results suggest Lake Aiguebelette's sediment records mainly reflect local seismic events, enhancing understanding of earthquake recurrence and regional seismic history.
Oceane Foix, Stéphane Mazzotti, Hervé Jomard, Didier Bertil, and the Lesser Antilles Working Group
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-53, https://doi.org/10.5194/nhess-2024-53, 2024
Preprint under review for NHESS
Short summary
Short summary
By analyzing historical and instrumental seismic data, fault knowledge and geodetic measurements, we provide a new understanding of seismic hazard in the Lesser Antilles via seismotectonic zoning. We propose new models that can have a significant impact on seismic hazard assessment, such as the inclusion of mantle wedge seismicity, volcanic seismicity and a complete revision of the subduction interface zoning.
Vito Bacchi, Ekaterina Antoshchenkova, Hervé Jomard, Lise Bardet, Claire-Marie Duluc, Oona Scotti, and Hélène Hebert
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2018-142, https://doi.org/10.5194/nhess-2018-142, 2018
Revised manuscript not accepted
Short summary
Short summary
The objective of this paper is to present a new methodology for the analysis of the seismic induced tsunami hazard. The proposed methodology mainly relies on uncertainty quantification techniques and the construction and validation of some
emulators, or
meta-models, used instead of the original models for the construction of a numerical tsunamis database. The methodology was tested with tsunamis generated by the Azores-Gibraltar Fracture Zone and potentially impacting the French Coast.
Thomas Chartier, Oona Scotti, Christophe Clément, Hervé Jomard, and Stéphane Baize
Nat. Hazards Earth Syst. Sci., 17, 1585–1593, https://doi.org/10.5194/nhess-17-1585-2017, https://doi.org/10.5194/nhess-17-1585-2017, 2017
Short summary
Short summary
We perform a fault-based PSHA exercise in the Upper Rhine Graben to quantify the relative influence of fault parameters on the hazard at the Fessenheim nuclear power plant site. Sensitivity tests show that the
uncertainty on the slip rate of the Rhine River fault is the dominant factor controlling the variability of the seismic hazard level, greater than the epistemic uncertainty due to ground motion prediction equations (GMPEs).
Roberto Basili, Laurentiu Danciu, Céline Beauval, Karin Sesetyan, Susana Pires Vilanova, Shota Adamia, Pierre Arroucau, Jure Atanackov, Stéphane Baize, Carolina Canora, Riccardo Caputo, Michele Matteo Cosimo Carafa, Edward Marc Cushing, Susana Custódio, Mine Betul Demircioglu Tumsa, João C. Duarte, Athanassios Ganas, Julián García-Mayordomo, Laura Gómez de la Peña, Eulàlia Gràcia, Petra Jamšek Rupnik, Hervé Jomard, Vanja Kastelic, Francesco Emanuele Maesano, Raquel Martín-Banda, Sara Martínez-Loriente, Marta Neres, Hector Perea, Barbara Šket Motnikar, Mara Monica Tiberti, Nino Tsereteli, Varvara Tsironi, Roberto Vallone, Kris Vanneste, Polona Zupančič, and Domenico Giardini
Nat. Hazards Earth Syst. Sci., 24, 3945–3976, https://doi.org/10.5194/nhess-24-3945-2024, https://doi.org/10.5194/nhess-24-3945-2024, 2024
Short summary
Short summary
This study presents the European Fault-Source Model 2020 (EFSM20), a dataset of 1248 geologic crustal faults and four subduction systems, each having the necessary parameters to forecast long-term earthquake occurrences in the European continent. This dataset constituted one of the main inputs for the recently released European Seismic Hazard Model 2020, a key instrument to mitigate seismic risk in Europe. EFSM20 adopts recognized open-standard formats, and it is openly accessible and reusable.
Mathilde Banjan, Christian Crouzet, Hervé Jomard, Pierre Sabatier, David Marsan, and Erwan Messager
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-83, https://doi.org/10.5194/nhess-2024-83, 2024
Preprint under review for NHESS
Short summary
Short summary
This research shows how lake sediments reveal seismic activity history over extended periods, surpassing historical records. Sediment analysis from Lake Aiguebelette in the Western Alps found 32 layers likely caused by earthquakes over the Holocene. Robust dating methods correlated these layers with known historical earthquakes. Results suggest Lake Aiguebelette's sediment records mainly reflect local seismic events, enhancing understanding of earthquake recurrence and regional seismic history.
Oceane Foix, Stéphane Mazzotti, Hervé Jomard, Didier Bertil, and the Lesser Antilles Working Group
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-53, https://doi.org/10.5194/nhess-2024-53, 2024
Preprint under review for NHESS
Short summary
Short summary
By analyzing historical and instrumental seismic data, fault knowledge and geodetic measurements, we provide a new understanding of seismic hazard in the Lesser Antilles via seismotectonic zoning. We propose new models that can have a significant impact on seismic hazard assessment, such as the inclusion of mantle wedge seismicity, volcanic seismicity and a complete revision of the subduction interface zoning.
Thomas Chartier, Oona Scotti, Hélène Lyon-Caen, Keith Richard-Dinger, James H. Dieterich, and Bruce E. Shaw
Nat. Hazards Earth Syst. Sci., 21, 2733–2751, https://doi.org/10.5194/nhess-21-2733-2021, https://doi.org/10.5194/nhess-21-2733-2021, 2021
Short summary
Short summary
In order to evaluate the seismic risk, we first model the annual rate of occurrence of earthquakes on the faults near Istanbul. By using a novel modelling approach, we consider the fault system as a whole rather than each fault individually. We explore the hypotheses that are discussed in the scientific community concerning this fault system and compare the modelled results with local recorded data and a physics-based model, gaining new insights in particular on the largest possible earthquake.
Marguerite Mathey, Christian Sue, Colin Pagani, Stéphane Baize, Andrea Walpersdorf, Thomas Bodin, Laurent Husson, Estelle Hannouz, and Bertrand Potin
Solid Earth, 12, 1661–1681, https://doi.org/10.5194/se-12-1661-2021, https://doi.org/10.5194/se-12-1661-2021, 2021
Short summary
Short summary
This work features the highest-resolution seismic stress and strain fields available at the present time for the analysis of the active crustal deformation of the Western Alps. In this paper, we address a large dataset of newly computed focal mechanisms from a statistical standpoint, which allows us to suggest a joint control from far-field forces and from buoyancy forces on the present-day deformation of the Western Alps.
Vincent Godard, Jean-Claude Hippolyte, Edward Cushing, Nicolas Espurt, Jules Fleury, Olivier Bellier, Vincent Ollivier, and the ASTER Team
Earth Surf. Dynam., 8, 221–243, https://doi.org/10.5194/esurf-8-221-2020, https://doi.org/10.5194/esurf-8-221-2020, 2020
Short summary
Short summary
Slow-slipping faults are often difficult to identify in landscapes. Here we analyzed high-resolution topographic data from the Valensole area at the front of the southwestern French Alps. We measured various properties of hillslopes such as their relief and the shape of hilltops. We observed systematic spatial variations of hillslope morphology indicative of relative changes in erosion rates. These variations are potentially related to slow tectonic deformation across the studied area.
Vito Bacchi, Ekaterina Antoshchenkova, Hervé Jomard, Lise Bardet, Claire-Marie Duluc, Oona Scotti, and Hélène Hebert
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2018-142, https://doi.org/10.5194/nhess-2018-142, 2018
Revised manuscript not accepted
Short summary
Short summary
The objective of this paper is to present a new methodology for the analysis of the seismic induced tsunami hazard. The proposed methodology mainly relies on uncertainty quantification techniques and the construction and validation of some
emulators, or
meta-models, used instead of the original models for the construction of a numerical tsunamis database. The methodology was tested with tsunamis generated by the Azores-Gibraltar Fracture Zone and potentially impacting the French Coast.
