Articles | Volume 16, issue 11
https://doi.org/10.5194/nhess-16-2325-2016
https://doi.org/10.5194/nhess-16-2325-2016
Research article
 | 
03 Nov 2016
Research article |  | 03 Nov 2016

Snow avalanche friction relation based on extended kinetic theory

Matthias Rauter, Jan-Thomas Fischer, Wolfgang Fellin, and Andreas Kofler

Related authors

OpenFOAM-avalanche 2312: depth-integrated models beyond dense-flow avalanches
Matthias Rauter and Julia Kowalski
Geosci. Model Dev., 17, 6545–6569, https://doi.org/10.5194/gmd-17-6545-2024,https://doi.org/10.5194/gmd-17-6545-2024, 2024
Short summary
faSavageHutterFOAM 1.0: depth-integrated simulation of dense snow avalanches on natural terrain with OpenFOAM
Matthias Rauter, Andreas Kofler, Andreas Huber, and Wolfgang Fellin
Geosci. Model Dev., 11, 2923–2939, https://doi.org/10.5194/gmd-11-2923-2018,https://doi.org/10.5194/gmd-11-2923-2018, 2018
Short summary

Related subject area

Other Hazards (e.g., Glacial and Snow Hazards, Karst, Wildfires Hazards, and Medical Geo-Hazards)
Glide-snow avalanches: a mechanical, threshold-based release area model
Amelie Fees, Alec van Herwijnen, Michael Lombardo, Jürg Schweizer, and Peter Lehmann
Nat. Hazards Earth Syst. Sci., 24, 3387–3400, https://doi.org/10.5194/nhess-24-3387-2024,https://doi.org/10.5194/nhess-24-3387-2024, 2024
Short summary
Improving fire severity prediction in south-eastern Australia using vegetation-specific information
Kang He, Xinyi Shen, Cory Merow, Efthymios Nikolopoulos, Rachael V. Gallagher, Feifei Yang, and Emmanouil N. Anagnostou
Nat. Hazards Earth Syst. Sci., 24, 3337–3355, https://doi.org/10.5194/nhess-24-3337-2024,https://doi.org/10.5194/nhess-24-3337-2024, 2024
Short summary
How hard do avalanche practitioners tap during snow stability tests?
Håvard B. Toft, Samuel V. Verplanck, and Markus Landrø
Nat. Hazards Earth Syst. Sci., 24, 2757–2772, https://doi.org/10.5194/nhess-24-2757-2024,https://doi.org/10.5194/nhess-24-2757-2024, 2024
Short summary
A large-scale validation of snowpack simulations in support of avalanche forecasting focusing on critical layers
Florian Herla, Pascal Haegeli, Simon Horton, and Patrick Mair
Nat. Hazards Earth Syst. Sci., 24, 2727–2756, https://doi.org/10.5194/nhess-24-2727-2024,https://doi.org/10.5194/nhess-24-2727-2024, 2024
Short summary
A glacial lake outburst flood risk assessment for the Phochhu river basin, Bhutan
Tandin Wangchuk and Ryota Tsubaki
Nat. Hazards Earth Syst. Sci., 24, 2523–2540, https://doi.org/10.5194/nhess-24-2523-2024,https://doi.org/10.5194/nhess-24-2523-2024, 2024
Short summary

Cited articles

Alam, M., Willits, J. T., Arnarson, B. Ö., and Luding, S.: Kinetic theory of a binary mixture of nearly elastic disks with size and mass disparity, Phys. Fluids, 14, 4085–4087, https://doi.org/10.1063/1.1509066, 2002.
Alean, J.: Ice avalanches: some empirical information about their formation and reach, J. Glaciology, 31, 324–333, 1985.
Ancey, C.: Plasticity and geophysical flows: a review, J. Non-Newtonian Fluid, 142, 4–35, https://doi.org/10.1016/j.jnnfm.2006.05.005, 2007.
Arnarson, B. Ö. and Willits, J. T.: Thermal diffusion in binary mixtures of smooth, nearly elastic spheres with and without gravity, Phys. Fluids, 10, 1324–1328, https://doi.org/10.1063/1.869658, 1998.
Bagnold, R. A.: Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear, P. Roy. Soc. Lond. A-Mat., 225, 49–63, https://doi.org/10.1098/rspa.1954.0186, 1954.
Download
Short summary
Kinetic theory describes granular material under rapid motion. Macroscopic phenomena are determined by statistically describing collisions between particles. Recently, the theory has been extended to slow motion and quasi-static cases. Simplifications allow to apply this theory to snow avalanche simulations, where friction models with similar structure have been developed. Different test cases, comparing simulation and measurement data prove the applicability and highlight the improvements.
Altmetrics
Final-revised paper
Preprint