Articles | Volume 16, issue 11
https://doi.org/10.5194/nhess-16-2325-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/nhess-16-2325-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Snow avalanche friction relation based on extended kinetic theory
Matthias Rauter
CORRESPONDING AUTHOR
University of Innsbruck, Institute of Infrastructure, Division of Geotechnical and Tunnel Engineering, Innsbruck, Austria
Department of Natural Hazards, Austrian Research Centre for Forests (BFW), Innsbruck, Austria
Jan-Thomas Fischer
Department of Natural Hazards, Austrian Research Centre for Forests (BFW), Innsbruck, Austria
Wolfgang Fellin
University of Innsbruck, Institute of Infrastructure, Division of Geotechnical and Tunnel Engineering, Innsbruck, Austria
Andreas Kofler
Department of Natural Hazards, Austrian Research Centre for Forests (BFW), Innsbruck, Austria
Related authors
Matthias Rauter and Julia Kowalski
Geosci. Model Dev., 17, 6545–6569, https://doi.org/10.5194/gmd-17-6545-2024, https://doi.org/10.5194/gmd-17-6545-2024, 2024
Short summary
Short summary
Snow avalanches can form large powder clouds that substantially exceed the velocity and reach of the dense core. Only a few complex models exist to simulate this phenomenon, and the respective hazard is hard to predict. This work provides a novel flow model that focuses on simple relations while still encapsulating the significant behaviour. The model is applied to reconstruct two catastrophic powder snow avalanche events in Austria.
Matthias Rauter, Andreas Kofler, Andreas Huber, and Wolfgang Fellin
Geosci. Model Dev., 11, 2923–2939, https://doi.org/10.5194/gmd-11-2923-2018, https://doi.org/10.5194/gmd-11-2923-2018, 2018
Short summary
Short summary
We present a physical model for the simulation of dense snow avalanches and other gravitational mass flows. The model is solved with OpenFOAM, a popular open-source toolkit for the numerical solution of partial differential equations. The solver has a modular design and is easy to extend. Therefore, it represents an ideal platform for implementing and testing new model approaches.
Michael Neuhauser, Anselm Köhler, Anna Wirbel, Felix Oesterle, Wolfgang Fellin, Johannes Gerstmayr, Falko Dressler, and Jan-Thomas Fischer
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-164, https://doi.org/10.5194/nhess-2024-164, 2024
Preprint under review for NHESS
Short summary
Short summary
This study examines how particles move in snow avalanches. The researchers used AvaNodes, a sensor system that tracks particle movement, in combination with radar data and simulations from the open avalanche framework AvaFrame. By comparing measurements and simulations, particle velocity and avalanche front position were matched with high accuracy. The study illustrates how multiple parameter sets can yield appropriate results and highlights the complexity of avalanche simulation.
Matthias Rauter and Julia Kowalski
Geosci. Model Dev., 17, 6545–6569, https://doi.org/10.5194/gmd-17-6545-2024, https://doi.org/10.5194/gmd-17-6545-2024, 2024
Short summary
Short summary
Snow avalanches can form large powder clouds that substantially exceed the velocity and reach of the dense core. Only a few complex models exist to simulate this phenomenon, and the respective hazard is hard to predict. This work provides a novel flow model that focuses on simple relations while still encapsulating the significant behaviour. The model is applied to reconstruct two catastrophic powder snow avalanche events in Austria.
Matthias Tonnel, Anna Wirbel, Felix Oesterle, and Jan-Thomas Fischer
Geosci. Model Dev., 16, 7013–7035, https://doi.org/10.5194/gmd-16-7013-2023, https://doi.org/10.5194/gmd-16-7013-2023, 2023
Short summary
Short summary
Avaframe - the open avalanche framework - provides open-source tools to simulate and investigate snow avalanches. It is utilized for multiple purposes, the two main applications being hazard mapping and scientific research of snow processes. We present the theory, conversion to a computer model, and testing for one of the core modules used for simulations of a particular type of avalanche, the so-called dense-flow avalanches. Tests check and confirm the applicability of the utilized method.
Christopher J. L. D'Amboise, Michael Neuhauser, Michaela Teich, Andreas Huber, Andreas Kofler, Frank Perzl, Reinhard Fromm, Karl Kleemayr, and Jan-Thomas Fischer
Geosci. Model Dev., 15, 2423–2439, https://doi.org/10.5194/gmd-15-2423-2022, https://doi.org/10.5194/gmd-15-2423-2022, 2022
Short summary
Short summary
The term gravitational mass flow (GMF) covers various natural hazard processes such as snow avalanches, rockfall, landslides, and debris flows. Here we present the open-source GMF simulation tool Flow-Py. The model equations are based on simple geometrical relations in three-dimensional terrain. We show that Flow-Py is an educational, innovative GMF simulation tool with three computational experiments: 1. validation of implementation, 2. performance, and 3. expandability.
Martin Mergili, Shiva P. Pudasaini, Adam Emmer, Jan-Thomas Fischer, Alejo Cochachin, and Holger Frey
Hydrol. Earth Syst. Sci., 24, 93–114, https://doi.org/10.5194/hess-24-93-2020, https://doi.org/10.5194/hess-24-93-2020, 2020
Short summary
Short summary
In 1941, the glacial lagoon Lake Palcacocha in the Cordillera Blanca (Peru) drained suddenly. The resulting outburst flood/debris flow consumed another lake and had a disastrous impact on the town of Huaraz 23 km downstream. We reconstuct this event through a numerical model to learn about the possibility of prediction of similar processes in the future. Remaining challenges consist of the complex process interactions and the lack of experience due to the rare occurrence of such process chains.
Anselm Köhler, Jan-Thomas Fischer, Riccardo Scandroglio, Mathias Bavay, Jim McElwaine, and Betty Sovilla
The Cryosphere, 12, 3759–3774, https://doi.org/10.5194/tc-12-3759-2018, https://doi.org/10.5194/tc-12-3759-2018, 2018
Short summary
Short summary
Snow avalanches show complicated flow behaviour, characterized by several flow regimes which coexist in one avalanche. In this work, we analyse flow regime transitions where a powder snow avalanche transforms into a plug flow avalanche by incorporating warm snow due to entrainment. Prediction of such a transition is very important for hazard mitigation, as the efficiency of protection dams are strongly dependent on the flow regime, and our results should be incorporated into avalanche models.
Matthias Rauter, Andreas Kofler, Andreas Huber, and Wolfgang Fellin
Geosci. Model Dev., 11, 2923–2939, https://doi.org/10.5194/gmd-11-2923-2018, https://doi.org/10.5194/gmd-11-2923-2018, 2018
Short summary
Short summary
We present a physical model for the simulation of dense snow avalanches and other gravitational mass flows. The model is solved with OpenFOAM, a popular open-source toolkit for the numerical solution of partial differential equations. The solver has a modular design and is easy to extend. Therefore, it represents an ideal platform for implementing and testing new model approaches.
Martin Mergili, Jan-Thomas Fischer, Julia Krenn, and Shiva P. Pudasaini
Geosci. Model Dev., 10, 553–569, https://doi.org/10.5194/gmd-10-553-2017, https://doi.org/10.5194/gmd-10-553-2017, 2017
Short summary
Short summary
r.avaflow represents a GIS-based, multi-functional open-source tool for the simulation of debris flows, rock avalanches, snow avalanches, or two-phase (solid and fluid) process chains. It further facilitates parameter studies and validation of the simulation results against observed patterns. r.avaflow shall inform strategies to reduce the risks related to the interaction of mass flow processes with society.
M. Teich, J.-T. Fischer, T. Feistl, P. Bebi, M. Christen, and A. Grêt-Regamey
Nat. Hazards Earth Syst. Sci., 14, 2233–2248, https://doi.org/10.5194/nhess-14-2233-2014, https://doi.org/10.5194/nhess-14-2233-2014, 2014
J.-T. Fischer
Nat. Hazards Earth Syst. Sci., 13, 1655–1667, https://doi.org/10.5194/nhess-13-1655-2013, https://doi.org/10.5194/nhess-13-1655-2013, 2013
Related subject area
Other Hazards (e.g., Glacial and Snow Hazards, Karst, Wildfires Hazards, and Medical Geo-Hazards)
Glide-snow avalanches: a mechanical, threshold-based release area model
Improving fire severity prediction in south-eastern Australia using vegetation-specific information
How hard do avalanche practitioners tap during snow stability tests?