Thomas Chartier, Oona Scotti, Hélène Lyon-Caen, and Aurélien Boiselet
Nat. Hazards Earth Syst. Sci., 17, 1857–1869, https://doi.org/10.5194/nhess-17-1857-2017, https://doi.org/10.5194/nhess-17-1857-2017, 2017
Thomas Chartier, Oona Scotti, Christophe Clément, Hervé Jomard, and Stéphane Baize
Nat. Hazards Earth Syst. Sci., 17, 1585–1593, https://doi.org/10.5194/nhess-17-1585-2017, https://doi.org/10.5194/nhess-17-1585-2017, 2017
Short summary
Short summary
We perform a fault-based PSHA exercise in the Upper Rhine Graben to quantify the relative influence of fault parameters on the hazard at the Fessenheim nuclear power plant site. Sensitivity tests show that the
uncertainty on the slip rate of the Rhine River fault is the dominant factor controlling the variability of the seismic hazard level, greater than the epistemic uncertainty due to ground motion prediction equations (GMPEs).
Related subject area
Earthquake Hazards
The European Fault-Source Model 2020 (EFSM20): geologic input data for the European Seismic Hazard Model 2020
2021 Alaska earthquake: entropy approach to its precursors and aftershock regimes
Strategies for comparison of modern probabilistic seismic hazard models and insights from the Germany and France border region
The Earthquake Risk Model of Switzerland, ERM-CH23
Estimating ground motion intensities using simulation-based estimates of local crustal seismic response
Co- and postseismic subaquatic evidence for prehistoric fault activity near Coyhaique, Aysén Region, Chile
Forearc crustal faults as tsunami sources in the upper plate of the Lesser Antilles subduction zone: the case study of the Morne Piton fault system
The 2020 European Seismic Hazard Model: overview and results
Risk-informed representative earthquake scenarios for Valparaíso and Viña del Mar, Chile
Harmonizing seismicity information in Central Asian countries: earthquake catalogue and active faults
Comparing components for seismic risk modelling using data from the 2019 Le Teil (France) earthquake
Analysis of Borehole Strain Anomalies Before the 2017 Jiuzhaigou Ms7.0 Earthquake Based on Graph Neural Network
Modelling seismic ground motion and its uncertainty in different tectonic contexts: challenges and application to the 2020 European Seismic Hazard Model (ESHM20)
Correlation between seismic activity and acoustic emission on the basis of in-situ monitoring
Scoring and ranking probabilistic seismic hazard models: an application based on macroseismic intensity data
A dense micro-electromechanical system (MEMS)-based seismic network in populated areas: rapid estimation of exposure maps in Trentino (NE Italy)
Exploring inferred geomorphological sediment thickness as a new site proxy to predict ground-shaking amplification at regional scale: application to Europe and eastern Türkiye
Surface rupture kinematics of the 2020 Mw 6.6 Masbate (Philippines) earthquake determined from optical and radar data
The influence of aftershocks on seismic hazard analysis: a case study from Xichang and the surrounding areas
Characteristics and mechanisms of near-surface negative atmospheric electric field anomalies preceding the 5 September 2022, Ms 6.8 Luding earthquake in China
Seismogenic depth and seismic coupling estimation in the transition zone between Alps, Dinarides and Pannonian Basin for the new Slovenian seismic hazard model
Towards a dynamic earthquake risk framework for Switzerland
Understanding flow characteristics from tsunami deposits at Odaka, Joban Coast, using a deep neural network (DNN) inverse model
Spring water anomalies before two consecutive earthquakes (Mw 7.7 and Mw 7.6) in Kahramanmaraş (Türkiye) on 6 February 2023
Update on the seismogenic potential of the Upper Rhine Graben southern region
Earthquake forecasting model for Albania: the area source model and the smoothing model
Testing the 2020 European Seismic Hazard Model (ESHM20) against observations from Romania
Towards a Harmonized Operational Earthquake Forecasting Model for Europe
Probabilistic Seismic Hazard Assessment of Sweden
The footprint of a historical paleoearthquake: the sixth-century-CE event in the European western Southern Alps
Seismic background noise levels in the Italian strong-motion network
Testing machine learning models for heuristic building damage assessment applied to the Italian Database of Observed Damage (DaDO)
The seismic hazard from the Lembang Fault, Indonesia, derived from InSAR and GNSS data
Development of a regional probabilistic seismic hazard model for Central Asia
Rapid estimation of seismic intensities by analyzing early aftershock sequences using the robust locally weighted regression program (LOWESS)
Sedimentary record of historic seismicity in a small, southern Oregon lake
A 2700-yr record of Cascadia megathrust and crustal/slab earthquakes from Upper and Lower Squaw Lakes, Oregon
Towards improving the spatial testability of aftershock forecast models
Accounting for path and site effects in spatial ground-motion correlation models using Bayesian inference
Seismogenic potential and tsunami threat of the strike-slip Carboneras fault in the western Mediterranean from physics-based earthquake simulations
Earthquake hazard characterization by using entropy: application to northern Chilean earthquakes
Seismic risk scenarios for the residential buildings in the Sabana Centro province in Colombia
Looking for undocumented earthquake effects: a probabilistic analysis of Italian macroseismic data
Spatiotemporal seismicity pattern of the Taiwan orogen
A web-based GIS (web-GIS) database of the scientific articles on earthquake-triggered landslides
Evaluation of liquefaction triggering potential in Italy: a seismic-hazard-based approach
Earthquake vulnerability assessment of the built environment in the city of Srinagar, Kashmir Himalaya, using a geographic information system
Earthquake-induced landslides in Norway
PERL: a dataset of geotechnical, geophysical, and hydrogeological parameters for earthquake-induced hazards assessment in Terre del Reno (Emilia-Romagna, Italy)
Development of a seismic loss prediction model for residential buildings using machine learning – Ōtautahi / Christchurch, New Zealand
Roberto Basili, Laurentiu Danciu, Céline Beauval, Karin Sesetyan, Susana Pires Vilanova, Shota Adamia, Pierre Arroucau, Jure Atanackov, Stéphane Baize, Carolina Canora, Riccardo Caputo, Michele Matteo Cosimo Carafa, Edward Marc Cushing, Susana Custódio, Mine Betul Demircioglu Tumsa, João C. Duarte, Athanassios Ganas, Julián García-Mayordomo, Laura Gómez de la Peña, Eulàlia Gràcia, Petra Jamšek Rupnik, Hervé Jomard, Vanja Kastelic, Francesco Emanuele Maesano, Raquel Martín-Banda, Sara Martínez-Loriente, Marta Neres, Hector Perea, Barbara Šket Motnikar, Mara Monica Tiberti, Nino Tsereteli, Varvara Tsironi, Roberto Vallone, Kris Vanneste, Polona Zupančič, and Domenico Giardini
Nat. Hazards Earth Syst. Sci., 24, 3945–3976, https://doi.org/10.5194/nhess-24-3945-2024, https://doi.org/10.5194/nhess-24-3945-2024, 2024
Short summary
Short summary
This study presents the European Fault-Source Model 2020 (EFSM20), a dataset of 1248 geologic crustal faults and four subduction systems, each having the necessary parameters to forecast long-term earthquake occurrences in the European continent. This dataset constituted one of the main inputs for the recently released European Seismic Hazard Model 2020, a key instrument to mitigate seismic risk in Europe. EFSM20 adopts recognized open-standard formats, and it is openly accessible and reusable.
Eugenio E. Vogel, Denisse Pastén, Gonzalo Saravia, Michel Aguilera, and Antonio Posadas
Nat. Hazards Earth Syst. Sci., 24, 3895–3906, https://doi.org/10.5194/nhess-24-3895-2024, https://doi.org/10.5194/nhess-24-3895-2024, 2024
Short summary
Short summary
For the first time, an entropy analysis has been performed in Alaska, a seismic-rich region located in a subduction zone that shows non-trivial behavior: the subduction arc changes seismic activity from the eastern zone to the western zone, showing a decrease in this activity along the subduction zone. This study shows how an entropy approach can help us understand seismicity in subduction zones.
Graeme Weatherill, Fabrice Cotton, Guillaume Daniel, Irmela Zentner, Pablo Iturrieta, and Christian Bosse
Nat. Hazards Earth Syst. Sci., 24, 3755–3787, https://doi.org/10.5194/nhess-24-3755-2024, https://doi.org/10.5194/nhess-24-3755-2024, 2024
Short summary
Short summary
New generations of seismic hazard models are developed with sophisticated approaches to quantify uncertainties in our knowledge of earthquake processes. To understand why and how recent state-of-the-art seismic hazard models for France, Germany, and Europe differ despite similar underlying assumptions, we present a systematic approach to investigate model-to-model differences and to quantify and visualise them while accounting for their respective uncertainties.
