Articles | Volume 17, issue 7
Nat. Hazards Earth Syst. Sci., 17, 1191–1201, 2017
https://doi.org/10.5194/nhess-17-1191-2017
Nat. Hazards Earth Syst. Sci., 17, 1191–1201, 2017
https://doi.org/10.5194/nhess-17-1191-2017
Research article
14 Jul 2017
Research article | 14 Jul 2017

Direct local building inundation depth determination in 3-D point clouds generated from user-generated flood images

Luisa Griesbaum et al.

Related authors

Multisensor monitoring and data integration reveal cyclical destabilization of Äußeres Hochebenkar Rock Glacier
Lea Hartl, Thomas Zieher, Magnus Bremer, Martin Stocker-Waldhuber, Vivien Zahs, Bernhard Höfle, Christoph Klug, and Alessandro Cicoira
Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurf-2022-48,https://doi.org/10.5194/esurf-2022-48, 2022
Preprint under review for ESurf
Short summary
Individual tree point clouds and tree measurements from multi-platform laser scanning in German forests
Hannah Weiser, Jannika Schäfer, Lukas Winiwarter, Nina Krašovec, Fabian E. Fassnacht, and Bernhard Höfle
Earth Syst. Sci. Data, 14, 2989–3012, https://doi.org/10.5194/essd-14-2989-2022,https://doi.org/10.5194/essd-14-2989-2022, 2022
Short summary
INTEGRATION OF KALMAN FILTERING OF NEAR-CONTINUOUS SURFACE CHANGE TIME SERIES INTO THE EXTRACTION OF 4D OBJECTS-BY-CHANGE
K. Anders, L. Winiwarter, D. Schröder, and B. Höfle
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B2-2022, 973–980, https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-973-2022,https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-973-2022, 2022
EVALUATION OF UAV-BORNE PHOTOGRAMMETRY AND LASER SCANNING FOR 3D TOPOGRAPHIC CHANGE ANALYSIS AT AN ACTIVE ROCK GLACIER
V. Zahs, L. Winiwarter, K. Anders, M. Bremer, M. Rutzinger, M. Potůčková, and B. Höfle
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B2-2022, 1109–1116, https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-1109-2022,https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-1109-2022, 2022
VIRTUAL LASER SCANNING OF DYNAMIC SCENES CREATED FROM REAL 4D TOPOGRAPHIC POINT CLOUD DATA
L. Winiwarter, K. Anders, D. Schröder, and B. Höfle
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-2-2022, 79–86, https://doi.org/10.5194/isprs-annals-V-2-2022-79-2022,https://doi.org/10.5194/isprs-annals-V-2-2022-79-2022, 2022

Related subject area

Databases, GIS, Remote Sensing, Early Warning Systems and Monitoring Technologies
Forecasting vegetation condition with a Bayesian auto-regressive distributed lags (BARDL) model
Edward E. Salakpi, Peter D. Hurley, James M. Muthoka, Adam B. Barrett, Andrew Bowell, Seb Oliver, and Pedram Rowhani
Nat. Hazards Earth Syst. Sci., 22, 2703–2723, https://doi.org/10.5194/nhess-22-2703-2022,https://doi.org/10.5194/nhess-22-2703-2022, 2022
Short summary
A dynamic hierarchical Bayesian approach for forecasting vegetation condition
Edward E. Salakpi, Peter D. Hurley, James M. Muthoka, Andrew Bowell, Seb Oliver, and Pedram Rowhani
Nat. Hazards Earth Syst. Sci., 22, 2725–2749, https://doi.org/10.5194/nhess-22-2725-2022,https://doi.org/10.5194/nhess-22-2725-2022, 2022
Short summary
Using a single remote-sensing image to calculate the height of a landslide dam and the maximum volume of a lake
Weijie Zou, Yi Zhou, Shixin Wang, Futao Wang, Litao Wang, Qing Zhao, Wenliang Liu, Jinfeng Zhu, Yibing Xiong, Zhenqing Wang, and Gang Qin
Nat. Hazards Earth Syst. Sci., 22, 2081–2097, https://doi.org/10.5194/nhess-22-2081-2022,https://doi.org/10.5194/nhess-22-2081-2022, 2022
Short summary
Enhancing disaster risk resilience using greenspace in urbanising Quito, Ecuador
C. Scott Watson, John R. Elliott, Susanna K. Ebmeier, María Antonieta Vásquez, Camilo Zapata, Santiago Bonilla-Bedoya, Paulina Cubillo, Diego Francisco Orbe, Marco Córdova, Jonathan Menoscal, and Elisa Sevilla
Nat. Hazards Earth Syst. Sci., 22, 1699–1721, https://doi.org/10.5194/nhess-22-1699-2022,https://doi.org/10.5194/nhess-22-1699-2022, 2022
Short summary
Gridded flood depth estimates from satellite-derived inundations
Seth Bryant, Heather McGrath, and Mathieu Boudreault
Nat. Hazards Earth Syst. Sci., 22, 1437–1450, https://doi.org/10.5194/nhess-22-1437-2022,https://doi.org/10.5194/nhess-22-1437-2022, 2022
Short summary

Cited articles

Abdullah, A. F., Rahman, A. A., and Vojinovic, Z.: LiDAR filtering algorithms for urban flood application: Review on current algorithms and filters test, in: ISPRS Archives (XXXVIII, Part3/W8), edited by: Bretar, F., Pierrot-Deseilligny, M., and Vosselman, G., Laser scanning 2009, Paris, France, 1–2 September 2009, 30–36, 2009.
Albuquerque, J., Herfort, B., and Eckle, M.: The Tasks of the Crowd: A Typology of Tasks in Geographic Information Crowdsourcing and a Case Study in Humanitarian Mapping, Remote Sensing, 8, 859, https://doi.org/10.3390/RS8100859, 2016.
Bates, P. D., Marks, K. J., and Horritt, M. S.: Optimal use of high-resolution topographic data in flood inundation models, Hydrol. Process., 17, 537–557, https://doi.org/10.1002/hyp.1113, 2003.
Besl, P. J. and McKay, N. D.: A method for registration of 3-D shapes, IEEE Trans. Pattern Anal. Mach. Intell., 14, 239–256, https://doi.org/10.1109/34.121791, 1992.
Blanc, J., Hall, J. W., Roche, N., Dawson, R. J., Cesses, Y., Burton, A., and Kilsby, C. G.: Enhanced efficiency of pluvial flood risk estimation in urban areas using spatial-temporal rainfall simulations, J. Flood Risk Manage., 5, 143–152, https://doi.org/10.1111/j.1753-318X.2012.01135.x, 2012.
Download
Short summary
This study provides a new method for flood documentation based on user-generated flood images. We demonstrate how flood elevation and building inundation depth can be derived from photographs by means of 3-D reconstruction of the scene. With an accuracy of 0.13 m ± 0.10 m, the derived building inundation depth can be used to facilitate damage assessment.
Altmetrics
Final-revised paper
Preprint