A large-scale validation of snowpack simulations in support of avalanche forecasting focusing on critical layers
A glacial lake outburst flood risk assessment for the Phochhu river basin, Bhutan
Statistical calibration of probabilistic medium-range fire weather index forecasts in Europe
AutoATES v2.0: Automated Avalanche Terrain Exposure Scale mapping
Modelling the vulnerability of urban settings to wildland–urban interface fires in Chile
Modeling of indoor 222Rn in data-scarce regions: an interactive dashboard approach for Bogotá, Colombia
A regional early warning for slushflow hazard
A new approach for drought index adjustment to clay-shrinkage-induced subsidence over France: advantages of the interactive leaf area index
Automated Avalanche Terrain Exposure Scale (ATES) mapping – local validation and optimization in western Canada
Improving the fire weather index system for peatlands using peat-specific hydrological input data
Brief communication: The Lahaina Fire disaster – how models can be used to understand and predict wildfires
Prediction of natural dry-snow avalanche activity using physics-based snowpack simulations
Early warning system for ice collapses and river blockages in the Sedongpu Valley, southeastern Tibetan Plateau
Fire risk modeling: an integrated and data-driven approach applied to Sicily
Avalanche size estimation and avalanche outline determination by experts: reliability and implications for practice
Fluid conduits and shallow-reservoir structure defined by geoelectrical tomography at the Nirano Salse (Italy)
Estimating the effects of meteorology and land cover on fire growth in Peru using a novel difference equation model
Review article: Snow and ice avalanches in high mountain Asia – scientific, local and indigenous knowledge
Reduced-order digital twin and latent data assimilation for global wildfire prediction
A user perspective on the avalanche danger scale – insights from North America
Characterizing the rate of spread of large wildfires in emerging fire environments of northwestern Europe using Visible Infrared Imaging Radiometer Suite active fire data
Evaluation of low-cost Raspberry Pi sensors for structure-from-motion reconstructions of glacier calving fronts
Temporal evolution of crack propagation characteristics in a weak snowpack layer: conditions of crack arrest and sustained propagation
A data-driven model for Fennoscandian wildfire danger
Equivalent hazard magnitude scale
Statistical modelling of air quality impacts from individual forest fires in New South Wales, Australia
Drivers of extreme burnt area in Portugal: fire weather and vegetation
Coupling wildfire spread simulations and connectivity analysis for hazard assessment: a case study in Serra da Cabreira, Portugal
Glacial lake outburst flood hazard under current and future conditions: worst-case scenarios in a transboundary Himalayan basin
What weather variables are important for wet and slab avalanches under a changing climate in a low-altitude mountain range in Czechia?
Modelling ignition probability for human- and lightning-caused wildfires in Victoria, Australia
Automated snow avalanche release area delineation in data-sparse, remote, and forested regions
The 2017 Split wildfire in Croatia: evolution and the role of meteorological conditions
Progress and challenges in glacial lake outburst flood research (2017–2021): a research community perspective
Global assessment and mapping of ecological vulnerability to wildfires
The impact of terrain model source and resolution on snow avalanche modeling
Travel and terrain advice statements in public avalanche bulletins: a quantitative analysis of who uses this information, what makes it useful, and how it can be improved for users
Data-driven automated predictions of the avalanche danger level for dry-snow conditions in Switzerland
On the correlation between a sub-level qualifier refining the danger level with observations and models relating to the contributing factors of avalanche danger
Automated avalanche hazard indication mapping on a statewide scale
Forecasting the regional fire radiative power for regularly ignited vegetation fires
Environmental factors affecting wildfire-burned areas in southeastern France, 1970–2019
Detrainment and braking of snow avalanches interacting with forests
Past and future trends in fire weather for the UK
Methodological and conceptual challenges in rare and severe event forecast verification
Multi-method monitoring of rockfall activity along the classic route up Mont Blanc (4809 m a.s.l.) to encourage adaptation by mountaineers
Wildfire–atmosphere interaction index for extreme-fire behaviour
Amelie Fees, Alec van Herwijnen, Michael Lombardo, Jürg Schweizer, and Peter Lehmann
Nat. Hazards Earth Syst. Sci., 24, 3387–3400, https://doi.org/10.5194/nhess-24-3387-2024, https://doi.org/10.5194/nhess-24-3387-2024, 2024
Short summary
Short summary
Glide-snow avalanches release at the ground–snow interface, and their release process is poorly understood. To investigate the influence of spatial variability (snowpack and basal friction) on avalanche release, we developed a 3D, mechanical, threshold-based model that reproduces an observed release area distribution. A sensitivity analysis showed that the distribution was mostly influenced by the basal friction uniformity, while the variations in snowpack properties had little influence.
Kang He, Xinyi Shen, Cory Merow, Efthymios Nikolopoulos, Rachael V. Gallagher, Feifei Yang, and Emmanouil N. Anagnostou
Nat. Hazards Earth Syst. Sci., 24, 3337–3355, https://doi.org/10.5194/nhess-24-3337-2024, https://doi.org/10.5194/nhess-24-3337-2024, 2024
Short summary
Short summary
A framework combining a fire severity classification with a regression model to predict an indicator of fire severity derived from Landsat imagery (difference normalized burning ratio, dNBR) is proposed. The results show that the proposed predictive technique is capable of providing robust fire severity prediction information, which can be used for forecasting seasonal fire severity and, subsequently, impacts on biodiversity and ecosystems under projected future climate conditions.
Håvard B. Toft, Samuel V. Verplanck, and Markus Landrø
Nat. Hazards Earth Syst. Sci., 24, 2757–2772, https://doi.org/10.5194/nhess-24-2757-2024, https://doi.org/10.5194/nhess-24-2757-2024, 2024
Short summary
Short summary
This study investigates inconsistencies in impact force as part of extended column tests (ECTs). We measured force-time curves from 286 practitioners in Scandinavia, Central Europe, and North America. The results show a large variability in peak forces and loading rates across wrist, elbow, and shoulder taps, challenging the ECT's reliability.
Florian Herla, Pascal Haegeli, Simon Horton, and Patrick Mair
Nat. Hazards Earth Syst. Sci., 24, 2727–2756, https://doi.org/10.5194/nhess-24-2727-2024, https://doi.org/10.5194/nhess-24-2727-2024, 2024
Short summary
Short summary
Snowpack simulations are increasingly employed by avalanche warning services to inform about critical avalanche layers buried in the snowpack. However, validity concerns limit their operational value. We present methods that enable meaningful comparisons between snowpack simulations and regional assessments of avalanche forecasters to quantify the performance of the Canadian weather and snowpack model chain to represent thin critical avalanche layers on a large scale and in real time.
Tandin Wangchuk and Ryota Tsubaki
Nat. Hazards Earth Syst. Sci., 24, 2523–2540, https://doi.org/10.5194/nhess-24-2523-2024, https://doi.org/10.5194/nhess-24-2523-2024, 2024
Short summary
Short summary
A glacial lake outburst flood (GLOF) is a natural hazard in which water from a glacier-fed lake is swiftly discharged, causing serious harm to life, infrastructure, and communities. We used numerical models to predict the potential consequences of a GLOF originating from the Thorthomi glacial lake in Bhutan. We found that if a GLOF occurs, the lake could release massive flood water within 4 h, posing a considerable risk. Study findings help to mitigate the impacts of future GLOFs.
Stephanie Bohlmann and Marko Laine
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-57, https://doi.org/10.5194/nhess-2024-57, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
Probabilistic ensemble forecasts of the Canadian Forest Fire Weather Index (FWI) can be used to estimate the possible risk for wildfires but requires post-processing to provide accurate and reliable predictions. We present a calibration method using non-homogeneous Gaussian regression to statistical post-process FWI forecasts up to 15 days. Calibration improves the forecast especially at short lead times and in regions with elevated FWI values.
Håvard B. Toft, John Sykes, Andrew Schauer, Jordy Hendrikx, and Audun Hetland
Nat. Hazards Earth Syst. Sci., 24, 1779–1793, https://doi.org/10.5194/nhess-24-1779-2024, https://doi.org/10.5194/nhess-24-1779-2024, 2024
Short summary
Short summary
Manual Avalanche Terrain Exposure Scale (ATES) mapping is time-consuming and inefficient for large-scale applications. The updated algorithm for automated ATES mapping overcomes previous limitations by including forest density data, improving the avalanche runout estimations in low-angle runout zones, accounting for overhead exposure and open-source software. Results show that the latest version has significantly improved its performance.
Paula Aguirre, Jorge León, Constanza González-Mathiesen, Randy Román, Manuela Penas, and Alonso Ogueda
Nat. Hazards Earth Syst. Sci., 24, 1521–1537, https://doi.org/10.5194/nhess-24-1521-2024, https://doi.org/10.5194/nhess-24-1521-2024, 2024
Short summary
Short summary
Wildfires pose a significant risk to property located in the wildland–urban interface (WUI). To assess and mitigate this risk, we need to understand which characteristics of buildings and building arrangements make them more prone to damage. We used a combination of data collection and analysis methods to study the vulnerability of dwellings in the WUI for case studies in Chile and concluded that the spatial arrangement of houses has a substantial impact on their vulnerability to wildfires.
Martín Domínguez Durán, María Angélica Sandoval Garzón, and Carme Huguet
Nat. Hazards Earth Syst. Sci., 24, 1319–1339, https://doi.org/10.5194/nhess-24-1319-2024, https://doi.org/10.5194/nhess-24-1319-2024, 2024
Short summary
Short summary
In this study we created a cost-effective alternative to bridge the baseline information gap on indoor radon (a highly carcinogenic gas) in regions where measurements are scarce. We model indoor radon concentrations to understand its spatial distribution and the potential influential factors. We evaluated the performance of this alternative using a small number of measurements taken in Bogotá, Colombia. Our results show that this alternative could help in the making of future studies and policy.
Monica Sund, Heidi A. Grønsten, and Siv Å. Seljesæter
Nat. Hazards Earth Syst. Sci., 24, 1185–1201, https://doi.org/10.5194/nhess-24-1185-2024, https://doi.org/10.5194/nhess-24-1185-2024, 2024
Short summary
Short summary
Slushflows are rapid mass movements of water-saturated snow released in gently sloping terrain (< 30°), often unexpectedly. Early warning is crucial to prevent casualties and damage to infrastructure. A regional early warning for slushflow hazard was established in Norway in 2013–2014 and has been operational since. We present a methodology using the ratio between water supply and snow depth by snow type to assess slushflow hazard. This approach is useful for other areas with slushflow hazard.