Athanasios N. Papadopoulos, Philippe Roth, Laurentiu Danciu, Paolo Bergamo, Francesco Panzera, Donat Fäh, Carlo Cauzzi, Blaise Duvernay, Alireza Khodaverdian, Pierino Lestuzzi, Ömer Odabaşi, Ettore Fagà, Paolo Bazzurro, Michèle Marti, Nadja Valenzuela, Irina Dallo, Nicolas Schmid, Philip Kästli, Florian Haslinger, and Stefan Wiemer
Nat. Hazards Earth Syst. Sci., 24, 3561–3578, https://doi.org/10.5194/nhess-24-3561-2024, https://doi.org/10.5194/nhess-24-3561-2024, 2024
Short summary
Short summary
The Earthquake Risk Model of Switzerland (ERM-CH23), released in early 2023, is the culmination of a multidisciplinary effort aiming to achieve, for the first time, a comprehensive assessment of the potential consequences of earthquakes on the Swiss building stock and population. ERM-CH23 provides risk estimates for various impact metrics, ranging from economic loss as a result of damage to buildings and their contents to human losses, such as deaths, injuries, and displaced population.
Himanshu Agrawal and John McCloskey
Nat. Hazards Earth Syst. Sci., 24, 3519–3536, https://doi.org/10.5194/nhess-24-3519-2024, https://doi.org/10.5194/nhess-24-3519-2024, 2024
Short summary
Short summary
Rapidly expanding cities in earthquake-prone regions of the Global South often lack seismic event records, hindering accurate ground motion predictions for hazard assessment. Our study demonstrates that, despite these limitations, reliable predictions can be made using simulation-based methods for small (sub)urban units undergoing rapid development. High-resolution local geological data can reveal spatial variability in ground motions, aiding effective risk mitigation.
Morgan Vervoort, Katleen Wils, Kris Vanneste, Roberto Urrutia, Mario Pino, Catherine Kissel, Marc De Batist, and Maarten Van Daele
Nat. Hazards Earth Syst. Sci., 24, 3401–3421, https://doi.org/10.5194/nhess-24-3401-2024, https://doi.org/10.5194/nhess-24-3401-2024, 2024
Short summary
Short summary
This study identifies a prehistoric earthquake around 4400 years ago near the city of Coyhaique (Aysén Region, Chilean Patagonia) and illustrates the potential seismic hazard in the region. We found deposits in lakes and a fjord that can be related to subaquatic and onshore landslides, all with a similar age, indicating that they were most likely caused by an earthquake. Through modeling we found that this was an earthquake of magnitude 6.3 to 7.0 on a fault near the city of Coyhaique.
Melody Philippon, Jean Roger, Jean-Frédéric Lebrun, Isabelle Thinon, Océane Foix, Stéphane Mazzotti, Marc-André Gutscher, Leny Montheil, and Jean-Jacques Cornée
Nat. Hazards Earth Syst. Sci., 24, 3129–3154, https://doi.org/10.5194/nhess-24-3129-2024, https://doi.org/10.5194/nhess-24-3129-2024, 2024
Short summary
Short summary
Using novel geophysical datasets, we reassess the slip rate of the Morne Piton fault (Lesser Antilles) at 0.2 mm yr−1 by dividing by four previous estimations and thus increasing the earthquake time recurrence and lowering the associated hazard. We evaluate a plausible magnitude for a potential seismic event of Mw 6.5 ± 0.5. Our multi-segment tsunami model representative of the worst-case scenario gives an overview of tsunami generation if all the fault segments ruptured together.
Laurentiu Danciu, Domenico Giardini, Graeme Weatherill, Roberto Basili, Shyam Nandan, Andrea Rovida, Céline Beauval, Pierre-Yves Bard, Marco Pagani, Celso G. Reyes, Karin Sesetyan, Susana Vilanova, Fabrice Cotton, and Stefan Wiemer
Nat. Hazards Earth Syst. Sci., 24, 3049–3073, https://doi.org/10.5194/nhess-24-3049-2024, https://doi.org/10.5194/nhess-24-3049-2024, 2024
Short summary
Short summary
The 2020 European Seismic Hazard Model (ESHM20) is the latest seismic hazard assessment update for the Euro-Mediterranean region. This state-of-the-art model delivers a broad range of hazard results, including hazard curves, maps, and uniform hazard spectra. ESHM20 provides two hazard maps as informative references in the next update of the European Seismic Design Code (CEN EC8), and it also provides a key input to the first earthquake risk model for Europe.
Hugo Rosero-Velásquez, Mauricio Monsalve, Juan Camilo Gómez Zapata, Elisa Ferrario, Alan Poulos, Juan Carlos de la Llera, and Daniel Straub
Nat. Hazards Earth Syst. Sci., 24, 2667–2687, https://doi.org/10.5194/nhess-24-2667-2024, https://doi.org/10.5194/nhess-24-2667-2024, 2024
Short summary
Short summary
Seismic risk management uses reference earthquake scenarios, but the criteria for selecting them do not always consider consequences for exposed assets. Hence, we adopt a definition of representative scenarios associated with a return period and loss level to select such scenarios among a large set of possible earthquakes. We identify the scenarios for the residential-building stock and power supply in Valparaíso and Viña del Mar, Chile. The selected scenarios depend on the exposed assets.
Valerio Poggi, Stefano Parolai, Natalya Silacheva, Anatoly Ischuk, Kanatbek Abdrakhmatov, Zainalobudin Kobuliev, Vakhitkhan Ismailov, Roman Ibragimov, Japar Karaev, Paola Ceresa, and Paolo Bazzurro
Nat. Hazards Earth Syst. Sci., 24, 2597–2613, https://doi.org/10.5194/nhess-24-2597-2024, https://doi.org/10.5194/nhess-24-2597-2024, 2024
Short summary
Short summary
As part of the Strengthening Financial Resilience and Accelerating Risk Reduction in Central Asia (SFRARR) programme, funded by the European Union in collaboration with the World Bank and GFDRR, a regionally consistent probabilistic multi-hazard and multi-asset risk assessment has been developed. This paper describes the preparation of the input datasets (earthquake catalogue and active-fault database) required for the implementation of the probabilistic seismic hazard model.
Konstantinos Trevlopoulos, Pierre Gehl, Caterina Negulescu, Helen Crowley, and Laurentiu Danciu
Nat. Hazards Earth Syst. Sci., 24, 2383–2401, https://doi.org/10.5194/nhess-24-2383-2024, https://doi.org/10.5194/nhess-24-2383-2024, 2024
Short summary
Short summary
The models used to estimate the probability of exceeding a level of earthquake damage are essential to the reduction of disasters. These models consist of components that may be tested individually; however testing these types of models as a whole is challenging. Here, we use observations of damage caused by the 2019 Le Teil earthquake and estimations from other models to test components of seismic risk models.
Chenyang Li, Changfeng Qin, Jie Zhang, Yu Duan, and Chengquan Chi
EGUsphere, https://doi.org/10.5194/egusphere-2024-2025, https://doi.org/10.5194/egusphere-2024-2025, 2024
Short summary
Short summary
In this study, we advance the field of earthquake prediction by introducing a pre-seismic anomaly extraction method based on the structure of graph-wave network, which reveals the temporal correlation and spatial correlation of the strain observation data from different boreholes prior to the occurrence of an earthquake event.
Graeme Weatherill, Sreeram Reddy Kotha, Laurentiu Danciu, Susana Vilanova, and Fabrice Cotton
Nat. Hazards Earth Syst. Sci., 24, 1795–1834, https://doi.org/10.5194/nhess-24-1795-2024, https://doi.org/10.5194/nhess-24-1795-2024, 2024
Short summary
Short summary
The ground motion models (GMMs) selected for the 2020 European Seismic Hazard Model (ESHM20) and their uncertainties require adaptation to different tectonic environments. Using insights from new data, local experts and developments in the scientific literature, we further calibrate the ESHM20 GMM logic tree to capture previously unmodelled regional variation. We also propose a new scaled-backbone logic tree for application to Europe's subduction zones and the Vrancea deep seismic source.
