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Abstract. In recent years, the number of people affected by
flooding caused by extreme weather events has increased
considerably. In order to provide support in disaster recov-
ery or to develop mitigation plans, accurate flood informa-
tion is necessary. Particularly pluvial urban floods, charac-
terized by high temporal and spatial variations, are not well
documented. This study proposes a new, low-cost approach
to determining local flood elevation and inundation depth of
buildings based on user-generated flood images. It first ap-
plies close-range digital photogrammetry to generate a geo-
referenced 3-D point cloud. Second, based on estimated cam-
era orientation parameters, the flood level captured in a single
flood image is mapped to the previously derived point cloud.
The local flood elevation and the building inundation depth
can then be derived automatically from the point cloud. The
proposed method is carried out once for each of 66 different
flood images showing the same building façade. An overall
accuracy of 0.05 m with an uncertainty of ±0.13 m for the
derived flood elevation within the area of interest as well as
an accuracy of 0.13 m± 0.10 m for the determined building
inundation depth is achieved. Our results demonstrate that
the proposed method can provide reliable flood information
on a local scale using user-generated flood images as input.
The approach can thus allow inundation depth maps to be
derived even in complex urban environments with relatively
high accuracies.

1 Introduction

Worldwide the number of extreme weather events has in-
creased in recent years (CRED – Centre for Research on the
Epidemiology of Disasters, 2016). The reasons for this accu-
mulation of flood events are numerous: on the one hand, cli-
mate change might be responsible for variations in weather
events. On the other, land-use changes such as increased
ground surface sealing are leading to uncontrolled over-
land runoff and rainwater drainage, especially in urban areas
(Douglas et al., 2010; Mason et al., 2014). Due to spread-
ing urbanization, more and more of the areas at high risk of
flooding have become populated, for example regions close
to rivers or at the foot of hills. Since this leads to larger num-
bers of people being affected in terms of physical or mon-
etary damages, or even human costs, there is a major need
for urban flood-risk management (Zevenbergen et al., 2008;
Hammond et al., 2013; Iervolino et al., 2015). Information
about previous floods, such as flood elevation and local in-
undation depths, are of high relevance for mitigation and re-
silience planning to assess and minimize the impact of disas-
trous events.

Urban flood events can be differentiated according to their
major causes and categorized into the following groups: flu-
vial flooding (e.g., flash floods, river-based urban floods),
groundwater flooding, coastal flooding, and pluvial urban
flooding. Thus far, the main traditional data sources for mon-
itoring and documenting floods are gauge-system measure-
ments; forecasted and measured precipitation rates; and in-
formation derived from remote-sensing techniques, such as
satellite imagery or light detection and ranging (lidar) (Lo et
al., 2015).
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Pluvial floods are often triggered by blocked or overbur-
dened sewage systems in combination with heavy rainfalls
(Maksimović et al., 2009; Hammond et al., 2013). They are
highly dynamic phenomena with high spatial and temporal
variation (Blanc et al., 2012). Most of the abovementioned
traditional techniques are, thus, not suitable because of their
relatively coarse spatial and temporal resolution. Gauge sys-
tems usually do not cover a city’s whole street network, and
precipitation rates are generally not sufficient for the simu-
lation of local pluvial floods. Furthermore, detailed remote-
sensing data are typically not available at short notice. Thus,
many studies utilize remote-sensing data in the aftermath of
an event for post-event flood simulation in order to retrieve
the deluge extent or flood-water depth of previous events
(Bates et al., 2003; Schumann et al., 2008, 2011; Abdullah
et al., 2009; Chen et al., 2009; Merkuryeva et al., 2015).
Only a few studies focus on flood-level and depth determi-
nation from flood data acquired during the event itself (Mat-
gen et al., 2007; Mason et al., 2010, 2014; Iervolino et al.,
2015). Matgen et al. (2007) report a root mean square er-
ror (RMSE) of 0.41 m for flood elevation along a 1 km river
section by combining high-precision digital elevation mod-
els (DEMs) with flood extent maps from synthetic aperture
radar (SAR) data. Iervolino et al. (2015) derive local building
inundation from SAR data with accuracies of 0.24–0.81 m.
However, the Flood Loss Estimation Model for the Private
Sector (FLEMOps) requires building inundation depth ac-
curacies around 0.10 m for flood damage assessment, since
it suggests damage classification according to the inundation
depth of a building in steps of 0.20 to 0.50 m (Thieken, 2008).

