Articles | Volume 17, issue 7
Nat. Hazards Earth Syst. Sci., 17, 1191–1201, 2017
https://doi.org/10.5194/nhess-17-1191-2017
Nat. Hazards Earth Syst. Sci., 17, 1191–1201, 2017
https://doi.org/10.5194/nhess-17-1191-2017

Research article 14 Jul 2017

Research article | 14 Jul 2017

Direct local building inundation depth determination in 3-D point clouds generated from user-generated flood images

Luisa Griesbaum et al.

Related authors

INFLUENCE OF SPATIAL AND TEMPORAL RESOLUTION ON TIME SERIES-BASED COASTAL SURFACE CHANGE ANALYSIS USING HOURLY TERRESTRIAL LASER SCANS
K. Anders, L. Winiwarter, H. Mara, R. C. Lindenbergh, S. E. Vos, and B. Höfle
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-2-2021, 137–144, https://doi.org/10.5194/isprs-annals-V-2-2021-137-2021,https://doi.org/10.5194/isprs-annals-V-2-2021-137-2021, 2021
Measurement of rock glacier surface change over different timescales using terrestrial laser scanning point clouds
Veit Ulrich, Jack G. Williams, Vivien Zahs, Katharina Anders, Stefan Hecht, and Bernhard Höfle
Earth Surf. Dynam., 9, 19–28, https://doi.org/10.5194/esurf-9-19-2021,https://doi.org/10.5194/esurf-9-19-2021, 2021
Short summary
TRAINING IN INNOVATIVE TECHNOLOGIES FOR CLOSE-RANGE SENSING IN ALPINE TERRAIN – 3RD EDITION
M. Rutzinger, K. Anders, M. Bremer, B. Höfle, R. Lindenbergh, S. Oude Elberink, F. Pirotti, M. Scaioni, and T. Zieher
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B5-2020, 243–250, https://doi.org/10.5194/isprs-archives-XLIII-B5-2020-243-2020,https://doi.org/10.5194/isprs-archives-XLIII-B5-2020-243-2020, 2020
INFLUENCE OF RANGING UNCERTAINTY OF TERRESTRIAL LASER SCANNING ON CHANGE DETECTION IN TOPOGRAPHIC 3D POINT CLOUDS
L. Winiwarter, K. Anders, D. Wujanz, and B. Höfle
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-2-2020, 789–796, https://doi.org/10.5194/isprs-annals-V-2-2020-789-2020,https://doi.org/10.5194/isprs-annals-V-2-2020-789-2020, 2020
HIGH-FREQUENCY 3D GEOMORPHIC OBSERVATION USING HOURLY TERRESTRIAL LASER SCANNING DATA OF A SANDY BEACH
K. Anders, R. C. Lindenbergh, S. E. Vos, H. Mara, S. de Vries, and B. Höfle
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-2-W5, 317–324, https://doi.org/10.5194/isprs-annals-IV-2-W5-317-2019,https://doi.org/10.5194/isprs-annals-IV-2-W5-317-2019, 2019

Related subject area

Databases, GIS, Remote Sensing, Early Warning Systems and Monitoring Technologies
Review article: Detection of actionable tweets in crisis events
Anna Kruspe, Jens Kersten, and Friederike Klan
Nat. Hazards Earth Syst. Sci., 21, 1825–1845, https://doi.org/10.5194/nhess-21-1825-2021,https://doi.org/10.5194/nhess-21-1825-2021, 2021
Short summary
Long-term magnetic anomalies and their possible relationship to the latest greater Chilean earthquakes in the context of the seismo-electromagnetic theory
Enrique Guillermo Cordaro, Patricio Venegas-Aravena, and David Laroze
Nat. Hazards Earth Syst. Sci., 21, 1785–1806, https://doi.org/10.5194/nhess-21-1785-2021,https://doi.org/10.5194/nhess-21-1785-2021, 2021
Short summary
HazMapper: a global open-source natural hazard mapping application in Google Earth Engine
Corey M. Scheip and Karl W. Wegmann
Nat. Hazards Earth Syst. Sci., 21, 1495–1511, https://doi.org/10.5194/nhess-21-1495-2021,https://doi.org/10.5194/nhess-21-1495-2021, 2021
Short summary
Opportunities and risks of disaster data from social media: a systematic review of incident information
Matti Wiegmann, Jens Kersten, Hansi Senaratne, Martin Potthast, Friederike Klan, and Benno Stein
Nat. Hazards Earth Syst. Sci., 21, 1431–1444, https://doi.org/10.5194/nhess-21-1431-2021,https://doi.org/10.5194/nhess-21-1431-2021, 2021
Short summary
Online urban-waterlogging monitoring based on a recurrent neural network for classification of microblogging text
Hui Liu, Ya Hao, Wenhao Zhang, Hanyue Zhang, Fei Gao, and Jinping Tong
Nat. Hazards Earth Syst. Sci., 21, 1179–1194, https://doi.org/10.5194/nhess-21-1179-2021,https://doi.org/10.5194/nhess-21-1179-2021, 2021
Short summary

Cited articles

Abdullah, A. F., Rahman, A. A., and Vojinovic, Z.: LiDAR filtering algorithms for urban flood application: Review on current algorithms and filters test, in: ISPRS Archives (XXXVIII, Part3/W8), edited by: Bretar, F., Pierrot-Deseilligny, M., and Vosselman, G., Laser scanning 2009, Paris, France, 1–2 September 2009, 30–36, 2009.
Albuquerque, J., Herfort, B., and Eckle, M.: The Tasks of the Crowd: A Typology of Tasks in Geographic Information Crowdsourcing and a Case Study in Humanitarian Mapping, Remote Sensing, 8, 859, https://doi.org/10.3390/RS8100859, 2016.
Bates, P. D., Marks, K. J., and Horritt, M. S.: Optimal use of high-resolution topographic data in flood inundation models, Hydrol. Process., 17, 537–557, https://doi.org/10.1002/hyp.1113, 2003.
Besl, P. J. and McKay, N. D.: A method for registration of 3-D shapes, IEEE Trans. Pattern Anal. Mach. Intell., 14, 239–256, https://doi.org/10.1109/34.121791, 1992.
Blanc, J., Hall, J. W., Roche, N., Dawson, R. J., Cesses, Y., Burton, A., and Kilsby, C. G.: Enhanced efficiency of pluvial flood risk estimation in urban areas using spatial-temporal rainfall simulations, J. Flood Risk Manage., 5, 143–152, https://doi.org/10.1111/j.1753-318X.2012.01135.x, 2012.
Download
Short summary
This study provides a new method for flood documentation based on user-generated flood images. We demonstrate how flood elevation and building inundation depth can be derived from photographs by means of 3-D reconstruction of the scene. With an accuracy of 0.13 m ± 0.10 m, the derived building inundation depth can be used to facilitate damage assessment.
Altmetrics
Final-revised paper
Preprint