Zhiwen Zhu, Zihan Jiang, Federico Accornero, and Alberto Carpinteri
EGUsphere, https://doi.org/10.5194/egusphere-2024-688, https://doi.org/10.5194/egusphere-2024-688, 2024
Short summary
Short summary
1. The dense clusters of AE appear to anticipate the major seismic events. 2. AE has a strong correlation to seismic swarms occurring in surrounding areas. AE tends to regularly anticipates by approximately 17 hours both the considered seismic events. 3. The trends of b-value and natural-time variance can be used as seismic precursors.
Vera D'Amico, Francesco Visini, Andrea Rovida, Warner Marzocchi, and Carlo Meletti
Nat. Hazards Earth Syst. Sci., 24, 1401–1413, https://doi.org/10.5194/nhess-24-1401-2024, https://doi.org/10.5194/nhess-24-1401-2024, 2024
Short summary
Short summary
We propose a scoring strategy to rank multiple models/branches of a probabilistic seismic hazard analysis (PSHA) model that could be useful to consider specific requests from stakeholders responsible for seismic risk reduction actions. In fact, applications of PSHA often require sampling a few hazard curves from the model. The procedure is introduced through an application aimed to score and rank the branches of a recent Italian PSHA model according to their fit with macroseismic intensity data.
Davide Scafidi, Alfio Viganò, Jacopo Boaga, Valeria Cascone, Simone Barani, Daniele Spallarossa, Gabriele Ferretti, Mauro Carli, and Giancarlo De Marchi
Nat. Hazards Earth Syst. Sci., 24, 1249–1260, https://doi.org/10.5194/nhess-24-1249-2024, https://doi.org/10.5194/nhess-24-1249-2024, 2024
Short summary
Short summary
Our paper concerns the use of a dense network of low-cost seismic accelerometers in populated areas to achieve rapid and reliable estimation of exposure maps in Trentino (northeast Italy). These additional data, in conjunction with the automatic monitoring procedure, allow us to obtain dense measurements which only rely on actual recorded data, avoiding the use of ground motion prediction equations. This leads to a more reliable picture of the actual ground shaking.
Karina Loviknes, Fabrice Cotton, and Graeme Weatherill
Nat. Hazards Earth Syst. Sci., 24, 1223–1247, https://doi.org/10.5194/nhess-24-1223-2024, https://doi.org/10.5194/nhess-24-1223-2024, 2024
Short summary
Short summary
Earthquake ground shaking can be strongly affected by local geology and is often amplified by soft sediments. In this study, we introduce a global geomorphological model for sediment thickness as a protentional parameter for predicting this site amplification. The results show that including geology and geomorphology in site-amplification predictions adds important value and that global or regional models for sediment thickness from fields beyond engineering seismology are worth considering.
Khelly Shan Sta. Rita, Sotiris Valkaniotis, and Alfredo Mahar Francisco Lagmay
Nat. Hazards Earth Syst. Sci., 24, 1135–1161, https://doi.org/10.5194/nhess-24-1135-2024, https://doi.org/10.5194/nhess-24-1135-2024, 2024
Short summary
Short summary
The ground movement and rupture produced by the 2020 Masbate earthquake in the Philippines were studied using satellite data. We highlight the importance of the complementary use of optical and radar datasets. The slip measurements and field observations helped improve our understanding of the seismotectonics of the region, which is critical for seismic hazard studies.
Qing Wu, Guijuan Lai, Jian Wu, and Jinmeng Bi
Nat. Hazards Earth Syst. Sci., 24, 1017–1033, https://doi.org/10.5194/nhess-24-1017-2024, https://doi.org/10.5194/nhess-24-1017-2024, 2024
Short summary
Short summary
Aftershocks are typically ignored for traditional probabilistic seismic hazard analyses, which underestimate the seismic hazard to some extent and may cause potential risks. A probabilistic seismic hazard analysis based on the Monte Carlo method was combined with the Omi–Reasenberg–Jones model to systematically study how aftershocks impact seismic hazard analyses. The influence of aftershocks on probabilistic seismic hazard analysis can exceed 50 %.
Lixin Wu, Xiao Wang, Yuan Qi, Jingchen Lu, and Wenfei Mao
Nat. Hazards Earth Syst. Sci., 24, 773–789, https://doi.org/10.5194/nhess-24-773-2024, https://doi.org/10.5194/nhess-24-773-2024, 2024
Short summary
Short summary
The atmospheric electric field (AEF) is the bridge connecting the surface charges and atmospheric particle changes before an earthquake, which is essential for the study of the coupling process between the coversphere and atmosphere caused by earthquakes. This study discovers AEF anomalies before the Luding earthquake in 2022 and clarifies the relationship between the surface changes and atmosphere changes possibly caused by the earthquake.
Polona Zupančič, Barbara Šket Motnikar, Michele M. C. Carafa, Petra Jamšek Rupnik, Mladen Živčić, Vanja Kastelic, Gregor Rajh, Martina Čarman, Jure Atanackov, and Andrej Gosar
Nat. Hazards Earth Syst. Sci., 24, 651–672, https://doi.org/10.5194/nhess-24-651-2024, https://doi.org/10.5194/nhess-24-651-2024, 2024
Short summary
Short summary
We considered two parameters that affect seismic hazard assessment in Slovenia. The first parameter we determined is the thickness of the lithosphere's section where earthquakes are generated. The second parameter is the activity of each fault, which is expressed by its average displacement per year (slip rate). Since the slip rate can be either seismic or aseismic, we estimated both components. This analysis was based on geological and seismological data and was validated through comparisons.
Maren Böse, Laurentiu Danciu, Athanasios Papadopoulos, John Clinton, Carlo Cauzzi, Irina Dallo, Leila Mizrahi, Tobias Diehl, Paolo Bergamo, Yves Reuland, Andreas Fichtner, Philippe Roth, Florian Haslinger, Frédérick Massin, Nadja Valenzuela, Nikola Blagojević, Lukas Bodenmann, Eleni Chatzi, Donat Fäh, Franziska Glueer, Marta Han, Lukas Heiniger, Paulina Janusz, Dario Jozinović, Philipp Kästli, Federica Lanza, Timothy Lee, Panagiotis Martakis, Michèle Marti, Men-Andrin Meier, Banu Mena Cabrera, Maria Mesimeri, Anne Obermann, Pilar Sanchez-Pastor, Luca Scarabello, Nicolas Schmid, Anastasiia Shynkarenko, Bozidar Stojadinović, Domenico Giardini, and Stefan Wiemer
Nat. Hazards Earth Syst. Sci., 24, 583–607, https://doi.org/10.5194/nhess-24-583-2024, https://doi.org/10.5194/nhess-24-583-2024, 2024
Short summary
Short summary
Seismic hazard and risk are time dependent as seismicity is clustered and exposure can change rapidly. We are developing an interdisciplinary dynamic earthquake risk framework for advancing earthquake risk mitigation in Switzerland. This includes various earthquake risk products and services, such as operational earthquake forecasting and early warning. Standardisation and harmonisation into seamless solutions that access the same databases, workflows, and software are a crucial component.
Rimali Mitra, Hajime Naruse, and Tomoya Abe
Nat. Hazards Earth Syst. Sci., 24, 429–444, https://doi.org/10.5194/nhess-24-429-2024, https://doi.org/10.5194/nhess-24-429-2024, 2024
Short summary
Short summary
This study estimates the behavior of the 2011 Tohoku-oki tsunami from its deposit distributed in the Joban coastal area. In this study, the flow characteristics of the tsunami were reconstructed using the DNN (deep neural network) inverse model, suggesting that the tsunami inundation occurred in the very high-velocity condition.
Sedat İnan, Hasan Çetin, and Nurettin Yakupoğlu
Nat. Hazards Earth Syst. Sci., 24, 397–409, https://doi.org/10.5194/nhess-24-397-2024, https://doi.org/10.5194/nhess-24-397-2024, 2024
Short summary
Short summary
Two devastating earthquakes, Mw 7.7 and Mw 7.6, occurred in Türkiye on 6 February 2023. We obtained commercially bottled waters from two springs, 100 km from the epicenter of Mw 7.7. Samples of the first spring emanating from fault zone in hard rocks showed positive anomalies in major ions lasting for 6 months before the earthquake. Samples from the second spring accumulated in an alluvium deposit showed no anomalies. We show that pre-earthquake anomalies are geologically site-dependent.