Thus, in order to improve flood disaster management in
response to urban flooding, more detailed information on
pluvial urban floods in terms of spatial and temporal reso-
lution is necessary (Hammond et al., 2013; Merkuryeva et
al., 2015). Emergency response or recovery actions in ur-
ban areas – such as damage assessment, flood simulation,
flood map generation, or flood-risk analysis – require par-
ticularly detailed flood information at building level. A 2-
D flood line often does not suffice to depict the full spatial
impact of flooding due to the highly complex structure and
topology of cities and towns. Thus, 3-D flood information
can enhance flood-risk management. The combination of the
high temporal dynamics of the phenomenon and the need for
high-spatial-resolution, on-demand, in situ data make it par-
ticularly difficult to measure urban flooding. It is therefore
necessary to develop new methods to generate water-level
information about pluvial urban floods using available high-
resolution data (Price and Vojinovic, 2008). One attempt to
achieve higher resolution and easier availability of pluvial
flood data in urban areas is to apply close-range photogram-
metry (CRP), i.e., a sequence of digital image processing
methods based on computer vision algorithms (e.g., struc-
ture from motion: SfM), and photogrammetric approaches
(e.g., dense matching: DM) to derive 3-D point clouds or
high-resolution digital terrain models (DTMs) (Meesuk et

al., 2015; Shaad et al., 2016). Smith et al. (2014) demon-
strate the potential of using photogrammetric point clouds for
the reconstruction of high-water marks of a flash flood event
at a river channel. However, in urban areas, such high-water
marks (i.e., clearly visible flood relics like mud lines) are typ-
ically removed very quickly after the flood event. Thus, typ-
ically only very few single images document the actual flood
elevation in urban settings.

To complement traditional documentation systems and to
tackle their temporal, spatial, or cost-related limitations, a
possible approach can be the use of user-generated content
(UGC), such as ambient geographic information (AGI) (Ste-
fanidis et al., 2013) or volunteered geographic information
(VGI) (Goodchild, 2007). The increasing distribution of mo-
bile devices, in conjunction with the ever-expanding use of
Web 2.0, has led to more virtual participation in flood mitiga-
tion activities as well as in flood event documentation (Fazeli
et al., 2015; Klonner et al., 2016). Subsequently, many ur-
ban flood events are now indirectly documented by means of
user-generated, partially geo-tagged flood images, posted on
social media platforms. Various studies investigate the feasi-
bility and benefits of using these new data sources for flood
management (Fazeli et al., 2015). McDougall and Temple-
Watts (2012) and Fohringer et al. (2015) successfully demon-
strate the potential of VGI data for flood reconstruction by
manual in-field measurements of the flood elevation given
in flood images. Other studies propose semi-automatic ap-
proaches to derive the flood extent or level shown in flood
images: Triglav-Čekada and Radovan (2013) map the extent
of flooded areas based on geo-located flood images by ap-
plying a method where the absolute orientation of an image
is found by fitting that image to the superimposed 3-D points
of a DTM. Narayana et al. (2014) propose a technique to de-
termine building inundation depth by matching a manually
traced flood line from a given flood image to a respective
non-flood image with the help of corresponding image fea-
tures. However, this methodology has not been tested in a
real-world setup and requires a priori knowledge about the
buildings’ height in order to determine the inundation depth.
Furthermore, the approach uses information derived from 2-
D imagery, which has inherent restrictions in terms of per-
spective.

From these studies it emerges that there is still a lack of au-
tomatic approaches that allow singular flood-event-based in-
formation to be extracted from unstructured user-generated
images in order to reconstruct flood parameters at a local
building scale in 3-D. Such an approach can effectively sup-
port the work of local authorities and disaster managers by
complementing their manual flood measurements. These are
usually captured only on the basis of visual flood markers,
such as mud lines at façades, in order to facilitate damage
assessment and flood-risk analysis. The aim of our study is
to develop a low-cost method to extract local flood eleva-
tion as well as building inundation depth in urban settings on
the basis of ordinary user-generated photographs. This semi-
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Figure 1. Overview map of the study area, including the measurement setup for acquisition of the terrestrial laser scanning (TLS) data and
the camera positions of the non-flood images.

automatic workflow includes automatic flood-level detection
from flood images, as well as a new and innovative way to
integrate singular, i.e., flood-event-based, information pro-
vided by a single flood image into a photogrammetric point
cloud by extending existing methods in order to reconstruct
the flood elevation. In contrast to previous photogrammet-
ric approaches where two or more perspectives are necessary
to reconstruct a given object in 3-D, our method is a two-
stage approach, where (1) the 3-D scene is reconstructed in-
dependent of flood images (before or after the flood event)
and (2) the single flood image information is integrated into
the 3-D scene in order to reconstruct the flood level in 3-D.

2 Study area

The area chosen for study is located at the Karl Theodor
Bridge in Heidelberg, Germany, on the river Neckar at
49.41334◦ N, 8.70996◦ E. The Neckar flows northwards be-
tween the Swabian Jura and the Black Forest into the Rhine
River at Mannheim, and it drains major parts of the German
federal state of Baden-Württemberg. The closest gauge sta-
tion is located about 4 km upstream of the study area. The
chosen area (Fig. 1) is characterized by a declined road sec-
tion parallel to the river that leads below the bridge. It is con-
tinually at risk of river-based urban floods and regularly in-
undated.