Sophie Barthelemy, Bertrand Bonan, Jean-Christophe Calvet, Gilles Grandjean, David Moncoulon, Dorothée Kapsambelis, and Séverine Bernardie
Nat. Hazards Earth Syst. Sci., 24, 999–1016, https://doi.org/10.5194/nhess-24-999-2024, https://doi.org/10.5194/nhess-24-999-2024, 2024
Short summary
Short summary
This work presents a drought index specifically adapted to subsidence, a seasonal phenomenon of soil shrinkage that occurs frequently in France and damages buildings. The index is computed from land surface model simulations and evaluated by a rank correlation test with insurance data. With its optimal configuration, the index is able to identify years of both zero and significant loss.
John Sykes, Håvard Toft, Pascal Haegeli, and Grant Statham
Nat. Hazards Earth Syst. Sci., 24, 947–971, https://doi.org/10.5194/nhess-24-947-2024, https://doi.org/10.5194/nhess-24-947-2024, 2024
Short summary
Short summary
The research validates and optimizes an automated approach for creating classified snow avalanche terrain maps using open-source geospatial modeling tools. Validation is based on avalanche-expert-based maps for two study areas. Our results show that automated maps have an overall accuracy equivalent to the average accuracy of three human maps. Automated mapping requires a fraction of the time and cost of traditional methods and opens the door for large-scale mapping of mountainous terrain.
Jonas Mortelmans, Anne Felsberg, Gabriëlle J. M. De Lannoy, Sander Veraverbeke, Robert D. Field, Niels Andela, and Michel Bechtold
Nat. Hazards Earth Syst. Sci., 24, 445–464, https://doi.org/10.5194/nhess-24-445-2024, https://doi.org/10.5194/nhess-24-445-2024, 2024
Short summary
Short summary
With global warming increasing the frequency and intensity of wildfires in the boreal region, accurate risk assessments are becoming more crucial than ever before. The Canadian Fire Weather Index (FWI) is a renowned system, yet its effectiveness in peatlands, where hydrology plays a key role, is limited. By incorporating groundwater data from numerical models and satellite observations, our modified FWI improves the accuracy of fire danger predictions, especially over summer.
Timothy W. Juliano, Fernando Szasdi-Bardales, Neil P. Lareau, Kasra Shamsaei, Branko Kosović, Negar Elhami-Khorasani, Eric P. James, and Hamed Ebrahimian
Nat. Hazards Earth Syst. Sci., 24, 47–52, https://doi.org/10.5194/nhess-24-47-2024, https://doi.org/10.5194/nhess-24-47-2024, 2024
Short summary
Short summary
Following the destructive Lahaina Fire in Hawaii, our team has modeled the wind and fire spread processes to understand the drivers of this devastating event. The simulation results show that extreme winds with high variability, a fire ignition close to the community, and construction characteristics led to continued fire spread in multiple directions. Our results suggest that available modeling capabilities can provide vital information to guide decision-making during wildfire events.
Stephanie Mayer, Frank Techel, Jürg Schweizer, and Alec van Herwijnen
Nat. Hazards Earth Syst. Sci., 23, 3445–3465, https://doi.org/10.5194/nhess-23-3445-2023, https://doi.org/10.5194/nhess-23-3445-2023, 2023
Short summary
Short summary
We present statistical models to estimate the probability for natural dry-snow avalanche release and avalanche size based on the simulated layering of the snowpack. The benefit of these models is demonstrated in comparison with benchmark models based on the amount of new snow. From the validation with data sets of quality-controlled avalanche observations and danger levels, we conclude that these models may be valuable tools to support forecasting natural dry-snow avalanche activity.
Wei Yang, Zhongyan Wang, Baosheng An, Yingying Chen, Chuanxi Zhao, Chenhui Li, Yongjie Wang, Weicai Wang, Jiule Li, Guangjian Wu, Lin Bai, Fan Zhang, and Tandong Yao
Nat. Hazards Earth Syst. Sci., 23, 3015–3029, https://doi.org/10.5194/nhess-23-3015-2023, https://doi.org/10.5194/nhess-23-3015-2023, 2023
Short summary
Short summary
We present the structure and performance of the early warning system (EWS) for glacier collapse and river blockages in the southeastern Tibetan Plateau. The EWS warned of three collapse–river blockage chain events and seven small-scale events. The volume and location of the collapses and the percentage of ice content influenced the velocities of debris flows. Such a study is helpful for understanding the mechanism of glacier hazards and for establishing similar EWSs in other high-risk regions.
Alba Marquez Torres, Giovanni Signorello, Sudeshna Kumar, Greta Adamo, Ferdinando Villa, and Stefano Balbi
Nat. Hazards Earth Syst. Sci., 23, 2937–2959, https://doi.org/10.5194/nhess-23-2937-2023, https://doi.org/10.5194/nhess-23-2937-2023, 2023
Short summary
Short summary
Only by mapping fire risks can we manage forest and prevent fires under current and future climate conditions. We present a fire risk map based on k.LAB, artificial-intelligence-powered and open-source software integrating multidisciplinary knowledge in near real time. Through an easy-to-use web application, we model the hazard with 84 % accuracy for Sicily, a representative Mediterranean region. Fire risk analysis reveals 45 % of vulnerable areas face a high probability of danger in 2050.
Elisabeth D. Hafner, Frank Techel, Rodrigo Caye Daudt, Jan Dirk Wegner, Konrad Schindler, and Yves Bühler
Nat. Hazards Earth Syst. Sci., 23, 2895–2914, https://doi.org/10.5194/nhess-23-2895-2023, https://doi.org/10.5194/nhess-23-2895-2023, 2023
Short summary
Short summary
Oftentimes when objective measurements are not possible, human estimates are used instead. In our study, we investigate the reproducibility of human judgement for size estimates, the mappings of avalanches from oblique photographs and remotely sensed imagery. The variability that we found in those estimates is worth considering as it may influence results and should be kept in mind for several applications.
Gerardo Romano, Marco Antonellini, Domenico Patella, Agata Siniscalchi, Andrea Tallarico, Simona Tripaldi, and Antonello Piombo
Nat. Hazards Earth Syst. Sci., 23, 2719–2735, https://doi.org/10.5194/nhess-23-2719-2023, https://doi.org/10.5194/nhess-23-2719-2023, 2023
Short summary
Short summary
The Nirano Salse (northern Apennines, Italy) is characterized by several active mud vents and hosts thousands of visitors every year. New resistivity models describe the area down to 250 m, improving our geostructural knowledge of the area and giving useful indications for a better understanding of mud volcano dynamics and for the better planning of safer tourist access to the area.
Harry Podschwit, William Jolly, Ernesto Alvarado, Andrea Markos, Satyam Verma, Sebastian Barreto-Rivera, Catherine Tobón-Cruz, and Blanca Ponce-Vigo
Nat. Hazards Earth Syst. Sci., 23, 2607–2624, https://doi.org/10.5194/nhess-23-2607-2023, https://doi.org/10.5194/nhess-23-2607-2023, 2023
Short summary
Short summary
We developed a model of fire spread that assumes that fire spreads in all directions at a constant speed and is extinguished at a constant rate. The model was fitted to 1003 fires in Peru between 2001 and 2020 using satellite burned area data from the GlobFire project. We fitted statistical models that predicted the spread and extinguish rates based on weather and land cover variables and found that these variables were good predictors of the spread and extinguish rates.
Anushilan Acharya, Jakob F. Steiner, Khwaja Momin Walizada, Salar Ali, Zakir Hussain Zakir, Arnaud Caiserman, and Teiji Watanabe
Nat. Hazards Earth Syst. Sci., 23, 2569–2592, https://doi.org/10.5194/nhess-23-2569-2023, https://doi.org/10.5194/nhess-23-2569-2023, 2023
Short summary
Short summary
All accessible snow and ice avalanches together with previous scientific research, local knowledge, and existing or previously active adaptation and mitigation solutions were investigated in the high mountain Asia (HMA) region to have a detailed overview of the state of knowledge and identify gaps. A comprehensive avalanche database from 1972–2022 is generated, including 681 individual events. The database provides a basis for the forecasting of avalanche hazards in different parts of HMA.
Caili Zhong, Sibo Cheng, Matthew Kasoar, and Rossella Arcucci
Nat. Hazards Earth Syst. Sci., 23, 1755–1768, https://doi.org/10.5194/nhess-23-1755-2023, https://doi.org/10.5194/nhess-23-1755-2023, 2023
Short summary
Short summary
This paper introduces a digital twin fire model using machine learning techniques to improve the efficiency of global wildfire predictions. The proposed model also manages to efficiently adjust the prediction results thanks to data assimilation techniques. The proposed digital twin runs 500 times faster than the current state-of-the-art physics-based model.