Sylvain Michel, Clara Duverger, Laurent Bollinger, Jorge Jara, and Romain Jolivet
Nat. Hazards Earth Syst. Sci., 24, 163–177, https://doi.org/10.5194/nhess-24-163-2024, https://doi.org/10.5194/nhess-24-163-2024, 2024
Short summary
Short summary
The Upper Rhine Graben, located in France and Germany, is bordered by north–south-trending faults, posing a potential threat to dense population and infrastructures on the Alsace plain. We build upon previous seismic hazard studies of the graben by exploring uncertainties in greater detail, revisiting a number of assumptions. There is a 99 % probability that a maximum-magnitude earthquake would be below 7.3 if assuming a purely dip-slip mechanism or below 7.6 if assuming a strike-slip one.
Edlira Xhafaj, Chung-Han Chan, and Kuo-Fong Ma
Nat. Hazards Earth Syst. Sci., 24, 109–119, https://doi.org/10.5194/nhess-24-109-2024, https://doi.org/10.5194/nhess-24-109-2024, 2024
Short summary
Short summary
Our study introduces new earthquake forecasting models for Albania, aiming to map out future seismic hazards. By analysing earthquakes from 1960 to 2006, we have developed models that predict where activity is most likely to occur, highlighting the western coast and southern regions as high-hazard zones. Our validation process confirms these models are effective tools for anticipating seismic events, offering valuable insights for earthquake preparedness and hazard assessment efforts.
Elena F. Manea, Laurentiu Danciu, Carmen O. Cioflan, Dragos Toma-Danila, and Matt Gerstenberger
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-232, https://doi.org/10.5194/nhess-2023-232, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
We test and evaluate the results of the 2020 European Seismic Hazard Model (ESHM20; Danciu et al., 2021) against observations spamming over a few centuries at twelve cities in Romania. The full distribution of the hazard curves at the given location was considered, and the testing was done for two relevant peak ground acceleration (PGA) values. Our analysis suggests that the observed exceedance rates for the selected PGA levels are consistent with ESHM20 estimates.
Marta Han, Leila Mizrahi, and Stefan Wiemer
EGUsphere, https://doi.org/10.5194/egusphere-2023-3153, https://doi.org/10.5194/egusphere-2023-3153, 2024
Short summary
Short summary
Relying on recent accomplishments in collecting and harmonizing data by the 2020 European Seismic Hazard Model (ESHM20) and leveraging advancements in state-of-the-art earthquake forecasting methods, we develop a harmonized earthquake forecasting model for Europe. We propose several model variants and test them on training data for consistency and on a seven-year testing period against each other, as well as against both a time-independent benchmark and a global time-dependent benchmark.
Niranjan Joshi, Björn Lund, and Roland Roberts
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-213, https://doi.org/10.5194/nhess-2023-213, 2023
Revised manuscript accepted for NHESS
Short summary
Short summary
Few large earthquakes and low occurrence rates makes seismic hazard assessment of Sweden a challenging task. Since 2000, expansion of the seismic network has improved the quality and quantity of the data recorded. We use this new data to estimate the Swedish seismic hazard using probabilistic methods. We find that hazard was previously underestimated in the north, which we find to have the highest hazard in Sweden with mean peak ground acceleration of up to 0.05 g for a 475 year return period.
Franz Livio, Maria Francesca Ferrario, Elisa Martinelli, Sahra Talamo, Silvia Cercatillo, and Alessandro Maria Michetti
Nat. Hazards Earth Syst. Sci., 23, 3407–3424, https://doi.org/10.5194/nhess-23-3407-2023, https://doi.org/10.5194/nhess-23-3407-2023, 2023
Short summary
Short summary
Here we document the occurrence of an historical earthquake that occurred in the European western Southern Alps in the sixth century CE. Analysis of the effects due to earthquake shaking in the city of Como (N Italy) and a comparison with dated offshore landslides in the Alpine lakes allowed us to make an inference about the possible magnitude and the location of the seismic source for this event.
Simone Francesco Fornasari, Deniz Ertuncay, and Giovanni Costa
Nat. Hazards Earth Syst. Sci., 23, 3219–3234, https://doi.org/10.5194/nhess-23-3219-2023, https://doi.org/10.5194/nhess-23-3219-2023, 2023
Short summary
Short summary
We analysed the background seismic noise for the Italian strong motion network by developing the Italian accelerometric low- and high-noise models. Spatial and temporal variations of the noise levels have been analysed. Several stations located near urban areas are affected by human activities, with high noise levels in the low periods. Our results provide an overview of the background noise of the strong motion network and can be used as a station selection criterion for future research.
Subash Ghimire, Philippe Guéguen, Adrien Pothon, and Danijel Schorlemmer
Nat. Hazards Earth Syst. Sci., 23, 3199–3218, https://doi.org/10.5194/nhess-23-3199-2023, https://doi.org/10.5194/nhess-23-3199-2023, 2023
Short summary
Short summary
This study explores the efficacy of several machine learning models for damage characterization, trained and tested on the Database of Observed Damage (DaDO) for Italian earthquakes. Reasonable damage prediction effectiveness (68 % accuracy) is observed, particularly when considering basic structural features and grouping the damage according to the traffic-light-based system used during the post-disaster period (green, yellow, and red), showing higher relevancy for rapid damage prediction.
Ekbal Hussain, Endra Gunawan, Nuraini Rahma Hanifa, and Qori'atu Zahro
Nat. Hazards Earth Syst. Sci., 23, 3185–3197, https://doi.org/10.5194/nhess-23-3185-2023, https://doi.org/10.5194/nhess-23-3185-2023, 2023
Short summary
Short summary
The earthquake potential of the Lembang Fault, located near the city of Bandung in West Java, Indonesia, is poorly understood. Bandung has a population of over 8 million people. We used satellite data to estimate the energy storage on the fault and calculate the likely size of potential future earthquakes. We use simulations to show that 1.9–2.7 million people would be exposed to high levels of ground shaking in the event of a major earthquake on the fault.
Valerio Poggi, Stefano Parolai, Natalya Silacheva, Anatoly Ischuk, Kanatbek Abdrakhmatov, Zainalobudin Kobuliev, Vakhitkhan Ismailov, Roman Ibragimov, Japar Karayev, Paola Ceresa, Marco Santulin, and Paolo Bazzurro
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-132, https://doi.org/10.5194/nhess-2023-132, 2023
Revised manuscript accepted for NHESS
Short summary
Short summary
A regionally consistent probabilistic risk assessment for multiple hazards and assets was recently developed as part of the "Strengthening Financial Resilience and Accelerating Risk Reduction in Central Asia" (SFRARR) program, promoted by the European Union in collaboration with the World Bank and GFDRR. This paper describes the preparation of the source model and presents the main results of the probabilistic earthquake model for the Central Asian countries.
Huaiqun Zhao, Wenkai Chen, Can Zhang, and Dengjie Kang
Nat. Hazards Earth Syst. Sci., 23, 3031–3050, https://doi.org/10.5194/nhess-23-3031-2023, https://doi.org/10.5194/nhess-23-3031-2023, 2023
Short summary
Short summary
Early emergency response requires improving the utilization value of the data available in the early post-earthquake period. We proposed a method for assessing seismic intensities by analyzing early aftershock sequences using the robust locally weighted regression program. The seismic intensity map evaluated by the method can reflect the range of the hardest-hit areas and the spatial distribution of the possible property damage and casualties caused by the earthquake.
Ann Elizabeth Morey, Mark D. Shapley, Daniel G. Gavin, Alan R. Nelson, and Chris Goldfinger
EGUsphere, https://doi.org/10.21203/rs.3.rs-1631354/v2, https://doi.org/10.21203/rs.3.rs-1631354/v2, 2023
Short summary
Short summary
Disturbance events from historic sediments from a small lake in Oregon were compared to known events to determine if Cascadia earthquakes are uniquely identifiable. Sedimentological methods and geochemical provenance data identify a deposit likely from the most recent Cascadia earthquake (which occurred in 1700), another type of earthquake deposit, and flood deposits, suggesting that small lakes are good recorders of megathrust earthquakes. New methods developed hold promise for other lakes.
