Articles | Volume 24, issue 4
https://doi.org/10.5194/nhess-24-1381-2024
https://doi.org/10.5194/nhess-24-1381-2024
Research article
 | 
24 Apr 2024
Research article |  | 24 Apr 2024

The potential of global coastal flood risk reduction using various DRR measures

Eric Mortensen, Timothy Tiggeloven, Toon Haer, Bas van Bemmel, Dewi Le Bars, Sanne Muis, Dirk Eilander, Frederiek Sperna Weiland, Arno Bouwman, Willem Ligtvoet, and Philip J. Ward

Related authors

Using a Hybrid Semi-Integrated Spatial Allocation Model to Model Future Housing Allocation
Bas van Bemmel, Irena Itova, and Ismay Bax
AGILE GIScience Ser., 5, 47, https://doi.org/10.5194/agile-giss-5-47-2024,https://doi.org/10.5194/agile-giss-5-47-2024, 2024
A multiscale modelling framework of coastal flooding events for global to local flood hazard assessments
Irene Benito, Jeroen C. J. H. Aerts, Philip J. Ward, Dirk Eilander, and Sanne Muis
EGUsphere, https://doi.org/10.5194/egusphere-2024-1354,https://doi.org/10.5194/egusphere-2024-1354, 2024
Short summary
Wflow_sbm v0.7.3, a spatially distributed hydrological model: from global data to local applications
Willem J. van Verseveld, Albrecht H. Weerts, Martijn Visser, Joost Buitink, Ruben O. Imhoff, Hélène Boisgontier, Laurène Bouaziz, Dirk Eilander, Mark Hegnauer, Corine ten Velden, and Bobby Russell
Geosci. Model Dev., 17, 3199–3234, https://doi.org/10.5194/gmd-17-3199-2024,https://doi.org/10.5194/gmd-17-3199-2024, 2024
Short summary
Factors of influence on flood risk perceptions related to Hurricane Dorian: an assessment of heuristics, time dynamics, and accuracy of risk perceptions
Laurine A. de Wolf, Peter J. Robinson, W. J. Wouter Botzen, Toon Haer, Jantsje M. Mol, and Jeffrey Czajkowski
Nat. Hazards Earth Syst. Sci., 24, 1303–1318, https://doi.org/10.5194/nhess-24-1303-2024,https://doi.org/10.5194/nhess-24-1303-2024, 2024
Short summary
Review article: Physical Vulnerability Database for Critical Infrastructure Multi-Hazard Risk Assessments – A systematic review and data collection
Sadhana Nirandjan, Elco E. Koks, Mengqi Ye, Raghav Pant, Kees C. H. van Ginkel, Jeroen C. J. H. Aerts, and Philip J. Ward
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-208,https://doi.org/10.5194/nhess-2023-208, 2024
Revised manuscript under review for NHESS
Short summary

Related subject area

Sea, Ocean and Coastal Hazards
The impact of long-term changes in ocean waves and storm surge on coastal shoreline change: a case study of Bass Strait and south-east Australia
Mandana Ghanavati, Ian R. Young, Ebru Kirezci, and Jin Liu
Nat. Hazards Earth Syst. Sci., 24, 2175–2190, https://doi.org/10.5194/nhess-24-2175-2024,https://doi.org/10.5194/nhess-24-2175-2024, 2024
Short summary
Brief communication: Implications of outstanding solitons for the occurrence of rogue waves at two additional sites in the North Sea
Ina Teutsch, Ralf Weisse, and Sander Wahls
Nat. Hazards Earth Syst. Sci., 24, 2065–2069, https://doi.org/10.5194/nhess-24-2065-2024,https://doi.org/10.5194/nhess-24-2065-2024, 2024
Short summary
A systemic and comprehensive assessment of coastal hazard changes: method and application to France and its overseas territories
Marc Igigabel, Marissa Yates, Michalis Vousdoukas, and Youssef Diab
Nat. Hazards Earth Syst. Sci., 24, 1951–1974, https://doi.org/10.5194/nhess-24-1951-2024,https://doi.org/10.5194/nhess-24-1951-2024, 2024
Short summary
Simulating sea level extremes from synthetic low-pressure systems
Jani Särkkä, Jani Räihä, Mika Rantanen, and Matti Kämäräinen
Nat. Hazards Earth Syst. Sci., 24, 1835–1842, https://doi.org/10.5194/nhess-24-1835-2024,https://doi.org/10.5194/nhess-24-1835-2024, 2024
Short summary
Nonlinear processes in tsunami simulations for the Peruvian coast with focus on Lima and Callao
Alexey Androsov, Sven Harig, Natalia Zamora, Kim Knauer, and Natalja Rakowsky
Nat. Hazards Earth Syst. Sci., 24, 1635–1656, https://doi.org/10.5194/nhess-24-1635-2024,https://doi.org/10.5194/nhess-24-1635-2024, 2024
Short summary

Cited articles

Aerts, J. C. J. H.: A review of cost estimates for flood adaptation, Water-Sui., 10, 1646, https://doi.org/10.3390/w10111646, 2018. 
Aerts, J. C. J. H., Lin, N., Botzen, W., Emanuel, K., and de Moel, H.: Low-Probability Flood Risk Modeling for New York City, Risk Anal., 33, 772–788, https://doi.org/10.1111/risa.12008, 2013. 
Aerts, J. C. J. H., Botzen, W. J. W., Emanuel, K., Lin, N., De Moel, H., and Michel-Kerjan, E. O.: Climate adaptation: Evaluating flood resilience strategies for coastal megacities, Science, 344, 473–475, https://doi.org/10.1126/science.1248222, 2014. 
Andree, B. P. J. and Koomen, E.: Calibration of the 2UP model: Spinlab Research Memorandum SL-13, Vrije Universiteit Amsterdam, https://research.vu.nl/en/publications/calibration-of-the-2up-model (last access: April 2021), 2017. 
Barbier, E. B., Hacker, S. D., Kennedy, C., Koch, E. W., Stier, A. C., and Silliman, B. R.: The value of estuarine and coastal ecosystem services, Ecol. Monogr., 81, 169–193, 2011. 
Download
Short summary
Current levels of coastal flood risk are projected to increase in coming decades due to various reasons, e.g. sea-level rise, land subsidence, and coastal urbanization: action is needed to minimize this future risk. We evaluate dykes and coastal levees, foreshore vegetation, zoning restrictions, and dry-proofing on a global scale to estimate what levels of risk reductions are possible. We demonstrate that there are several potential adaptation pathways forward for certain areas of the world.
Altmetrics
Final-revised paper
Preprint