Abby Morgan, Pascal Haegeli, Henry Finn, and Patrick Mair
Nat. Hazards Earth Syst. Sci., 23, 1719–1742, https://doi.org/10.5194/nhess-23-1719-2023, https://doi.org/10.5194/nhess-23-1719-2023, 2023
Short summary
Short summary
The avalanche danger scale is a critical component for communicating the severity of avalanche hazard conditions to the public. We examine how backcountry recreationists in North America understand and use the danger scale for planning trips into the backcountry. Our results provide an important user perspective on the strengths and weaknesses of the existing scale and highlight opportunities for future improvements.
Adrián Cardíl, Victor M. Tapia, Santiago Monedero, Tomás Quiñones, Kerryn Little, Cathelijne R. Stoof, Joaquín Ramirez, and Sergio de-Miguel
Nat. Hazards Earth Syst. Sci., 23, 361–373, https://doi.org/10.5194/nhess-23-361-2023, https://doi.org/10.5194/nhess-23-361-2023, 2023
Short summary
Short summary
This study aims to unravel large-fire behavior in northwest Europe, a temperate region with a projected increase in wildfire risk. We propose a new method to identify wildfire rate of spread from satellites because it is important to know periods of elevated fire risk for suppression methods and land management. Results indicate that there is a peak in the area burned and rate of spread in the months of March and April, and there are significant differences for forest-type land covers.
Liam S. Taylor, Duncan J. Quincey, and Mark W. Smith
Nat. Hazards Earth Syst. Sci., 23, 329–341, https://doi.org/10.5194/nhess-23-329-2023, https://doi.org/10.5194/nhess-23-329-2023, 2023
Short summary
Short summary
Hazards from glaciers are becoming more likely as the climate warms, which poses a threat to communities living beneath them. We have developed a new camera system which can capture regular, high-quality 3D models to monitor small changes in glaciers which could be indicative of a future hazard. This system is far cheaper than more typical camera sensors yet produces very similar quality data. We suggest that deploying these cameras near glaciers could assist in warning communities of hazards.
Bastian Bergfeld, Alec van Herwijnen, Grégoire Bobillier, Philipp L. Rosendahl, Philipp Weißgraeber, Valentin Adam, Jürg Dual, and Jürg Schweizer
Nat. Hazards Earth Syst. Sci., 23, 293–315, https://doi.org/10.5194/nhess-23-293-2023, https://doi.org/10.5194/nhess-23-293-2023, 2023
Short summary
Short summary
For a slab avalanche to release, the snowpack must facilitate crack propagation over large distances. Field measurements on crack propagation at this scale are very scarce. We performed a series of experiments, up to 10 m long, over a period of 10 weeks. Beside the temporal evolution of the mechanical properties of the snowpack, we found that crack speeds were highest for tests resulting in full propagation. Based on these findings, an index for self-sustained crack propagation is proposed.
Sigrid Jørgensen Bakke, Niko Wanders, Karin van der Wiel, and Lena Merete Tallaksen
Nat. Hazards Earth Syst. Sci., 23, 65–89, https://doi.org/10.5194/nhess-23-65-2023, https://doi.org/10.5194/nhess-23-65-2023, 2023
Short summary
Short summary
In this study, we developed a machine learning model to identify dominant controls of wildfire in Fennoscandia and produce monthly fire danger probability maps. The dominant control was shallow-soil water anomaly, followed by air temperature and deep soil water. The model proved skilful with a similar performance as the existing Canadian Forest Fire Weather Index (FWI). We highlight the benefit of using data-driven models jointly with other fire models to improve fire monitoring and prediction.
Yi Victor Wang and Antonia Sebastian
Nat. Hazards Earth Syst. Sci., 22, 4103–4118, https://doi.org/10.5194/nhess-22-4103-2022, https://doi.org/10.5194/nhess-22-4103-2022, 2022
Short summary
Short summary
In this article, we propose an equivalent hazard magnitude scale and a method to evaluate and compare the strengths of natural hazard events across different hazard types, including earthquakes, tsunamis, floods, droughts, forest fires, tornadoes, cold waves, heat waves, and tropical cyclones. With our method, we determine that both the February 2021 North American cold wave event and Hurricane Harvey in 2017 were equivalent to a magnitude 7.5 earthquake in hazard strength.
Michael A. Storey and Owen F. Price
Nat. Hazards Earth Syst. Sci., 22, 4039–4062, https://doi.org/10.5194/nhess-22-4039-2022, https://doi.org/10.5194/nhess-22-4039-2022, 2022
Short summary
Short summary
Models are needed to understand and predict pollutant output from forest fires so fire agencies can reduce smoke-related risks to human health. We modelled air quality (PM2.5) based on fire area and weather variables. We found fire area and boundary layer height were influential on predictions, with distance, temperature, wind speed and relative humidity also important. The models predicted reasonably accurately in comparison to other existing methods but would benefit from further development.
Tomás Calheiros, Akli Benali, Mário Pereira, João Silva, and João Nunes
Nat. Hazards Earth Syst. Sci., 22, 4019–4037, https://doi.org/10.5194/nhess-22-4019-2022, https://doi.org/10.5194/nhess-22-4019-2022, 2022
Short summary
Short summary
Fire weather indices are used to assess the effect of weather on wildfires. Fire weather risk was computed and combined with large wildfires in Portugal. Results revealed the influence of vegetation cover: municipalities with a prevalence of shrublands, located in eastern parts, burnt under less extreme conditions than those with higher forested areas, situated in coastal regions. These findings are a novelty for fire science in Portugal and should be considered for fire management.
Ana C. L. Sá, Bruno Aparicio, Akli Benali, Chiara Bruni, Michele Salis, Fábio Silva, Martinho Marta-Almeida, Susana Pereira, Alfredo Rocha, and José Pereira
Nat. Hazards Earth Syst. Sci., 22, 3917–3938, https://doi.org/10.5194/nhess-22-3917-2022, https://doi.org/10.5194/nhess-22-3917-2022, 2022
Short summary
Short summary
Assessing landscape wildfire connectivity supported by wildfire spread simulations can improve fire hazard assessment and fuel management plans. Weather severity determines the degree of fuel patch connectivity and thus the potential to spread large and intense wildfires. Mapping highly connected patches in the landscape highlights patch candidates for prior fuel treatments, which ultimately will contribute to creating fire-resilient Mediterranean landscapes.
Simon K. Allen, Ashim Sattar, Owen King, Guoqing Zhang, Atanu Bhattacharya, Tandong Yao, and Tobias Bolch
Nat. Hazards Earth Syst. Sci., 22, 3765–3785, https://doi.org/10.5194/nhess-22-3765-2022, https://doi.org/10.5194/nhess-22-3765-2022, 2022
Short summary
Short summary
This study demonstrates how the threat of a very large outburst from a future lake can be feasibly assessed alongside that from current lakes to inform disaster risk management within a transboundary basin between Tibet and Nepal. Results show that engineering measures and early warning systems would need to be coupled with effective land use zoning and programmes to strengthen local response capacities in order to effectively reduce the risk associated with current and future outburst events.
Markéta Součková, Roman Juras, Kryštof Dytrt, Vojtěch Moravec, Johanna Ruth Blöcher, and Martin Hanel
Nat. Hazards Earth Syst. Sci., 22, 3501–3525, https://doi.org/10.5194/nhess-22-3501-2022, https://doi.org/10.5194/nhess-22-3501-2022, 2022
Short summary
Short summary
Avalanches are natural hazards that threaten people and infrastructure. With climate change, avalanche activity is changing. We analysed the change in frequency and size of avalanches in the Krkonoše Mountains, Czechia, and detected important variables with machine learning tools from 1979–2020. Wet avalanches in February and March have increased, and slab avalanches have decreased and become smaller. The identified variables and their threshold levels may help in avalanche decision-making.
Annalie Dorph, Erica Marshall, Kate A. Parkins, and Trent D. Penman
Nat. Hazards Earth Syst. Sci., 22, 3487–3499, https://doi.org/10.5194/nhess-22-3487-2022, https://doi.org/10.5194/nhess-22-3487-2022, 2022
Short summary
Short summary
Wildfire spatial patterns are determined by fire ignition sources and vegetation fuel moisture. Fire ignitions can be mediated by humans (owing to proximity to human infrastructure) or caused by lightning (owing to fuel moisture, average annual rainfall and local weather). When moisture in dead vegetation is below 20 % the probability of a wildfire increases. The results of this research enable accurate spatial mapping of ignition probability to aid fire suppression efforts and future research.
John Sykes, Pascal Haegeli, and Yves Bühler
Nat. Hazards Earth Syst. Sci., 22, 3247–3270, https://doi.org/10.5194/nhess-22-3247-2022, https://doi.org/10.5194/nhess-22-3247-2022, 2022
Short summary
Short summary
Automated snow avalanche terrain mapping provides an efficient method for large-scale assessment of avalanche hazards, which informs risk management decisions for transportation and recreation. This research reduces the cost of developing avalanche terrain maps by using satellite imagery and open-source software as well as improving performance in forested terrain. The research relies on local expertise to evaluate accuracy, so the methods are broadly applicable in mountainous regions worldwide.
Ivana Čavlina Tomašević, Kevin K. W. Cheung, Višnjica Vučetić, Paul Fox-Hughes, Kristian Horvath, Maja Telišman Prtenjak, Paul J. Beggs, Barbara Malečić, and Velimir Milić
Nat. Hazards Earth Syst. Sci., 22, 3143–3165, https://doi.org/10.5194/nhess-22-3143-2022, https://doi.org/10.5194/nhess-22-3143-2022, 2022
Short summary
Short summary
One of the most severe and impactful urban wildfire events in Croatian history has been reconstructed and analyzed. The study identified some important meteorological influences related to the event: the synoptic conditions of the Azores anticyclone, cold front, and upper-level shortwave trough all led to the highest fire weather index in 2017. A low-level jet, locally known as bura wind that can be explained by hydraulic jump theory, was the dynamic trigger of the event.