The flood event examined in this study occurred on
30 May 2016. Several days of heavy rainfall led to gauge
measurements reaching almost 430 cm (200 cm is the nor-
mal gauge reading). According to the discharge curve, the
peak water elevation was noted between 16:00 and 23:00 LT
(local time), after which the gauge reading started to de-
cline (LUBW – Landesanstalt für Umwelt, Messungen und

Naturschutz Baden-Württemberg, 2016). The area experi-
enced an overflow of the riverbed, which caused the inun-
dation of the nearby roads Neckarstaden and Am Hackteufel
(Fig. 1). The flooding reached the facing side of the adjacent
houses, which comprises the central object of interest in this
research.

3 Data sets

3.1 Flood images

Of primary importance for this study are flood images show-
ing the inundated object of interest, photographed during the
flood event on the 30 May 2016. Image acquisition took
place using two mobile devices, which are typically used
for imagery contributed to social media, from different ran-
domly chosen and accessible positions around the object of
interest: (1) at around 16:00 and 19:30 LT with a Samsung
Galaxy A3 mobile phone camera with image resolutions of
3264×2448 pixels and 3264×1836 pixels and (2) at around
18:30 LT on the same day with a Samsung Galaxy S2 mo-
bile phone camera with a resolution of 2560× 1920 pixels.
In total, 66 flood images showing the object of interest were
captured using automatically set camera parameters.

3.2 Non-flood images

Terrestrial non-flood images showing the object of inter-
est were captured in June 2016, after the flood event had
subsided, with a Sony Alpha 57 16-megapixel single-lens
translucent (SLT) camera, which provides images with a res-
olution of 4912× 3264 pixels. The camera settings were au-
tomatically determined by the device. Image acquisition took
place with the camera’s perspective converging towards the
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Table 1. Manual in-field inundation depth measurements at the
seven reference positions at the study site, as given in Fig. 2.

Reference position Manual in-field inundation
position depth measurement [m]

R1 0.55
R2 0.70
R3 0.94
R4 0.96
R5 1.02
R6 1.17
R7 1.17

study area and at an approximate distance of 3.5 m between
the individual camera positions (Fig. 1). At almost all of the
25 camera positions, two or more images were required to
capture the whole building’s façade. In total, 63 non-flood
images were captured.

3.3 Reference data

A high-end state-of-the-art terrestrial laser scanning (TLS)
measurement system, Riegl VZ-400, is used to provide ref-
erence data for the analyses. The TLS data were captured
in May 2016, before the severe flooding had occurred. The
scanning system operates with a wavelength of 1550 nm and
a beam divergence of 0.35 mrad. Range precision (repeata-
bility) and accuracy (conformity of measurements to actual
geometry) are 3 and 5 mm at 100 m, respectively, as given by
the manufacturer’s data sheet (Riegl, 2016). The scene was
captured from four different scanning positions. When com-
bined into a single data set, i.e., when co-registered, the over-
lapping scans result in a point cloud with a total of 29 million
measurements within the area of interest. The registration ac-
curacy is determined via 64 point pairs manually picked in
the individual scans. The average point pair distances for x,
y, and z are 0.001 m, 0.001 m, and 0.000 m, with a standard
deviation of 0.020 m, 0.010 m, and 0.010 m, respectively.

The reference absolute flood elevation at the given time of
the flood event is determined on the basis of a sequence of
images of a nearby staff gauge (ca. 20 m to the object of in-
terest). The median water-level elevation derived by averag-
ing this image sequence is Zw,TLS = 153.83 m a.s.l., with an
amplitude of±0.10 m reflecting water undulation and waves.

Additionally, in the aftermath of the flood event, the build-
ing inundation depth is also measured in the field at seven
distinct positions along the building’s façade (Fig. 2). An ex-
ample flood image captured at 16:00 LT serves as a reference
for the manual measurements. Table 1 gives an overview of
the captured inundation depth values. Since the mean dis-
tance between the minimally and maximally measured inun-
dation depths for all seven positions is 0.10 m, the theoretical
uncertainty of the measurements is ±0.05 m.

Further complementary reference data for the inundation
depth are provided by independent expert measurements
within the TLS point cloud. Eight experts in 3-D point
cloud processing from the GIScience Research Group mea-
sured inundation depth values at the seven reference posi-
tions (Fig. 2).

4 Methods

The aim of the proposed method is to derive from a single
user-generated flood image a set of 3-D points representing
(1) the absolute flood elevation (Zw) within the area of inter-
est and (2) information about the local building inundation
depth (h). The approach is based on free and open-source
software solutions and is designed to work based on crowd-
sourced images of local-scale urban flood events. It succeeds
where other remote-sensing techniques fail due to the unsuit-
ability of their spatial and temporal resolutions. The work-
flow given in Fig. 3 depicts all major steps of the methodol-
ogy.