Ann Elizabeth Morey and Chris Goldfinger
EGUsphere, https://doi.org/10.21203/rs.3.rs-2277419/v2, https://doi.org/10.21203/rs.3.rs-2277419/v2, 2023
Short summary
Short summary
This study uses the characteristics from a deposit attributed to the 1700 CE Cascadia earthquake to identify other subduction earthquake deposits in sediments from two lakes located near the California/Oregon border. Seven deposits were identified in these records and an age-depth model suggests that these correlate in time to the largest Cascadia earthquakes preserved in the offshore record suggesting that inland lakes can be good recorders of Cascadia earthquakes.
Asim M. Khawaja, Behnam Maleki Asayesh, Sebastian Hainzl, and Danijel Schorlemmer
Nat. Hazards Earth Syst. Sci., 23, 2683–2696, https://doi.org/10.5194/nhess-23-2683-2023, https://doi.org/10.5194/nhess-23-2683-2023, 2023
Short summary
Short summary
Testing of earthquake forecasts is important for model verification. Forecasts are usually spatially discretized with many equal-sized grid cells, but often few earthquakes are available for evaluation, leading to meaningless tests. Here, we propose solutions to improve the testability of earthquake forecasts and give a minimum ratio between the number of earthquakes and spatial cells for significant tests. We show applications of the proposed technique for synthetic and real case studies.
Lukas Bodenmann, Jack W. Baker, and Božidar Stojadinović
Nat. Hazards Earth Syst. Sci., 23, 2387–2402, https://doi.org/10.5194/nhess-23-2387-2023, https://doi.org/10.5194/nhess-23-2387-2023, 2023
Short summary
Short summary
Understanding spatial patterns in earthquake-induced ground motions is key for assessing the seismic risk of distributed infrastructure systems. To study such patterns, we propose a novel model that accounts for spatial proximity, as well as site and path effects, and estimate its parameters from past earthquake data by explicitly quantifying the inherent uncertainties.
José A. Álvarez-Gómez, Paula Herrero-Barbero, and José J. Martínez-Díaz
Nat. Hazards Earth Syst. Sci., 23, 2031–2052, https://doi.org/10.5194/nhess-23-2031-2023, https://doi.org/10.5194/nhess-23-2031-2023, 2023
Short summary
Short summary
The strike-slip Carboneras fault is one of the largest sources in the Alboran Sea, with it being one of the faster faults in the eastern Betics. The dimensions and location of the Carboneras fault imply a high seismic and tsunami threat. In this work, we present tsunami simulations from sources generated with physics-based earthquake simulators. We show that the Carboneras fault has the capacity to generate locally damaging tsunamis with inter-event times between 2000 and 6000 years.
Antonio Posadas, Denisse Pasten, Eugenio E. Vogel, and Gonzalo Saravia
Nat. Hazards Earth Syst. Sci., 23, 1911–1920, https://doi.org/10.5194/nhess-23-1911-2023, https://doi.org/10.5194/nhess-23-1911-2023, 2023
Short summary
Short summary
In this paper we understand an earthquake from a thermodynamics point of view as an irreversible transition; then it must suppose an increase in entropy. We use > 100 000 earthquakes in northern Chile to test the theory that Shannon entropy, H, is an indicator of the equilibrium state. Using variation in H, we were able to detect major earthquakes and their foreshocks and aftershocks, including the 2007 Mw 7.8 Tocopilla earthquake and 2014 Mw 8.1 Iquique earthquake.
Dirsa Feliciano, Orlando Arroyo, Tamara Cabrera, Diana Contreras, Jairo Andrés Valcárcel Torres, and Juan Camilo Gómez Zapata
Nat. Hazards Earth Syst. Sci., 23, 1863–1890, https://doi.org/10.5194/nhess-23-1863-2023, https://doi.org/10.5194/nhess-23-1863-2023, 2023
Short summary
Short summary
This article presents the number of damaged buildings and estimates the economic losses from a set of earthquakes in Sabana Centro, a region of 11 towns in Colombia.
Andrea Antonucci, Andrea Rovida, Vera D'Amico, and Dario Albarello
Nat. Hazards Earth Syst. Sci., 23, 1805–1816, https://doi.org/10.5194/nhess-23-1805-2023, https://doi.org/10.5194/nhess-23-1805-2023, 2023
Short summary
Short summary
The earthquake effects undocumented at 228 Italian localities were calculated through a probabilistic approach starting from the values obtained through the use of an intensity prediction equation, taking into account the intensity data documented at close localities for a given earthquake. The results showed some geographical dependencies and correlations with the intensity levels investigated.
Yi-Ying Wen, Chien-Chih Chen, Strong Wen, and Wei-Tsen Lu
Nat. Hazards Earth Syst. Sci., 23, 1835–1846, https://doi.org/10.5194/nhess-23-1835-2023, https://doi.org/10.5194/nhess-23-1835-2023, 2023
Short summary
Short summary
Knowing the spatiotemporal seismicity patterns prior to impending large earthquakes might help earthquake hazard assessment. Several recent moderate earthquakes occurred in the various regions of Taiwan, which help to further investigate the spatiotemporal seismic pattern related to the regional tectonic stress. We should pay attention when a seismicity decrease of 2.5 < M < 4.5 events around the southern Central Range or an accelerating seismicity of 3 < M < 5 events appears in central Taiwan.
Luca Schilirò, Mauro Rossi, Federica Polpetta, Federica Fiorucci, Carolina Fortunato, and Paola Reichenbach
Nat. Hazards Earth Syst. Sci., 23, 1789–1804, https://doi.org/10.5194/nhess-23-1789-2023, https://doi.org/10.5194/nhess-23-1789-2023, 2023
Short summary
Short summary
We present a database of the main scientific articles published on earthquake-triggered landslides in the last 4 decades. To enhance data viewing, the articles were catalogued into a web-based GIS, which was specifically designed to show different types of information, such as bibliometric information, the relevant topic and sub-topic category (or categories), and earthquake(s) addressed. Such information can be useful to obtain a general overview of the topic, especially for a broad readership.
Simone Barani, Gabriele Ferretti, and Davide Scafidi
Nat. Hazards Earth Syst. Sci., 23, 1685–1698, https://doi.org/10.5194/nhess-23-1685-2023, https://doi.org/10.5194/nhess-23-1685-2023, 2023
Short summary
Short summary
In the present study, we analyze ground-motion hazard maps and hazard disaggregation in order to define areas in Italy where liquefaction triggering due to seismic activity can not be excluded. The final result is a screening map for all of Italy that classifies sites in terms of liquefaction triggering potential according to their seismic hazard level. The map and the associated data are freely accessible at the following web address: www.distav.unige.it/rsni/milq.php.
Midhat Fayaz, Shakil A. Romshoo, Irfan Rashid, and Rakesh Chandra
Nat. Hazards Earth Syst. Sci., 23, 1593–1611, https://doi.org/10.5194/nhess-23-1593-2023, https://doi.org/10.5194/nhess-23-1593-2023, 2023
Short summary
Short summary
Earthquakes cause immense loss of lives and damage to properties, particularly in major urban centres. The city of Srinagar, which houses around 1.5 million people, is susceptible to high seismic hazards due to its peculiar geological setting, urban setting, demographic profile, and tectonic setting. Keeping in view all of these factors, the present study investigates the earthquake vulnerability of buildings in Srinagar, an urban city in the northwestern Himalayas, India.
Mathilde B. Sørensen, Torbjørn Haga, and Atle Nesje
Nat. Hazards Earth Syst. Sci., 23, 1577–1592, https://doi.org/10.5194/nhess-23-1577-2023, https://doi.org/10.5194/nhess-23-1577-2023, 2023
Short summary
Short summary
Most Norwegian landslides are triggered by rain or snowmelt, and earthquakes have not been considered a relevant trigger mechanism even though some cases have been reported. Here we systematically search historical documents and databases and find 22 landslides induced by eight large Norwegian earthquakes. The Norwegian earthquakes induce landslides at distances and over areas that are much larger than those found for global datasets.