Adam Emmer, Simon K. Allen, Mark Carey, Holger Frey, Christian Huggel, Oliver Korup, Martin Mergili, Ashim Sattar, Georg Veh, Thomas Y. Chen, Simon J. Cook, Mariana Correas-Gonzalez, Soumik Das, Alejandro Diaz Moreno, Fabian Drenkhan, Melanie Fischer, Walter W. Immerzeel, Eñaut Izagirre, Ramesh Chandra Joshi, Ioannis Kougkoulos, Riamsara Kuyakanon Knapp, Dongfeng Li, Ulfat Majeed, Stephanie Matti, Holly Moulton, Faezeh Nick, Valentine Piroton, Irfan Rashid, Masoom Reza, Anderson Ribeiro de Figueiredo, Christian Riveros, Finu Shrestha, Milan Shrestha, Jakob Steiner, Noah Walker-Crawford, Joanne L. Wood, and Jacob C. Yde
Nat. Hazards Earth Syst. Sci., 22, 3041–3061, https://doi.org/10.5194/nhess-22-3041-2022, https://doi.org/10.5194/nhess-22-3041-2022, 2022
Short summary
Short summary
Glacial lake outburst floods (GLOFs) have attracted increased research attention recently. In this work, we review GLOF research papers published between 2017 and 2021 and complement the analysis with research community insights gained from the 2021 GLOF conference we organized. The transdisciplinary character of the conference together with broad geographical coverage allowed us to identify progress, trends and challenges in GLOF research and outline future research needs and directions.
Fátima Arrogante-Funes, Inmaculada Aguado, and Emilio Chuvieco
Nat. Hazards Earth Syst. Sci., 22, 2981–3003, https://doi.org/10.5194/nhess-22-2981-2022, https://doi.org/10.5194/nhess-22-2981-2022, 2022
Short summary
Short summary
We show that ecological value might be reduced by 50 % due to fire perturbation in ecosystems that have not developed in the presence of fire and/or that present changes in the fire regime. The biomes most affected are tropical and subtropical forests, tundra, and mangroves. Integration of biotic and abiotic fire regime and regeneration factors resulted in a powerful way to map ecological vulnerability to fire and develop assessments to generate adaptation plans of management in forest masses.
Aubrey Miller, Pascal Sirguey, Simon Morris, Perry Bartelt, Nicolas Cullen, Todd Redpath, Kevin Thompson, and Yves Bühler
Nat. Hazards Earth Syst. Sci., 22, 2673–2701, https://doi.org/10.5194/nhess-22-2673-2022, https://doi.org/10.5194/nhess-22-2673-2022, 2022
Short summary
Short summary
Natural hazard modelers simulate mass movements to better anticipate the risk to people and infrastructure. These simulations require accurate digital elevation models. We test the sensitivity of a well-established snow avalanche model (RAMMS) to the source and spatial resolution of the elevation model. We find key differences in the digital representation of terrain greatly affect the simulated avalanche results, with implications for hazard planning.
Kathryn C. Fisher, Pascal Haegeli, and Patrick Mair
Nat. Hazards Earth Syst. Sci., 22, 1973–2000, https://doi.org/10.5194/nhess-22-1973-2022, https://doi.org/10.5194/nhess-22-1973-2022, 2022
Short summary
Short summary
Avalanche bulletins include travel and terrain statements to provide recreationists with tangible guidance about how to apply the hazard information. We examined which bulletin users pay attention to these statements, what determines their usefulness, and how they could be improved. Our study shows that reducing jargon and adding simple explanations can significantly improve the usefulness of the statements for users with lower levels of avalanche awareness education who depend on this advice.
Cristina Pérez-Guillén, Frank Techel, Martin Hendrick, Michele Volpi, Alec van Herwijnen, Tasko Olevski, Guillaume Obozinski, Fernando Pérez-Cruz, and Jürg Schweizer
Nat. Hazards Earth Syst. Sci., 22, 2031–2056, https://doi.org/10.5194/nhess-22-2031-2022, https://doi.org/10.5194/nhess-22-2031-2022, 2022
Short summary
Short summary
A fully data-driven approach to predicting the danger level for dry-snow avalanche conditions in Switzerland was developed. Two classifiers were trained using a large database of meteorological data, snow cover simulations, and danger levels. The models performed well throughout the Swiss Alps, reaching a performance similar to the current experience-based avalanche forecasts. This approach shows the potential to be a valuable supplementary decision support tool for assessing avalanche hazard.
Frank Techel, Stephanie Mayer, Cristina Pérez-Guillén, Günter Schmudlach, and Kurt Winkler
Nat. Hazards Earth Syst. Sci., 22, 1911–1930, https://doi.org/10.5194/nhess-22-1911-2022, https://doi.org/10.5194/nhess-22-1911-2022, 2022
Short summary
Short summary
Can the resolution of forecasts of avalanche danger be increased by using a combination of absolute and comparative judgments? Using 5 years of Swiss avalanche forecasts, we show that, on average, sub-levels assigned to a danger level reflect the expected increase in the number of locations with poor snow stability and in the number and size of avalanches with increasing forecast sub-level.
Yves Bühler, Peter Bebi, Marc Christen, Stefan Margreth, Lukas Stoffel, Andreas Stoffel, Christoph Marty, Gregor Schmucki, Andrin Caviezel, Roderick Kühne, Stephan Wohlwend, and Perry Bartelt
Nat. Hazards Earth Syst. Sci., 22, 1825–1843, https://doi.org/10.5194/nhess-22-1825-2022, https://doi.org/10.5194/nhess-22-1825-2022, 2022
Short summary
Short summary
To calculate and visualize the potential avalanche hazard, we develop a method that automatically and efficiently pinpoints avalanche starting zones and simulate their runout for the entire canton of Grisons. The maps produced in this way highlight areas that could be endangered by avalanches and are extremely useful in multiple applications for the cantonal authorities, including the planning of new infrastructure, making alpine regions more safe.
Tero M. Partanen and Mikhail Sofiev
Nat. Hazards Earth Syst. Sci., 22, 1335–1346, https://doi.org/10.5194/nhess-22-1335-2022, https://doi.org/10.5194/nhess-22-1335-2022, 2022
Short summary
Short summary
The presented method aims to forecast regional wildfire-emitted radiative power in a time-dependent manner several days in advance. The temporal fire radiative power can be converted to an emission production rate, which can be implemented in air quality forecasting simulations. It is shown that in areas with a high incidence of wildfires, the fire radiative power is quite predictable, but otherwise it is not.
Christos Bountzouklis, Dennis M. Fox, and Elena Di Bernardino
Nat. Hazards Earth Syst. Sci., 22, 1181–1200, https://doi.org/10.5194/nhess-22-1181-2022, https://doi.org/10.5194/nhess-22-1181-2022, 2022
Short summary
Short summary
The study addresses the evolution of burned areas in southeastern France from 1970 to 2019 through the scope of a firefighting policy shift in 1994 that resulted in a significant decrease in the burned area. Regions with large fires were particularly impacted, whereas, in other areas, the fires remained frequent and occurred closer to built-up zones. Environmental characteristics such as south-facing slopes and low vegetation (bushes) are increasingly associated with burned areas.
Louis Védrine, Xingyue Li, and Johan Gaume
Nat. Hazards Earth Syst. Sci., 22, 1015–1028, https://doi.org/10.5194/nhess-22-1015-2022, https://doi.org/10.5194/nhess-22-1015-2022, 2022
Short summary
Short summary
This study investigates how forests affect the behaviour of snow avalanches through the evaluation of the amount of snow stopped by the trees and the analysis of energy dissipation mechanisms. Different avalanche features and tree configurations have been examined, leading to the proposal of a unified law for the detrained snow mass. Outcomes from this study can be directly implemented in operational models for avalanche risk assessment and contribute to improved forest management strategy.
Matthew C. Perry, Emilie Vanvyve, Richard A. Betts, and Erika J. Palin
Nat. Hazards Earth Syst. Sci., 22, 559–575, https://doi.org/10.5194/nhess-22-559-2022, https://doi.org/10.5194/nhess-22-559-2022, 2022
Short summary
Short summary
In the past, wildfires in the UK have occurred mainly in spring, with occasional events during hot, dry summers. Climate models predict a large future increase in hazardous fire weather conditions in summer. Wildfire can be considered an
emergent riskfor the UK, as past events have not had widespread major impacts, but this could change. The large increase in risk between the 2 °C and 4 °C levels of global warming highlights the importance of global efforts to keep warming below 2 °C.
Philip A. Ebert and Peter Milne
Nat. Hazards Earth Syst. Sci., 22, 539–557, https://doi.org/10.5194/nhess-22-539-2022, https://doi.org/10.5194/nhess-22-539-2022, 2022
Short summary
Short summary
There is no consensus about how to assess the quality of binary (yes or no) rare and severe event forecasts, i.e. forecasts involving natural hazards like tornadoes or avalanches. We offer a comprehensive overview of the challenges we face when making such an assessment and provide a critical review of existing solutions. We argue against all but one existing solution to assess the quality of such forecasts and present practical consequences to improve forecasting services.