4.1 Data pre-processing

For each of the 66 flood images, a dense 3-D CRP point cloud
is derived from a combination of (1) the 63 non-flood input
images and (2) the single flood image. A CRP approach gen-
erally comprises multiple steps. After detecting and match-
ing similar features in overlapping images, the relative posi-
tions of the images and the exterior orientation of the cam-
eras used are estimated. At the same time, bundle block ad-
justment serves to optimize these camera parameters before
3-D coordinates of the matched features are derived via ray
intersection, resulting in a sparse point cloud. As a final step,
dense matching is performed, whereby 3-D coordinates of all
visible pixels are derived (Eltner et al., 2016). The applied
CRP methods provide camera positions and orientations for
all of the employed images. In order to provide a highly de-
tailed evaluation of our results, we geo-reference the CRP
point cloud based on seven distinct and equally spread-out
ground control points (GCPs) derived from the highly accu-
rate TLS point cloud. Fine registration is then performed with
the iterative closest point (ICP) algorithm (Besl and McKay,
1992; Chen and Medioni, 1992) to improve the alignment
result. The parameters used to assess the overall quality of
the photogrammetric point clouds in comparison to the TLS
reference data are explained below.

1. The alignment quality of the photogrammetric point
cloud to the TLS reference point cloud is based on the
nearest neighboring point between the two point clouds.

2. Completeness and point density are individually deter-
mined for the façade plane as well as the terrain plane of
the 3-D point cloud. The completeness is calculated as a
ratio of the number of 0.20 m× 0.20 m cells with a min-
imum of one point in relation to the full count of cells

Nat. Hazards Earth Syst. Sci., 17, 1191–1201, 2017 www.nat-hazards-earth-syst-sci.net/17/1191/2017/



L. Griesbaum et al.: Building inundation depth determination in 3-D point clouds 1195

Figure 2. Example flood image with reference positions for manual in-field inundation depth measurements at the study site indicated with
red arrows.

within the area of interest (Rosnell and Honkavaara,
2012). The point density is defined as the median of the
point count of all 0.20 m× 0.20 m cells (Kraus et al.,
2006).

4.2 2-D waterline detection

The 2-D waterline can be described as the demarcation line
between the water and those parts of the image where ob-
jects remain above water. In order to trace this demarca-
tion line, the image pixels are categorized into two relevant
classes, designated as water and background. To this end,
two different techniques are proposed: (1) a semi-automatic
approach using a supervised machine-learning algorithm for
image segmentation and (2) manual image classification. The
manual classification results serve as ground truth data for
the evaluation of the automated segmentation.

Similar to the work of Bruinink et al. (2015), the semi-
automated segmentation approach is based on a trained
random forest (RF) classifier. As conducted by Marx et
al. (2016), 10 % of the available flood images are randomly
chosen as training data before the whole data set of 66 flood
images is segmented by the algorithm. The resulting prob-
ability maps are further processed by applying a probabil-
ity threshold (= 60 %) to assign each pixel to a class, thus
generating binary images for the classes of interest (Fig. 4).
Residual salt-and-pepper effects as well as small data gaps
are removed via a succession of binary opening and clos-
ing. The water body is then identified by the system as being
the largest connected component of pixels classified as water.
After semi-automatic as well as manual image segmentation
and extraction of water areas, the demarcation line between

water and background, i.e., the 2-D waterline, is identified as
a sequence of image pixel coordinates. For each pixel col-
umn, the image-based coordinates of the upper-most pixel
belonging to the water class is assigned as part of the 2-D
waterline (Bruinink et al., 2015).

4.3 2-D–3-D mapping

In order to derive the absolute flood elevation (Zw) within
the area of interest as well as the inundation depths along the
building’s façade (h) with full 3-D information, the derived
2-D waterline image pixel coordinates are mapped to the re-
spective 3-D point cloud. This 2-D–3-D mapping of the 2-D
waterline pixels is based on photogrammetric principles to
reconstruct 3-D scenes and thus dependent on the individ-
ual flood image’s camera position and orientation. Knowing
these, the relationship between a 3-D point coordinate (x, y,
z) in the dense CRP point cloud and the 2-D coordinates of its
projection onto an image (u, v) can be formulated as shown
in Eq. (1) (Furukawa and Ponce, 2010).

d

 u

v

1

= P


x

y

z

1

 (1)

P is a 3× 4 projection matrix, and d denotes the depth of
a point in relation to the image’s camera position C. P and
C are readily available for each image because the CRP ap-
proach was applied to prepare the initial 3-D point clouds.
In order to reconstruct singular image features such as the
2-D waterline, which is only given in one flood image, addi-
tional (external) geometrical information is applied to derive
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Figure 3. Workflow of this study, depicting the individual opera-
tions of the proposed methodology. Blue indicates operations exe-
cuted on point cloud level (3-D); yellow indicates operations exe-
cuted on image level (2-D).

the depth d and, thus, uniquely reconstruct that feature in
3-D. In this study, the additional geometrical information is
already known because the targeted 3-D water-level points
necessarily lie within the building’s façade. Consequently,
the final 3-D water-level points can be located at the inter-
section point between the calculated line of sight resulting
from Eq. (1) and the plane of the façade.