Chiara Varone, Gianluca Carbone, Anna Baris, Maria Chiara Caciolli, Stefania Fabozzi, Carolina Fortunato, Iolanda Gaudiosi, Silvia Giallini, Marco Mancini, Luca Paolella, Maurizio Simionato, Pietro Sirianni, Rose Line Spacagna, Francesco Stigliano, Daniel Tentori, Luca Martelli, Giuseppe Modoni, and Massimiliano Moscatelli
Nat. Hazards Earth Syst. Sci., 23, 1371–1382, https://doi.org/10.5194/nhess-23-1371-2023, https://doi.org/10.5194/nhess-23-1371-2023, 2023
Short summary
Short summary
In 2012, Italy was struck by a seismic crisis characterized by two main shocks and relevant liquefaction events. Terre del Reno is one of the municipalities that experienced the most extensive liquefaction effects; thus it was chosen as case study for a project devoted to defining a new methodology to assess the liquefaction susceptibility. In this framework, about 1800 geotechnical, geophysical, and hydrogeological investigations were collected and stored in the publicly available PERL dataset.
Samuel Roeslin, Quincy Ma, Pavan Chigullapally, Joerg Wicker, and Liam Wotherspoon
Nat. Hazards Earth Syst. Sci., 23, 1207–1226, https://doi.org/10.5194/nhess-23-1207-2023, https://doi.org/10.5194/nhess-23-1207-2023, 2023
Short summary
Short summary
This paper presents a new framework for the rapid seismic loss prediction for residential buildings in Christchurch, New Zealand. The initial model was trained on insurance claims from the Canterbury earthquake sequence. Data science techniques, geospatial tools, and machine learning were used to develop the prediction model, which also delivered useful insights. The model can rapidly be updated with data from new earthquakes. It can then be applied to predict building loss in Christchurch.
Cited articles
AIST, National Institute of Advanced Industrial Science and Technology: Active Fault Database of Japan, April 4, 2016 version, Research Information Database DB095, National Institute of Advanced Industrial Science and Technology, Japan, available at: https://gbank.gsj.jp/activefault/index_e_gmap.html (last access: June 2017), 2016.
ASN: Basic safety rule 2001-01 of 31 may 2001, French Nuclear Safety Authority (ASN), Paris, France, available at: http://www.french-nuclear-safety.fr/References/Safety-Rules/Basic-safety-rule-2001-01-of-31-may-2001 (last access: June 2017), 2001.
Baize, S., Cushing, E. M., Lemeille, F., Granier, T., Grellet, B., Carbon, D., Combes, P., and Hibsch, C.: Inventaire des indices de rupture affectant le Quaternaire en relation avec les grandes structures connues, en France métropolitaine et dans les régions limitrophes, Société géologique de France, Mémoire no. 175, 142 pp., 2002.
Baize, S., Cushing, M., Lemeille, F., Gélis, C., Texier, D., Nicoud, G., and Schwenninger, J. L.: Contribution to the seismic hazard assessment of a slow active fault, the Vuache fault in the southern Molasse basin (France), B. Soc. Geol. Fr., 182, 347–365, https://doi.org/10.2113/gssgfbull.182.4.347, 2011.
Baize, S., Cushing, E. M., Lemeille, F., and Jomard, H.: Updated seismotectonic zoning scheme of Metropolitan France, with reference to geologic and seismotectonic data, B. Soc. Geol. Fr., 184, 225–259, 2013.
Barth, A., Ritter, J. R. R., and Wenzel, F.: Spatial variations of earthquake occurrence and coseismic deformation in the Upper Rhine Graben, Central Europe, Tectonophysics, 651, 172–185, 2015.
Baumont, D., and Scotti, O.: The French Parametric Earthquake Catalogue (FPEC) based on the best events of the SisFrance macroseismic database-version 1.1, IRSN/DEI/2011-012, 2011.
Behrmann, J. H., Hermann, O., Horstmann, M., Tanner, D. C., and Bertrand, G.: Anatomy and kinematics of oblique continental rifting revealed: A three-dimensional case study of the southeast Upper Rhine Graben (Germany), Am. Assoc. Petr. Geol. B., 87, 1105–1121, 2003.
Bertrand, G., Horstmann, M., Hermann, O., and Behrmann, J. H.: Retrodeformation of the southern Upper Rhine Graben: new insights on continental oblique rifting, Quaternary Sci. Rev., 24, 345–352, 2005.
Biasi, G. P. and Wesnousky, S. G.: Steps and Gaps in Ground Ruptures: Empirical Bounds on Rupture Propagation, B. Seismol. Soc. Am., 106, 1110–1124, 2016.
Bonjer, K. P., Gelbke, C., Gilg, B., Rouland, D., Mayerrosa, D., and Massinon, B.: Seismicity and dynamics of the Upper Rhinegraben, J. Geophys.-Z. Geophys., 55, 1–12, 1984.
Bonnet, J., Fradet, T., Traversa, P., Tuleau-Malot, C., Reynaud-Bouret, P., Laloe, T., and Manchuel, K.: Completeness period analysis of SisFrance macroseismic database and interpretation in the light of historical context, EGU General Assembly, Vienna, Austria, 27 April–2 May 2014, EGU2014-12118, 2014.
Brun, J. P. and Wenzel, F.: Crustal scale structure of the southern Rhinegraben from ECORS/DEKORP seismic reflection data, Geology, 19, 758–762, 1991.
Calais, E., Camelbeeck, T., Stein, S., Liu, M., and Craig, T. J.: A new paradigm for large earthquakes in stable continental plate interiors, Geophys. Res. Lett., 43, 10621–10637, https://doi.org/10.1002/2016GL070815, 2016.
Chardon, D., Hermitte, D., Nguyen, F., and Bellier, O.: First paleoseismological constraints on the strongest earthquake in France (Provence) in the twentieth century, Geology, 33, 901–904, 2005.
Chartier, T., Scotti, O., Clément, C., Jomard, H., and Baize, S.: Transposing an active fault database into a fault-based seismic hazard assessment for nuclear facilities – Part 2: Impact of fault parameter uncertainties on a site-specific PSHA exercise in the Upper Rhine Graben, eastern France, Nat. Hazards Earth Syst. Sci., 17, 1585–1593, https://doi.org/10.5194/nhess-17-1585-2017, 2017.
Cornu, T. and Bertrand, G.: Numerical backward and forward modeling of the southern Upper Rhine Graben (France–Germany border): new insights on tectonic evolution of intracontinental rifts, Quaternary Sci. Rev., 24, 353–361, 2005.
Courboulex, F., Larroque, C., Deschamps, A., Gélis, C., Charreau, J., and Stéphan, J. F.: An unknown active fault revealed by microseismicity in the south-east of France, Geophys. Res. Lett., 30, 1782, https://doi.org/10.1029/2003GL017171, 2003.
Cushing, E. M., Bellier, O., Nechtschein, S., Sébrier, M., Lomax, A., Volant, Ph., Dervin, P., Guignard, P., and Bove, L.: A multidisciplinary study of a slow-slipping fault for seismic hazard assessment: the example of the Middle Durance Fault (SE France), Geophys. J. Int., 172, 1163–1178, 2008.
De La Taille, C., Jouanne, F., Crouzet, C., Beck, C., Jomard, H., De Rycker, K., and Van Daele, M.: Impact of active faulting on the post LGM infill of Le Bourget Lake (western Alps, France), Tectonophysics, 664, 31–49, 2015.
Edel, J. B., Whitechurch, H., and Diraison M.: Seismicity wedge beneath the Upper Rhine Graben due to backwards Alpine push?, Tectonophysics, 428, 49–64, 2006.
Field, E. H., Biasi, G. P., Bird, P., Dawson, T. E., Felzer, K. R., Jackson, D. D., Johnson, K. M., Jordan, T. H., Madden, C., Michael, A. J., Milner, K. R., Page, M. T., Parsons, T., Powers, P. M., Shaw, B. E., Thatcher, W. R., Weldon II, R. J., and Zen, Y.: Long-term time-dependent probabilities for the third Uniform California Earthquake Rupture Forecast (UCERF3), B. Seismol. Soc. Am., 105, 511–543, 2015.