Jacques Mourey, Pascal Lacroix, Pierre-Allain Duvillard, Guilhem Marsy, Marco Marcer, Emmanuel Malet, and Ludovic Ravanel
Nat. Hazards Earth Syst. Sci., 22, 445–460, https://doi.org/10.5194/nhess-22-445-2022, https://doi.org/10.5194/nhess-22-445-2022, 2022
Short summary
Short summary
More frequent rockfalls in high alpine environments due to climate change are a growing threat to mountaineers. This hazard is particularly important on the classic route up Mont Blanc. Our results show that rockfalls are most frequent during snowmelt periods and the warmest hours of the day, and that mountaineers do not adapt to the local rockfall hazard when planning their ascent. Disseminating the knowledge acquired from our study caused management measures to be implemented for the route.
Tomàs Artés, Marc Castellnou, Tracy Houston Durrant, and Jesús San-Miguel
Nat. Hazards Earth Syst. Sci., 22, 509–522, https://doi.org/10.5194/nhess-22-509-2022, https://doi.org/10.5194/nhess-22-509-2022, 2022
Short summary
Short summary
During the last 20 years extreme wildfires have challenged firefighting capabilities. Several fire danger indices are routinely used by firefighting services but are not suited to forecast convective extreme wildfire behaviour at the global scale. This article proposes a new fire danger index for deep moist convection, the extreme-fire behaviour index (EFBI), based on the analysis of the vertical profiles of the atmosphere above wildfires to use along with traditional fire danger indices.
Cited articles
Alam, M., Willits, J. T., Arnarson, B. Ö., and Luding, S.: Kinetic theory of a binary mixture of nearly elastic disks with size and mass disparity, Phys. Fluids, 14, 4085–4087, https://doi.org/10.1063/1.1509066, 2002.
Alean, J.: Ice avalanches: some empirical information about their formation and reach, J. Glaciology, 31, 324–333, 1985.
Ancey, C.: Plasticity and geophysical flows: a review, J. Non-Newtonian Fluid, 142, 4–35, https://doi.org/10.1016/j.jnnfm.2006.05.005, 2007.
Arnarson, B. Ö. and Willits, J. T.: Thermal diffusion in binary mixtures of smooth, nearly elastic spheres with and without gravity, Phys. Fluids, 10, 1324–1328, https://doi.org/10.1063/1.869658, 1998.
Bagnold, R. A.: Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear, P. Roy. Soc. Lond. A-Mat., 225, 49–63, https://doi.org/10.1098/rspa.1954.0186, 1954.
Bagnold, R. A.: The shearing and dilatation of dry sand and the 'singing' mechanism, P. Roy. Soc. Lond. A-Mat., 295, 219–232, https://doi.org/10.1098/rspa.1966.0236, 1966.
Baker, J. L., Barker, T., and Gray, J. M. N. T.: A two-dimensional depth-averaged μ(I)-rheology for dense granular avalanches, J. Fluid Mech., 787, 367–395, https://doi.org/10.1017/jfm.2015.684, 2015.
Bartelt, P. and Buser, O.: The relation between dilatancy, effective stress and dispersive pressure in granular avalanches, Acta Geotechnica, 11, 549–557, https://doi.org/10.1007/s11440-016-0463-7, 2016.
Bartelt, P. and McArdell, B. W.: Granulometric investigations of snow avalanches, J. Glaciol., 55, 829–833, https://doi.org/10.3189/002214309790152384, 2009.
Bartelt, P., Salm, L. B., and Gruberl, U.: Calculating dense-snow avalanche runout using a Voellmyfluid model with active/passive longitudinal straining, J. Glaciol., 45, 242–254, 1999.
Bartelt, P., Buser, O., and Platzer, K.: Fluctuation–dissipation relations for granular snow avalanches, J. Glaciol., 52, 631–643, https://doi.org/10.3189/172756506781828476, 2006.
Bartelt, P., Buser, O., Vera Valero, C., and Bühler, Y.: Configurational energy and the formation of mixed flowing/powder snow and ice avalanches, Ann. Glaciol., 57, 179–188, https://doi.org/10.3189/2016AoG71A464, 2016.
Berzi, D., Di Prisco, C. G., and Vescovi, D.: Constitutive relations for steady, dense granular flows, Phys. Rev. E, 84, 031301, https://doi.org/10.1103/PhysRevE.84.031301, 2011.
Boemer, A., Qi, H., and Renz, U.: Eulerian simulation of bubble formation at a jet in a two-dimensional fluidized bed, Int. J. Multiphas. Flow, 23, 927–944, https://doi.org/10.1016/S0301-9322(97)00018-9, 1997.
Bouchut, F. and Westdickenberg, M.: Gravity driven shallow water models for arbitrary topography, Commun. Math. Sci., 2, 359–389, 2004.
Bovis, M. J. and Mears, A. I.: Statistical prediction of snow avalanche runout from terrain variables in Colorado, Arctic Alpine Res., 8, 115–120, https://doi.org/10.2307/1550615, 1976.
Brey, J. J., Dufty, J. W., Sub Kim, C., and Santos, A.: Hydrodynamics for granular flow at low density, Phys. Rev. E, 58, 4638–4653, https://doi.org/10.1103/PhysRevE.58.4638, 1998.
Brilliantov, N. V. and Pöschel, T.: Granular gases with impact-velocity-dependent restitution coefficient, in: Granular Gases, edited by: Pöschel, T. and Luding, S., Springer Berlin Heidelberg, 100–124, https://doi.org/10.1007/3-540-44506-4_5, 2001.
Buser, O. and Bartelt, P.: Production and decay of random kinetic energy in granular snow avalanches, J. Glaciol., 55, 3–12, https://doi.org/10.3189/002214309788608859, 2009.
Buser, O. and Bartelt, P.: An energy-based method to calculate streamwise density variations in snow avalanches, J. Glaciol., 61, 563–575, https://doi.org/10.3189/2015JoG14J054, 2015.
Campbell, C. S.: Rapid granular flows, Annu. Rev. Fluid Mech., 22, 57–90, https://doi.org/10.1146/annurev.fl.22.010190.000421, 1990.
Campbell, C. S.: Granular shear flows at the elastic limit, J. Fluid Mech., 465, 261–291, https://doi.org/10.1017/S002211200200109X, 2002.
Campbell, C. S.: Stress-controlled elastic granular shear flows, J. Fluid Mech., 539, 273–297, https://doi.org/10.1017/S0022112005005616, 2005.
Campbell, C. S.: Granular material flows – an overview, Powder Technol., 162, 208–229, https://doi.org/10.1016/j.powtec.2005.12.008, 2006.
Carnahan, N. F. and Starling, K. E.: Equation of state for nonattracting rigid spheres, J. Chem. Phys., 51, 635–636, https://doi.org/10.1063/1.1672048, 1969.
Chialvo, S., Sun, J., and Sundaresan, S.: Bridging the rheology of granular flows in three regimes, Phys. Rev. E, 85, 021305, https://doi.org/10.1103/PhysRevE.85.021305, 2012.
Christen, M., Kowalski, J., and Bartelt, P.: RAMMS: Numerical simulation of dense snow avalanches in three-dimensional terrain, Cold Reg. Sci. Technol., 63, 1–14, https://doi.org/10.1016/j.coldregions.2010.04.005, 2010.
da Cruz, F., Emam, S., Prochnow, M., Roux, J.-N., and Chevoir, F.: Rheophysics of dense granular materials: Discrete simulation of plane shear flows, Phys. Rev. E, 72, 021309, https://doi.org/10.1103/PhysRevE.72.021309, 2005.
Dent, J. D., Burrell, K. J., Schmidt, D. S., Louge, M. Y., Adams, E. E., and Jazbutis, T. G.: Density, velocity and friction measurements in a dry-snow avalanche, Ann. Glaciol., 26, 247–252, 1998.
de Saint-Venant, A. J. C. B.: Théorie du mouvement non-permanent des eaux, avec application aux crues des rivières et à l'introduction de marées dans leurs lits, CR Hebd. Acad. Sci., 73, 147–154, 1871.
Dutto, P.: Modelling of landslides propagation with SPH: effects of rheology and pore water pressure, PhD thesis, Universidad Politecnica De Madrid, http://oa.upm.es/33166/ (last access: 26 October 2016), 2014.
Fischer, J.-T.: A novel approach to evaluate and compare computational snow avalanche simulation, Nat. Hazards Earth Syst. Sci., 13, 1655–1667, https://doi.org/10.5194/nhess-13-1655-2013, 2013.
Fischer, J.-T., Kowalski, J., and Pudasaini, S. P.: Topographic curvature effects in applied avalanche modeling, Cold Reg. Sci. Technol., 74, 21–30, https://doi.org/10.1016/j.coldregions.2012.01.005, 2012.
Fischer, J.-T., Fromm, R., Gauer, P., and Sovilla, B.: Evaluation of probabilistic snow avalanche simulation ensembles with Doppler radar observations, Cold Reg. Sci. Technol., 97, 151–158, https://doi.org/10.1016/j.coldregions.2013.09.011, 2014.