Therefore, the building’s façade needs to be identified
within the point cloud first. To this end, the 3-D point cloud is
disjointed into segments representing single planes. Façades
can be identified by means of feature constraints such as size
(they are usually the biggest, highest, or longest segments),
direction (based on the vertical orientation of walls), and
topology (the façade plane typically intersects with the ter-
rain plane) (Pu and Vosselman, 2006; Xiao et al., 2008; Serna
et al., 2016). In accordance with these criteria for façade
identification, in this study the façade is defined as being the
largest connected vertical plane segment within the area of
interest.

4.4 Flood elevation determination

Since the water’s surface can be understood as a continuous
rather than a discrete phenomenon, spatially isolated points
are eliminated by fitting a linear least-squares model with a
random sample consensus (RANSAC) algorithm to the pre-
liminarily derived 3-D water-level points. The measured wa-

ter undulation of 0.10 m serves as the threshold. The final set
of 3-D water-level points is then used for approximation of
flood elevation within the area of interest. Due to the extent
of the study area (ca. 30 m× 60 m) and the flood’s charac-
teristics, the water surface is considered to be perfectly hori-
zontal along the building’s façade in the case of a calm water
surface. To this end, the statistical distribution of z values
of all 3-D water-level points is assumed to reflect the ac-
tual flood elevation. The quality of the derived flood eleva-
tion Zw is then compared to and evaluated against the refer-
ence flood elevation as derived from the nearby staff gauge
(Zw,TLS = 153.83 m a.s.l.± 0.10 m).

4.5 Building inundation depth determination

The inundation depth is determined by calculating the dis-
tance between the water’s surface, i.e., the water-level points
derived in the previous step, and the corresponding terrain
elevation at the seven reference positions (Fig. 2). In this
study, use of a raster DTM as terrain reference representing
the ground surface is demonstrated; however, it can be ap-
plied to further terrain model types, such as points, planes, or
meshes.

In order to account for data gaps, as a preparatory step
for the DTM generation, terrain points are identified. To this
end, a minimum raster at a much coarser scale – namely with
a cell size of 5 m× 5 m, exceeding the size of the data gaps –
serves as the initial terrain model. All points within a vertical
buffer zone of this coarse DTM are assigned as terrain points.
In this case, a threshold of 0.5 m is found to produce the most
stable result. The remaining terrain points serve, then, as in-
put for raster generation with a cell size of 0.2 m× 0.2 m and
are based on the minimum z value within each cell.

The building inundation depth can be calculated as the ver-
tical offset between the terrain reference and each of the de-
rived 3-D water-level points. In order to compare and eval-
uate these derived depth measurements against the manual
field measurements (hfield,R1–R7), captured at seven refer-
ence positions, only measurements within a horizontal range
of ±20 cm of each reference position are considered.

5 Results and discussion

5.1 Pre-processing

After geo-referencing of the 66 point clouds, each CRP point
cloud is compared to the TLS reference data. This step is
taken to ensure detailed validation of the final results. It re-
vealed an average cloud-to-cloud (C2C) median distance of
0.02 m and an average completeness of 37.6 % at the façade
and 87.6 % at the terrain (Table 2). These completeness rates
are mainly based on data gaps due to occlusion effects caused
by parking cars. In summary, the photogrammetric point
cloud lacks completeness at a few regions of interest, i.e., ter-
rain and façade, yet shows satisfactory performance concern-
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Figure 4. Segmentation results of two different flood images (top line: precision= 99.6 %, recall= 95.6 %; bottom line: precision= 98.5 %,
recall = 54.3 %). (a, e) depict the original images. (b, f) show the probability maps after RF classification. (c, g) are the binary images of the
finally classified water body after largest-component analysis. (d, h) show subsets of the extracted 2-D waterlines.

ing geo-referencing, which is important only for validation
of the results. Therefore, these findings are to be considered
when discussing the overall inundation results.

5.2 2-D waterline detection

The image segmentation resulted in binary images represent-
ing the extracted water body (Fig. 4). The average classifi-
cation precision of all images for the water class is 98.5 %,
and the average recall is 83.7 %. This means that the de-
tected water pixels are classified with a high degree of preci-
sion, though not all actual water areas are identified as such.
Three major aspects are responsible for producing values be-
low 80.0 %: (1) the water body shown in the image is not
represented by one connected component but rather split into
parts by artifacts like street lamps because of the photogra-
pher’s perspective. Thus, some parts of the water body are
left out of consideration (Fig. 4g). (2) Images captured be-
tween 18.30 and 19.40 show shadowing effects on the water’s
surface due to the zenith angle of the sun, which negatively
affected the classification. (3) Shallow water or wet surfaces,
such as on the wall of a building or bridge pillars caused by
waves, are less likely to be classified correctly (Fig. 4h). Gen-
erally, images of higher resolution and taken from a frontal
perspective in relation to the object of interest, as well as with
higher contrast and brightness, tend to yield a better outcome
during segmentation.

