Articles | Volume 17, issue 7
https://doi.org/10.5194/nhess-17-1191-2017
https://doi.org/10.5194/nhess-17-1191-2017
Research article
 | 
14 Jul 2017
Research article |  | 14 Jul 2017

Direct local building inundation depth determination in 3-D point clouds generated from user-generated flood images

Luisa Griesbaum, Sabrina Marx, and Bernhard Höfle

Related authors

Wind during terrestrial laser scanning of trees: Simulation-based assessment of effects on point cloud features and leaf-wood classification
William Albert, Hannah Weiser, Ronald Tabernig, and Bernhard Höfle
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., X-G-2025, 25–32, https://doi.org/10.5194/isprs-annals-X-G-2025-25-2025,https://doi.org/10.5194/isprs-annals-X-G-2025-25-2025, 2025
E-TRAINEE: OPEN E-LEARNING COURSE ON TIME SERIES ANALYSIS IN REMOTE SENSING
M. Potůčková, J. Albrechtová, K. Anders, L. Červená, J. Dvořák, K. Gryguc, B. Höfle, L. Hunt, Z. Lhotáková, A. Marcinkowska-Ochtyra, A. Mayr, E. Neuwirthová, A. Ochtyra, M. Rutzinger, A. Šedová, A. Šrollerů, and L. Kupková
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-1-W2-2023, 989–996, https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-989-2023,https://doi.org/10.5194/isprs-archives-XLVIII-1-W2-2023-989-2023, 2023
Full four-dimensional change analysis of topographic point cloud time series using Kalman filtering
Lukas Winiwarter, Katharina Anders, Daniel Czerwonka-Schröder, and Bernhard Höfle
Earth Surf. Dynam., 11, 593–613, https://doi.org/10.5194/esurf-11-593-2023,https://doi.org/10.5194/esurf-11-593-2023, 2023
Short summary
Multi-sensor monitoring and data integration reveal cyclical destabilization of the Äußeres Hochebenkar rock glacier
Lea Hartl, Thomas Zieher, Magnus Bremer, Martin Stocker-Waldhuber, Vivien Zahs, Bernhard Höfle, Christoph Klug, and Alessandro Cicoira
Earth Surf. Dynam., 11, 117–147, https://doi.org/10.5194/esurf-11-117-2023,https://doi.org/10.5194/esurf-11-117-2023, 2023
Short summary
CHARACTERIZATION OF MORPHOLOGICAL SURFACE ACTIVITIES DERIVED FROM NEAR-CONTINUOUS TERRESTRIAL LIDAR TIME SERIES
D. Hulskemper, K. Anders, J. A. Á. Antolínez, M. Kuschnerus, B. Höfle, and R. Lindenbergh
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-2-W2-2022, 53–60, https://doi.org/10.5194/isprs-archives-XLVIII-2-W2-2022-53-2022,https://doi.org/10.5194/isprs-archives-XLVIII-2-W2-2022-53-2022, 2022

Related subject area

Databases, GIS, Remote Sensing, Early Warning Systems and Monitoring Technologies
Prediction of the volume of shallow landslides due to rainfall using data-driven models
Jérémie Tuganishuri, Chan-Young Yune, Gihong Kim, Seung Woo Lee, Manik Das Adhikari, and Sang-Guk Yum
Nat. Hazards Earth Syst. Sci., 25, 1481–1499, https://doi.org/10.5194/nhess-25-1481-2025,https://doi.org/10.5194/nhess-25-1481-2025, 2025
Short summary
Monitoring snow depth variations in an avalanche release area using low-cost lidar and optical sensors
Pia Ruttner, Annelies Voordendag, Thierry Hartmann, Julia Glaus, Andreas Wieser, and Yves Bühler
Nat. Hazards Earth Syst. Sci., 25, 1315–1330, https://doi.org/10.5194/nhess-25-1315-2025,https://doi.org/10.5194/nhess-25-1315-2025, 2025
Short summary
Satellite-based data for agricultural index insurance: a systematic quantitative literature review
Thuy T. Nguyen, Shahbaz Mushtaq, Jarrod Kath, Thong Nguyen-Huy, and Louis Reymondin
Nat. Hazards Earth Syst. Sci., 25, 913–927, https://doi.org/10.5194/nhess-25-913-2025,https://doi.org/10.5194/nhess-25-913-2025, 2025
Short summary
A methodology to compile multi-hazard interrelationships in a data-scarce setting: an application to the Kathmandu Valley, Nepal
Harriet E. Thompson, Joel C. Gill, Robert Šakić Trogrlić, Faith E. Taylor, and Bruce D. Malamud
Nat. Hazards Earth Syst. Sci., 25, 353–381, https://doi.org/10.5194/nhess-25-353-2025,https://doi.org/10.5194/nhess-25-353-2025, 2025
Short summary
An automated approach for developing geohazard inventories using news: Integrating NLP, machine learning, and mapping
Aydoğan Avcıoğlu, Ogün Demir, and Tolga Görüm
EGUsphere, https://doi.org/10.5194/egusphere-2025-7,https://doi.org/10.5194/egusphere-2025-7, 2025
Short summary

Cited articles

Abdullah, A. F., Rahman, A. A., and Vojinovic, Z.: LiDAR filtering algorithms for urban flood application: Review on current algorithms and filters test, in: ISPRS Archives (XXXVIII, Part3/W8), edited by: Bretar, F., Pierrot-Deseilligny, M., and Vosselman, G., Laser scanning 2009, Paris, France, 1–2 September 2009, 30–36, 2009.
Albuquerque, J., Herfort, B., and Eckle, M.: The Tasks of the Crowd: A Typology of Tasks in Geographic Information Crowdsourcing and a Case Study in Humanitarian Mapping, Remote Sensing, 8, 859, https://doi.org/10.3390/RS8100859, 2016.
Bates, P. D., Marks, K. J., and Horritt, M. S.: Optimal use of high-resolution topographic data in flood inundation models, Hydrol. Process., 17, 537–557, https://doi.org/10.1002/hyp.1113, 2003.
Besl, P. J. and McKay, N. D.: A method for registration of 3-D shapes, IEEE Trans. Pattern Anal. Mach. Intell., 14, 239–256, https://doi.org/10.1109/34.121791, 1992.
Blanc, J., Hall, J. W., Roche, N., Dawson, R. J., Cesses, Y., Burton, A., and Kilsby, C. G.: Enhanced efficiency of pluvial flood risk estimation in urban areas using spatial-temporal rainfall simulations, J. Flood Risk Manage., 5, 143–152, https://doi.org/10.1111/j.1753-318X.2012.01135.x, 2012.
Download
Short summary
This study provides a new method for flood documentation based on user-generated flood images. We demonstrate how flood elevation and building inundation depth can be derived from photographs by means of 3-D reconstruction of the scene. With an accuracy of 0.13 m ± 0.10 m, the derived building inundation depth can be used to facilitate damage assessment.
Share
Altmetrics
Final-revised paper
Preprint