Fischer, J.-T., Kofler, A., Wolfgang, F., Granig, M., and Kleemayr, K.: Multivariate parameter optimization for computational snow avalanche simulation, J. Glaciol., 875–888, https://doi.org/10.3189/2015JoG14J168, 2015.
Forterre, Y. and Pouliquen, O.: Flows of dense granular media, Annu. Rev. Fluid Mech., 40, 1–24, https://doi.org/10.1146/annurev.fluid.40.111406.102142, 2008.
Garzó, V. and Dufty, J. W.: Dense fluid transport for inelastic hard spheres, Phys. Rev. E, 59, 5895–5911, https://doi.org/10.1103/PhysRevE.59.5895, 1999.
Garzó, V. and Dufty, J. W.: Hydrodynamics for a granular binary mixture at low density, Phys. Fluids, 14, 1476–1490, https://doi.org/10.1063/1.1458007, 2002.
Gauer, P., Kern, M., Kristensen, K., Lied, K., Rammer, L., and Schreiber, H.: On pulsed Doppler radar measurements of avalanches and their implication to avalanche dynamics, Cold Reg. Sci. Technol., 50, 55–71, https://doi.org/10.1016/j.coldregions.2007.03.009, 2007.
Gauer, P., Issler, D., Lied, K., Kristensen, K., and Sandersen, F.: On snow avalanche flow regimes: inferences from observations and measurements, in: Proceedings Whistler 2008 International Snow Science Workshop, 21–27 September 2008, 717 pp., 2008.
Goldhirsch, I.: Rapid granular flows, Annu. Rev. Fluid Mech., 35, 267–293, https://doi.org/10.1146/annurev.fluid.35.101101.161114, 2003.
Goldshtein, A. and Shapiro, M.: Mechanics of collisional motion of granular materials. Part 1. General hydrodynamic equations, J. Fluid Mech., 282, 75–114, https://doi.org/10.1017/S0022112095000048, 1995.
Gruber, U., Bartelt, P., and Margreth, S.: Anleitung zur Berechnung von Fließlawinen: Neue Berechnungsmethoden in der Lawinengefahrenkartierung, WSL Institut für Schnee-und Lawinenforschung SLF, Davos, 1999.
Hogg, A. J. and Pritchard, D.: The effects of hydraulic resistance on dam-break and other shallow inertial flows, J. Fluid Mech., 501, 179–212, https://doi.org/10.1017/S0022112003007468, 2004.
Hutter, K., Wang, Y., and Pudasaini, S. P.: The Savage–Hutter avalanche model: how far can it be pushed?, Philos. T. Roy. Soc. A, 363, 1507–1528, https://doi.org/10.1098/rsta.2005.1594, 2005.
Issler, D. and Gauer, P.: Exploring the significance of the fluidized flow regime for avalanche hazard mapping, Ann. Glaciol., 49, 193–198, https://doi.org/10.3189/172756408787814997, 2008.
Issler, D., Harbitz, C., Kristensen, K., Lied, K., Moe, A., Barbolini, M., De Blasio, F., Khazaradze, G., McElwaine, J., Mears, A., Naaim, M., and Sailer, R.: A comparison of avalanche models with data from dry-snow avalanches at Ryggfonn, Norway, in: Proc. 11th Intl. Conference and Field Trip on Landslides, Norway, Taylor Francis Ltd, 173–179, 2005.
Iverson, R. M. and George, D. L.: A depth-averaged debris-flow model that includes the effects of evolving dilatancy. I. Physical basis, P. Roy. Soc. Lond. A Mat., 470, 20130819, https://doi.org/10.1098/rspa.2013.0819, 2014.
Jenkins, J. T.: Dense shearing flows of inelastic disks, Phys. Fluids, 18, 103307, https://doi.org/10.1063/1.2364168, 2006.
Jenkins, J. T.: Dense inclined flows of inelastic spheres, Granul. Matter, 10, 47–52, https://doi.org/10.1007/s10035-007-0057-z, 2007.
Jenkins, J. T. and Berzi, D.: Dense inclined flows of inelastic spheres: tests of an extension of kinetic theory, Granul. Matter, 12, 151–158, https://doi.org/10.1007/s10035-010-0169-8, 2010.
Jenkins, J. T. and Mancini, F.: Balance laws and constitutive relations for plane flows of a dense, binary mixture of smooth, nearly elastic, circular disks, J. Appl. Mech., 54, 27–34, https://doi.org/10.1115/1.3172990, 1987.
Jenkins, J. T. and Mancini, F.: Kinetic theory for binary mixtures of smooth, nearly elastic spheres, Phys. Fluids A-Fluid, 1, 2050–2057, https://doi.org/10.1063/1.857479, 1989.
Jenkins, J. T. and Richman, M. W.: Grad's 13-moment system for a dense gas of inelastic spheres, in: The Breadth and Depth of Continuum Mechanics: A Collection of Papers Dedicated to J. L. Ericksen on His Sixtieth Birthday, Springer Berlin Heidelberg, 647–669, https://doi.org/10.1007/978-3-642-61634-1_31, 1986.
Jenkins, J. T. and Zhang, C.: Kinetic theory for identical, frictional, nearly elastic spheres, Phys. Fluids, 14, 1228–1235, https://doi.org/10.1063/1.1449466, 2002.
Jóhannesson, T., Gauer, P., Issler, P., and Lied, K.: The design of avalanche protection dams. Recent practical and theoretical developments, No. EUR 23339 in Climate Change and Natural Hazard Research Series 2, 2009.
Kern, M., Bartelt, P., Sovilla, B., and Buser, O.: Measured shear rates in large dry and wet snow avalanches, J. Glaciol., 55, 327–338, https://doi.org/10.3189/002214309788608714, 2009.
Körner, H. J.: Modelle zur Berechnung der Bergsturz- und Lawinenbewegung, Interpraevent 1980, 2, 15–55, 1980.
Lee, C.-H. and Huang, C.-J.: Model of sheared granular material and application to surface-driven granular flows under gravity, Phys. Fluids, 22, 043307, https://doi.org/10.1063/1.3400203, 2010.
Lois, G., Lemaître, A., and Carlson, J. M.: Numerical tests of constitutive laws for dense granular flows, Phys. Rev. E, 72, 051303, https://doi.org/10.1103/PhysRevE.72.051303, 2005.
Lois, G., Lemaitre, A., and Carlson, J. M.: Emergence of multi-contact interactions in contact dynamics simulations of granular shear flows, EPL-Europhys. Lett., 76, 318–324, https://doi.org/10.1209/epl/i2005-10605-1, 2006.
Lun, C. K. K.: Kinetic theory for granular flow of dense, slightly inelastic, slightly rough spheres, J. Fluid Mech., 233, 539–559, https://doi.org/10.1017/S0022112091000599, 1991.
Lun, C. K. K. and Savage, S. B.: A simple kinetic theory for granular flow of rough, inelastic, spherical particles, J. Appl. Mech., 54, 47–53, https://doi.org/10.1115/1.3172993, 1987.
McClung, D. M. and Schaerer, P. A.: Characteristics of flowing snow and avalanche impact pressures, Ann. Glaciol., 6, 9–14, 1985.
Mergili, M., Schratz, K., Ostermann, A., and Fellin, W.: Physically-based modelling of granular flows with Open Source GIS, Nat. Hazards Earth Syst. Sci., 12, 187–200, https://doi.org/10.5194/nhess-12-187-2012, 2012.
Mills, P., Rognon, P. G., and Chevoir, F.: Rheology and structure of granular materials near the jamming transition, EPL-Europhys. Lett., 81, 64005, https://doi.org/10.1209/0295-5075/81/64005, 2008.
Mitarai, N. and Nakanishi, H.: Bagnold scaling, density plateau, and kinetic theory analysis of dense granular flow, Phys. Rev. Lett., 94, 128001, https://doi.org/10.1103/PhysRevLett.94.128001, 2005.
Mitarai, N. and Nakanishi, H.: Velocity correlations in dense granular shear flows: Effects on energy dissipation and normal stress, Phys. Rev. E, 75, 031305, https://doi.org/10.1103/PhysRevE.75.031305, 2007.
Norem, H., Irgens, F., and Schieldrop, B.: A continuum model for calculating snow avalanche velocities, in: Proceedings of the Symposium on Avalanche Formation, Movement and Effects, 363–379, 14–19 September 1969, Davos, Switzerland, 14–19, 1987.
Patra, A. K., Bauer, A., Nichita, C., Pitman, E. B., Sheridan, M., Bursik, M., Rupp, B., Webber, A., Stinton, A., Namikawa, L., and Renschler, C. S.: Parallel adaptive numerical simulation of dry avalanches over natural terrain, J. Volcanol. Geoth. Res., 139, 1–21, https://doi.org/10.1016/j.jvolgeores.2004.06.014, 2005.
Pitman, E. B., Nichita, C. C., Patra, A., Bauer, A., Sheridan, M., and Bursik, M.: Computing granular avalanches and landslides, Phys. Fluids, 15, 3638–3646, https://doi.org/10.1063/1.1614253, 2003.
Pöschel, T. and Buchholtz, V.: Molecular dynamics of arbitrarily shaped granular particles, J. Phys. I, 5, 1431–1455, https://doi.org/10.1051/jp1:1995208, 1995.
Pouliquen, O.: Scaling laws in granular flows down rough inclined planes, Phys. Fluids, 11, 542–548, https://doi.org/10.1063/1.869928, 1999.