The overall segmentation results of the applied image clas-
sification workflow showed similar results to those reported
by Bruinink et al. (2015), with an average precision of 99.2 %
and a recall of 91.0 %. They studied nine images captured
by experts in order to derive staff gauge measurements from
these images. The aim of the approach presented here, how-
ever, was to make use of user-generated flood images in or-
der to extract the water level at urban structures and, thus, to
handle a much broader range of input images. Crowdsourced
image pre-processing, such as pre-selecting those flood im-

ages which are most suitable, could be beneficial to the out-
come, since it can help to eliminate unsuitable images of low
contrast or brightness as well as blurry ones (Lo et al., 2015).

5.3 2-D–3-D mapping

The 2-D–3-D mapping process results in a reconstructed set
of 3-D point coordinates indicating the flood level that is rep-
resented by the 2-D waterline shown in the flood image. The
proposed method allows reconstruction of a 3-D point for
each pixel and, thus, a dense 3-D representation of the 2-D
waterline independent of the given point density of the pho-
togrammetric 3-D point cloud.

The performance of the proposed 2-D–3-D mapping ap-
proach is influenced by the estimation of camera parameters
done in the course of the CRP process. A low accuracy for the
derived camera location and orientation will consequently re-
sult in a low accuracy for the waterline reconstruction. Also,
objects in front of the considered façade (e.g., cars or street
lamps) can lead to misplacement of 3-D water-level points
because the 2-D waterline along these artifacts does not lie
within the same 3-D plane as the relevant façade. They will
be erroneously projected onto the façade plane during the 2-
D–3-D mapping process.

Hence, the individual image characteristics are influencing
factors insofar as they influence (1) the CRP process and thus
the estimation of camera location and orientation and (2) the
clearness of the 2-D waterline pixels. Some image character-
istics (e.g., artifacts in the foreground of the image) are more
troublesome than others when seeking to obtain reliable and
accurate results. These could be filtered via user interaction,
by making use of participatory sensing or through crowd-
sourced approaches (Albuquerque et al., 2016).
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Table 2. Quality indicators of the photogrammetric point cloud registration in comparison to the TLS point cloud.

Quality indicator TLS Photogrammetric approach

Median C2C distance [m] Reference 0.02

Façade Terrain Façade Terrain

Completeness [%] 93.2 66.8 87.6 37.6

Mean point density [points per 0.2 m× 0.2 m raster cell] 1909.4 822.8 91.2 18.3

5.4 Flood elevation determination

The complete set of 3-D water-level points sums up to
10 347 individual measurements representing the water sur-
face along the building’s façade. These points are based on
ground truth data from all input images (n= 66). The me-
dian flood elevation Zw,GT is 153.78 m a.s.l. with a mean
deviation (MD) from the median of ±0.08 m (Fig. 5a).
In comparison to the TLS reference flood elevation value
and under consideration of error propagation, the overall
accuracy of the derived flood elevation measurements is
given as 0.05 m± 0.13 m. Figure 5b shows that more than
80 % (54 of 66 images) of the images result in a median
water-level elevation within the range of the TLS reference
(153.83 m a.s.l.± 0.10 m). Only four images result in flood
elevation values outside the wave movements of ±0.10 m
from the derived median flood elevation (Zw). The slightly
lower accuracy of 0.05 m can partly be explained by the geo-
referencing accuracy of the CRP point cloud, with a median
C2C of 0.02 m.

With regard to the natural undulation and waves of the
water surface (±0.10 m), the accuracy of ≤ 0.10 m obtained
from the derived flood elevation values is considered a sat-
isfying result. In comparison, Smith et al. (2014) derived
a mean absolute difference of 0.29 m between high-water
marks indicated in a photogrammetric point cloud and differ-
ential global navigation satellite system (dGNSS) measure-
ments, whereby the water marks were derived from two or
more images at a time. The proposed method in our study,
however, only requires one flood image at a time and, thus,
allows more flexibility in terms of flood image collection.

5.5 Building inundation depth determination

The final inundation depth results are achieved after calcu-
lating the elevation difference between the water-level points
and the DTM. The derived depths depend equally on the ac-
curacy of (1) the water-level points and (2) the topography
of the respective terrain. Since the topography might change
considerably along the façade (e.g., a declining road) but
not the water level, descriptive statistics – such as minimum,
maximum, or mean inundation – need to be taken with cau-
tion. The determined depths give rather selective measure-
ments at certain positions along the building’s façade.