Ford, M., Le Carlier de Veslud, C., and Bourgeois, O.: Kinematic and geometric analysis of fault-related folds in a rift setting: The Dannemarie basin, Upper Rhine Graben, France, J. Struct. Geol., 29, 1811–1830, 2007.
Fourniguet, J.: Notice de la carte néotectonique de la France à 1/1,000,000, BRGM/SGN/GEO report, 1978.
García-Moreno, D., Verbeeck, K., Camelbeeck, T., De Batist, M., Oggioni, F., Hurtado, O. Z., Versteeg, W., Jomard, H., Collier, J. S., Gupta, S., and Trentesaux, A.: Fault activity in the epicentral area of the 1580 Dover Strait (Pas-de-Calais) earthquake (northwestern Europe), Geophys. J. Int., 201, 528–542, 2015.
García-Mayordomo, J., Insua-Arévalo, J. M., Martínez-Díaz, J. J., Jiménez-Díaz, A., Martín-Banda, R., Martín-Alfageme, S., Álvarez-Gómez, J. A., Rodríguez-Peces, M., Pérez-López, R., Rodríguez-Pascua, M. A., Masana, E., Perea, H., Martín-González, F., Giner-Robles, J., Nemser, E. S., Cabral, J., and QAFI Compilers: The Quaternary Active Faults Database of Iberia (QAFI v. 2.0)/La Base de Datos de Fallas Activas en el Cuaternario de Iberia (QAFI v. 2.0), J. Iber. Geol., 38, 285–302, 2012.
Grellet, B., Combes, P., Granier, T., and Philip, H.: Sismotectonique de la France métropolitaine dans son cadre géologique et géophysique, Société géologique de France, Mémoire no. 164, 1993.
Haller, K. M., Machette, M. N., Dart, R. L., and Rhea, B. S.: U.S. Quaternary fault and fold database released, Eos T. Am. Geophys. Un., 85, 218–218, https://doi.org/10.1029/2004EO220004, 2004.
IAEA: Seismic hazards in site evaluation for nuclear installations, International Atomic Energy Agency (IAEA), Vienna, Specific Safety Guide, No. SSG-9, 56 pp., 2010.
Lambert, J., Winter, T., Dewez, T. J., and Sabourault, P.: New hypotheses on the maximum damage area of the 1356 Basel earthquake (Switzerland), Quaternary Sci. Rev., 24, 381–399, 2005.
Langridge, R. M., Ries, W. F., Litchfield, N. J., Villamor, P., Van Dissen, R. J., Barrell, D. J. A., Rattenbury, M. S., Heron, D. W., Haubrock, S., Townsend D. B., Lee, J. M., Berryman, K. R., Nicol, A., Cox, S. C., and Stirling, M. W.: The New Zealand Active Faults Database, New Zeal. J. Geol. Geop., 59, 86–96, 2016.
Meghraoui, M., Delouis, B., Ferry, M., Giardini, D., Huggenberger, P., Spottke, I., and Granet, M.: Active Normal Faulting in the Upper Rhine Graben and Paleoseismic IdentiTcation of the 1356 Basel Earthquake, Science, 293, 2070–2073, 2001.
Meyer, B., Lacassin, R., Brulhet, J., and Mouroux, B.: The Basel 1356 earthquake: which fault produced it?, Terra Nova, 6, 54–63, 1994.
Michetti, A. M., Serva, L., and Vittori, E.: ITHACA Italy Hazard from Capable Faults: a database of active faults of the Italian onshore territory, CD-Rom and explicative notes, ANPA, Italy, 2000.
NEOPAL: Base de données nationale des déformations récentes et des paléoséismes, available at: http://www.neopal.net (last access: June 2017), 2009.
Nivière, B., Bruestle, A., Bertrand, G., Carretier, S., Behrmann, J., and Gourry, J.-C.: Active tectonics of the southeastern Upper Rhine Graben, Freiburg area (Germany), Quaternary Sci. Rev., 27, 541–555, 2008.
Ordaz, M., Martinelli, F., Aguilar, A., Arboleda, J., Meletti, C., and D'Amico, V.: CRISIS 2014, Program for computing seismic hazard, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Mexico, 2014.
Palumbo, L., Baize, S., Cushing, M., Jomard, H., and David, C.: Devising BDFA: a new active fault database conceived behind nuclear safety assessment in France, 4th International INQUA Meeting on Paleoseismology, Active Tectonics and Archeoseismology (PATA), 9–14 October 2013, Aachen, Germany, 181–185, 2013.
Rotstein, Y. and Schaming, M.: Tectonic implications of faulting styles along a rift margin: The boundary between the Rhine Graben and the Vosges Mountains, Tectonics, 27, TC2001, https://doi.org/10.1029/2007TC002149, 2008.
Rotstein, Y. and Schaming, M.: The Upper Rhine Graben (URG) revisited: Miocene transtension and transpression account for the observed first-order structures, Tectonics, 30, TC3007, https://doi.org/10.1029/2010TC002767, 2011.
Rotstein, Y., Behrmann, J. H., Lutz, M., Wirsing, G., and Luz, A.: Tectonic implications of transpression and transtension: The Upper Rhine Graben, Tectonics, 24, TC6001, https://doi.org/10.1029/2005TC001797, 2005.
Santanach, P., Masana, E., and Villamarìn, J. A.: Proyecto dataciòn. Consejo de Seguridad Nuclear, Barcelona, 159 pp., 2001.
Sébrier, M., Ghafiri, A., and Bles, J.-L.: Paleoseismicity in France: Fault trench studies in a region of moderate seismicity, J. Geodyn., 24, 207–217, 1997.
Shyu, J. B. H., Chuang, Y. R., Chen, Y. L., Lee, Y. R., and Cheng, C. T.: A New On-Land Seismogenic Structure Source Database from the Taiwan Earthquake Model (TEM) Project for Seismic Hazard Analysis of Taiwan, Terrestrial, Atmospheric and Oceanic Sciences, 27, 311–323, 2016.
SISFRANCE: Base de données nationale de la sismicité historique de la France, BRGM, EDF, IRSN, available at: http://www.sisfrance.net, last access: June 2017.
Terrier, M.: Identification et Classification des failles actives de la Région Provence-Alpes-Côte d'Azur – Phase 2: Analyse et synthèse des connaissances actuelles sous la forme de fiches descriptives des failles, Rapport BRGM/RP-5315-FR, 342 pp., 2004.
Tesauro, M., Hollenstein, C., Egli, R., Geiger, A., and Kahle, H. G.: Continuous GPS and broad-scale deformation across the Rhine Graben and the Alps, Int. J. Earth Sci., 94, 525–537, 2005.
Thouvenot, F., Fréchet, J., Jenatton, L., and Gamond, J. F.: The Belledonne Border Fault: identification of an active seismic strike-slip fault in the western Alps, Geophys. J. Int., 155, 174–192, 2003.
U.S. NRC: Appendix A to Part 100 – Seismic and Geologic Siting Criteria for Nuclear Power Plants, NRC Regulation (10 CFR), last update 2017.
Vanneste, K., Camelbeeck, T., and Verbeeck, K..: A model of composite seismic sources for the Lower Rhine Graben, Northwest Europe, B. Seismol. Soc. Am., 103, 984–1007, 2013.
Wells, D. L. and Coppersmith, K. J.: New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement, B. Seismol. Soc. Am., 84, 974–1002, 1994.
Wesnousky, S. G.: Earthquakes, Quaternary faults, and seismic hazard in California, J. Geophys. Res., 91, 12587–12631, 1986.
Short summary
The French Institute of Radioactive Protection and Nuclear Safety, with the support of the Ministry of Environment, compiled a database (BDFA) in order to define and characterize known potentially active faults of metropolitan France. The general structure of BDFA is presented, containing to date a total of 136 faults (581 fault segments). BDFA represents a first step toward the implementation of seismic source models for both deterministic and probabilistic seismic hazard calculations.
The French Institute of Radioactive Protection and Nuclear Safety, with the support of the...
Special issue
Altmetrics
Final-revised paper
Preprint