Pouliquen, O. and Forterre, Y.: A non-local rheology for dense granular flows, Philos. T. Roy. Soc. A, 367, 5091–5107, https://doi.org/10.1098/rsta.2009.0171, 2009.
Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T.: Numerical Recipes in C, Second Edition, Cambridge Univ. Press, 2002.
Rahaman, M. F., Naser, J., and Witt, P. J.: An unequal granular temperature kinetic theory: description of granular flow with multiple particle classes, Powder Technol., 138, 82–92, https://doi.org/10.1016/j.powtec.2003.08.050, 2003.
Rauter, M.: Entwicklung eines neuen Sohlreibungsmodells für Lawinen, Master's thesis, Universität Innsbruck, Innsbruck, Austria, http://resolver.obvsg.at/urn:nbn:at:at-ubi:1-3875 (last access: 26 October 2016), 2015.
Rognon, P. G., Chevoir, F., Bellot, H., Ousset, F., Naaim, M., and Coussot, P.: Rheology of dense snow flows: Inferences from steady state chute-flow experiments, J. Rheol., 52, 729–748, https://doi.org/10.1122/1.2897609, 2008.
Roscoe, K. H., Schofield, A. N., and Wroth, C. P.: On the yielding of soils, Géotechnique, 8, 22–53, https://doi.org/10.1680/geot.1958.8.1.22, 1958.
Salm, B.: Contribution to avalanche dynamics, in: Scientific Aspects of Snow and Ice Avalanches, Symposium at Davos, 5–10 April 1965, 69, 199–214, 1966.
Salm, B.: Flow, flow transition and runout distances of flowing avalanches, Ann. Glaciology, 18, 221–226, 1993.
Salm, B., Gubler, H. U., and Burkard, A.: Berechnung von Fliesslawinen: eine Anleitung für Praktiker mit Beispielen, WSL Institut für Schnee-und Lawinenforschung SLF, Davos, 1990.
Sampl, P. and Zwinger, T.: Avalanche simulation with SAMOS, Ann. Glaciol., 38, 393–398, https://doi.org/10.3189/172756404781814780, 2004.
Savage, S. B. and Hutter, K.: The motion of a finite mass of granular material down a rough incline, J. Fluid Mech., 199, 177–215, https://doi.org/10.1017/S0022112089000340, 1989.
Savage, S. B. and Hutter, K.: The dynamics of avalanches of granular materials from initiation to runout. Part I: Analysis, Acta Mech., 86, 201–223, https://doi.org/10.1007/BF01175958, 1991.
Scapozza, C.: Entwicklung eines dichte- und temperaturabhängigen Stoffgesetzes zur Beschreibung des visko-elastischen Verhaltens von Schnee, PhD thesis, Swiss Fed. Inst. of Technol., Zurich, https://doi.org/10.3929/ethz-a-004680249, 2004.
Scheidegger, A. E.: On the prediction of the reach and velocity of catastrophic landslides, Rock Mech. Rock Eng., 5, 231–236, https://doi.org/10.1007/BF01301796, 1973.
Schofield, A. and Wroth, P.: Critical state soil mechanics, 1968.
Sela, N. and Goldhirsch, I.: Hydrodynamic equations for rapid flows of smooth inelastic spheres, to Burnett order, J. Fluid Mech., 361, 41–74, https://doi.org/10.1017/S0022112098008660, 1998.
Serero, D., Goldhirsch, I., Noskowicz, S. H., and Tan, M.-L.: Hydrodynamics of granular gases and granular gas mixtures, J. Fluid Mech., 554, 237–258, https://doi.org/10.1017/S0022112006009281, 2006.
Silbert, L. E.: Jamming of frictional spheres and random loose packing, Soft Mater., 6, 2918–2924, https://doi.org/10.1039/C001973A, 2010.
Silbert, L. E., Ertaş, D., Grest, G. S., Halsey, T. C., Levine, D., and Plimpton, S. J.: Granular flow down an inclined plane: Bagnold scaling and rheology, Phys. Rev. E, 64, 051302, https://doi.org/10.1103/PhysRevE.64.051302, 2001.
Sovilla, B.: Field experiments and numerical modelling of mass entrainment and deposition processes in snow avalanches, PhD thesis, Swiss Fed. Inst. of Technol., Zurich, https://doi.org/10.3929/ethz-a-00478484, 2004.
Sovilla, B., Burlando, P., and Bartelt, P.: Field experiments and numerical modeling of mass entrainment in snow avalanches, J. Geophys. Res., 111, F03007, https://doi.org/10.1029/2005JF000391, 2006.
Sovilla, B., McElwaine, J. N., and Louge, M. Y.: The structure of powder snow avalanches, C. R. Phys., 16, 97–104, https://doi.org/10.1016/j.crhy.2014.11.005, 2015.
Steinkogler, W., Gaume, J., Löwe, H., Sovilla, B., and Lehning, M.: Granulation of snow: From tumbler experiments to discrete element simulations, J. Geophys. Res.-Earth, 120, 1107–1126, https://doi.org/10.1002/2014JF003294, 2015a.
Steinkogler, W., Sovilla, B., and Lehning, M.: Thermal energy in dry snow avalanches, The Cryosphere, 9, 1819–1830, https://doi.org/10.5194/tc-9-1819-2015, 2015b.
Syamlal, M., Rogers, W., and O'Brien, T. J.: MFIX documentation: Theory guide, National Energy Technology Laboratory, Department of Energy, Technical Note DOE/METC-95/1013 and NTIS/DE95000031, 1993.
Tiefenbacher, F. and Kern, M. A.: Experimental devices to determine snow avalanche basal friction and velocity profiles, Cold Reg. Sci. Technol., 38, 17–30, https://doi.org/10.1016/S0165-232X(03)00060-0, 2004.
Vallet, J., Gruber, U., and Dufour, F.: Photogrammetric avalanche volume measurements at Vallée de la Sionne, Switzerland, Ann. Glaciol., 32, 141–146, https://doi.org/10.3189/172756401781819689, 2001.
van Wachem, B. G. M.: Derivation, implementation, and validation of computer simulation models for gas-solid fluidized beds, PhD thesis, TU Delft, Delft University of Technology, Delft, the Netherlands, http://repository.tudelft.nl/assets/uuid:919e2efa-5db2-40e6-9082-83b1416709a6/as_wachem_20000918.PDF (last access: 26 October 2016), 2000.
van Wachem, B. G. M., Schouten, J. C., Krishna, R., and van den Bleek, C. M.: Eulerian simulations of bubbling behaviour in gas-solid fluidised beds, Comput. Chem. Eng., 22, 299–306, https://doi.org/10.1016/S0098-1354(98)00068-4, 1998.
van Wachem, B. G. M., Schouten, J. C., Krishna, R., and van den Bleek, C. M.: Validation of the Eulerian simulated dynamic behaviour of gas–solid fluidised beds, Chem. Eng. Sci., 54, 2141–2149, https://doi.org/10.1016/S0009-2509(98)00303-0, 1999.
Vera Valero, C., Wikstroem Jones, K., Bühler, Y., and Bartelt, P.: Release temperature, snow-cover entrainment and the thermal flow regime of snow avalanches, J. Glaciol., 61, 173–184, https://doi.org/10.3189/2015JoG14J117, 2015.
Vescovi, D.: Granular shear flows: constitutive modeling and numerical simulations, PhD thesis, Politecnico di Milano, Milan, Italy, http://hdl.handle.net/10589/89847 (last access: 26 October 2016), 2014.
Vescovi, D., di Prisco, C., and Berzi, D.: From solid to granular gases: the steady state for granular materials, Int. J. Numer. Anal. Met., 37, 2937–2951, https://doi.org/10.1002/nag.2169, 2013.
Voellmy, A.: Über die Zerstörungskraft von Lawinen, Schweizerische Bauzeitung, 73, 212–217, https://doi.org/10.5169/seals-61891, 1955.
Willits, J. T. and Arnarson, B. Ö.: Kinetic theory of a binary mixture of nearly elastic disks, Phys. Fluids, 11, 3116–3122, https://doi.org/10.1063/1.870169, 1999.
Zamankhan, P.: Kinetic theory of multicomponent dense mixtures of slightly inelastic spherical particles, Phys. Rev. E, 52, 4877, https://doi.org/10.1103/PhysRevE.52.4877, 1995.
Zwinger, T., Kluwick, A., and Sampl, P.: Numerical Simulation of Dry-Snow Avalanche Flow over Natural Terrain, in: Dynamic Response of Granular and Porous Materials under Large and Catastrophic Deformations, edited by: Hutter, K. and Kirchner, N., Springer Berlin Heidelberg, Lecture Notes in Applied and Computational Mechanics, 11, 161–194, https://doi.org/10.1007/978-3-540-36565-5_5, 2003.
Short summary
Kinetic theory describes granular material under rapid motion. Macroscopic phenomena are determined by statistically describing collisions between particles. Recently, the theory has been extended to slow motion and quasi-static cases. Simplifications allow to apply this theory to snow avalanche simulations, where friction models with similar structure have been developed. Different test cases, comparing simulation and measurement data prove the applicability and highlight the improvements.
Kinetic theory describes granular material under rapid motion. Macroscopic phenomena are...
Altmetrics
Final-revised paper
Preprint