The inundation depth findings are compared to the man-
ual field measurements. This results in an accuracy of
0.13 m± 0.10 m for 533 points lying within the ranges of
the seven reference positions. Additionally, expert measure-
ments taken in the TLS point cloud are evaluated in the
same way. The overall accuracy of the inundation depth de-
rived by the experts is 0.07 m± 0.09 m for 56 points in total
(Fig. 6). Generally, the expert measurements show slightly
more-accurate depth results than the ones derived from the
automatic method, especially for positions 1, 6, and 7, where
only few terrain points can be found and thus outlier val-
ues are more influential. Experts, however, can account for
micro-topography or other irregularities in order to avoid
miscalculations due to artifacts or data gaps. Furthermore,
it has to be considered that both the in-field measurements
and the expert measurements are based on the same flood
image, whereas the results demonstrated by the automatic
approach rely upon a series of 66 different flood images in-
dicating slightly different flood elevations due to waves. All
in all, it can be concluded that experts can be better at in-
corporating irregularities due to their experience. However,
computer-based measurements benefit from a more system-
atic, objective, and reproducible approach that is not subject
to human error and interpretation. Furthermore, it is found
that the automatic approach can nonetheless achieve a simi-
lar accuracy to that of the experts but with the additional ad-
vantage of being much more time-efficient. A combination
of both approaches, for example a standardized automatic
approach with interactive user input for quality assessment,
could be a beneficial enhancement of the methodology. In
comparison to building inundation depth estimations based
on high-resolution SAR data with accuracy values between
0.24 and 0.81 m (Iervolino et al., 2015), the results given
in this study suggest that user-generated flood photographs
can serve as an alternative or complementary data source for
local building inundation depth determination at a smaller
scale.
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Figure 5. Distribution of flood elevation values in comparison to the TLS reference flood elevation value Zw,TLS from all input flood images
(a) based on all single points and (b) aggregated per image.

Figure 6. Derived inundation depth accuracy and precision of the
proposed method (blue) and expert measurements (magenta) given
in comparison to the water movement (cyan).

6 Conclusions

In this study we showed the applicability and benefits of user-
generated flood images for the purpose of documenting local
building inundation. To this end, we developed a method to
derive the local inundation depth within a 3-D point cloud
based on user-generated flood images. The aim was to de-
termine the accuracy of this proposed workflow concerning
the derived flood elevation as well as the resulting inundation
depths at a local building scale.

The results of this study have shown that the developed
methodology is able to obtain measurements of local flood
elevation and building inundation depth to within an accu-
racy of < 0.20 m. The overall accuracy is 0.05 m± 0.13 m for

flood elevation and 0.13 m± 0.10 m for the local building in-
undation depth. It is also shown that the method is applicable
for crowdsourced images captured in an unorganized man-
ner. Moreover, the measurements taken by experts revealed
that the proposed method produces results almost as accurate
as those provided by human experts. The main advantage
of the semi-automatic segmentation process is its time effi-
ciency and, thus, the possibility of processing multiple flood
images to receive more robust inundation results.

The key findings of this study can be summarized in the
following points. (1) A satisfactory accuracy of local flood
elevation and building inundation depth determination can be
achieved using the proposed workflow. Under consideration
of the natural fluctuation of the water surface (here±0.10 m),
the final overall precision of the method (±0.13 m) is only
slightly less precise than the inherent uncertainty of the phe-
nomenon itself. (2) The extraction of the 2-D waterline from
the provided flood image has a major influence on the accu-
racy of the final results. It is, thus, recommended that the im-
age segmentation process be stabilized by pre-selecting the
available flood images according to their individual image
characteristics. Images with low contrast, especially in wet
areas along the façade, tended to result in a less accurate 2-D
waterline.

In comparison to other studies using, for example, high-
resolution SAR data for inundation depth determination, it
has been shown that user-generated images can serve as an
alternative or complementary data source to examine the ef-
fects of flooding on a very local scale. Our approach is, thus,
considered beneficial for applications such as flood damage
assessment, or resilience planning, and more generally all re-
search dealing with urban floods. It delivers a low-cost ap-
proach for automatically detecting the flood elevation and in-
undation depth indicated in a flood image in 3-D, and it does
not rely on in situ estimations. Thus, the implementation of
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the provided concept in the form of a web service or mobile
app can be beneficial for local authorities, disaster managers,
engineers, and insurance assessors in order to facilitate flood
disaster management. Future investigations should be done in
the field of data integration of already-existent data sources,
namely non-flood images. Depending on computational re-
sources, the service could then allow near-real-time appli-
cation as soon as flood images are available. Moreover, the
analysis of a much broader data set is manageable while not
necessarily requiring fieldwork. Furthermore, the methodol-
ogy can be adapted to various other use cases where only
singular image information is given.

Data availability. Please contact the authors in order to access the
underlying data sets as well as the source code. At the moment we
do not have an operational software package available because in
our pioneer study we focused on assessing the general feasibility
rather than developing the software itself.

Author contributions. All authors worked on the idea and the
framework of this study. LG and SM did data capturing in the field.
LG carried out the experiments and developed the code model. LG
prepared the manuscript with contributions of BH. All authors read
and approved the final paper.

Competing interests. The authors declare that they have no conflict
of interest.

Acknowledgements. This work was supported by the Heidel-
berg Institute for Geoinformation Technology (HeiGIT) and the
Heidelberg Academy of Sciences and Humanities (HAW). We
acknowledge financial support from the Deutsche Forschungsge-
meinschaft and Ruprecht-Karls-Universität Heidelberg within the
funding program Open Access Publishing.

Edited by: Bruno Merz
Reviewed by: Guy J.-P. Schumann and one anonymous referee

References

Abdullah, A. F., Rahman, A. A., and Vojinovic, Z.: LiDAR filtering
algorithms for urban flood application: Review on current algo-
rithms and filters test, in: ISPRS Archives (XXXVIII, Part3/W8),
edited by: Bretar, F., Pierrot-Deseilligny, M., and Vosselman, G.,
Laser scanning 2009, Paris, France, 1–2 September 2009, 30–36,
2009.

Albuquerque, J., Herfort, B., and Eckle, M.: The Tasks of the
Crowd: A Typology of Tasks in Geographic Information Crowd-
sourcing and a Case Study in Humanitarian Mapping, Remote
Sensing, 8, 859, https://doi.org/10.3390/RS8100859, 2016.

Bates, P. D., Marks, K. J., and Horritt, M. S.: Optimal use of high-
resolution topographic data in flood inundation models, Hydrol.
Process., 17, 537–557, https://doi.org/10.1002/hyp.1113, 2003.

Besl, P. J. and McKay, N. D.: A method for registration of 3-D
shapes, IEEE Trans. Pattern Anal. Mach. Intell., 14, 239–256,
https://doi.org/10.1109/34.121791, 1992.

Blanc, J., Hall, J. W., Roche, N., Dawson, R. J., Cesses, Y.,
Burton, A., and Kilsby, C. G.: Enhanced efficiency of plu-
vial flood risk estimation in urban areas using spatial-temporal
rainfall simulations, J. Flood Risk Manage., 5, 143–152,
https://doi.org/10.1111/j.1753-318X.2012.01135.x, 2012.

Bruinink, M., Chandarr, A., Rudinac, M., van Overloop, P.-J., and
Jonker, P.: Portable, automatic water level estimation using mo-
bile phone cameras, in: 14th IAPR International Conference on
Machine Vision Applications (MVA), Tokyo, Japan, 18–22 May,
426–429, 2015.

Chen, J., Hill, A. A., and Urbano, L. D.: A GIS-based
model for urban flood inundation, J. Hydrol., 373, 184–192,
https://doi.org/10.1016/j.jhydrol.2009.04.021, 2009.

Chen, Y. and Medioni, G.: Object modelling by registration of mul-
tiple range images, Image and Vision Comput., 10, 145–155,
https://doi.org/10.1016/0262-8856(92)90066-c, 1992.

CRED – Centre for Research on the Epidemiology of Dis-
asters: EM-DAT Disaster Trends: The International Disas-
ter Database, available at: http://www.emdat.be/disaster_trends/
index.html, last access: 11 September 2016.

Douglas, I., Garvin, S., Lawson, N., Richards, J., Tippett,
J., and White, I.: Urban pluvial flooding: A qualitative
case study of cause, effect and nonstructural mitigation, J.
Flood Risk Manage., 3, 112–125, https://doi.org/10.1111/j.1753-
318X.2010.01061.x, 2010.

Eltner, A., Kaiser, A., Castillo, C., Rock, G., Neugirg, F., and Abel-
lán, A.: Image-based surface reconstruction in geomorphometry
– merits, limits and developments, Earth Surf. Dynam., 4, 359–
389, https://doi.org/10.5194/esurf-4-359-2016, 2016.

Fazeli, H. R., Nor Said, M., Amerudin, S., and Abd Rahman, M.
Z.: A Study of Volunteered Geographic Information (VGI) As-
sessment Methods for Flood Hazard Mapping: A Review, Jurnal
Teknologi, 75, 127–134, https://doi.org/10.11113/jt.v75.5281,
2015.

Fohringer, J., Dransch, D., Kreibich, H., and Schröter, K.: So-
cial media as an information source for rapid flood inunda-
tion mapping, Nat. Hazards Earth Syst. Sci., 15, 2725–2738,
https://doi.org/10.5194/nhess-15-2725-2015, 2015.

Furukawa, Y. and Ponce, J.: Patch-based Multi-view Stereo Soft-
ware: Documentation – (PMVS - Version 2):, available at: http:
//www.di.ens.fr/pmvs/documentation.html, last access: 21 Au-
gust 2016.

Goodchild, M. F.: Citizens as sensors: The world of
volunteered geography, GeoJournal, 69, 211–221,
https://doi.org/10.1007/s10708-007-9111-y, 2007.

Hammond, M. J., Chen, A. S., Djordjević, S., Butler,
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