Articles | Volume 24, issue 1
https://doi.org/10.5194/nhess-24-1-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-24-1-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Slope Unit Maker (SUMak): an efficient and parameter-free algorithm for delineating slope units to improve landslide modeling
Jacob B. Woodard
CORRESPONDING AUTHOR
U.S. Geological Survey, Geologic Hazards Science Center, Golden, CO, USA
Benjamin B. Mirus
U.S. Geological Survey, Geologic Hazards Science Center, Golden, CO, USA
Nathan J. Wood
U.S. Geological Survey, Western Geographic Science Center, Portland, OR, USA
Kate E. Allstadt
U.S. Geological Survey, Geologic Hazards Science Center, Golden, CO, USA
Benjamin A. Leshchinsky
Department of Forest Engineering, Resources and Management, Oregon State University, Corvallis, OR, USA
Matthew M. Crawford
Kentucky Geological Survey, University of Kentucky, Lexington, KY, USA
Related authors
Lisa V. Luna, Jacob B. Woodard, Janice L. Bytheway, Gina M. Belair, and Benjamin B. Mirus
Nat. Hazards Earth Syst. Sci., 25, 3279–3307, https://doi.org/10.5194/nhess-25-3279-2025, https://doi.org/10.5194/nhess-25-3279-2025, 2025
Short summary
Short summary
Landslide frequency (how often landslides occur) is needed to assess landslide hazard and risk but has rarely been quantified at near-continental scales. Here, we used statistical models to estimate landslide frequency across the United States while addressing gaps in landslide reporting. Our results showed strong variations in landslide frequency that followed topography, earthquake probability, and ecological region and highlighted areas with potential for widespread landsliding.
Lisa V. Luna, Jacob B. Woodard, Janice L. Bytheway, Gina M. Belair, and Benjamin B. Mirus
Nat. Hazards Earth Syst. Sci., 25, 3279–3307, https://doi.org/10.5194/nhess-25-3279-2025, https://doi.org/10.5194/nhess-25-3279-2025, 2025
Short summary
Short summary
Landslide frequency (how often landslides occur) is needed to assess landslide hazard and risk but has rarely been quantified at near-continental scales. Here, we used statistical models to estimate landslide frequency across the United States while addressing gaps in landslide reporting. Our results showed strong variations in landslide frequency that followed topography, earthquake probability, and ecological region and highlighted areas with potential for widespread landsliding.
Benjamin B. Mirus, Thom Bogaard, Roberto Greco, and Manfred Stähli
Nat. Hazards Earth Syst. Sci., 25, 169–182, https://doi.org/10.5194/nhess-25-169-2025, https://doi.org/10.5194/nhess-25-169-2025, 2025
Short summary
Short summary
Early warning of increased landslide potential provides situational awareness to reduce landslide-related losses from major storm events. For decades, landslide forecasts relied on rainfall data alone, but recent research points to the value of hydrologic information for improving predictions. In this paper, we provide our perspectives on the value and limitations of integrating subsurface hillslope hydrologic monitoring data and mathematical modeling for more accurate landslide forecasts.
Annette I. Patton, Lisa V. Luna, Joshua J. Roering, Aaron Jacobs, Oliver Korup, and Benjamin B. Mirus
Nat. Hazards Earth Syst. Sci., 23, 3261–3284, https://doi.org/10.5194/nhess-23-3261-2023, https://doi.org/10.5194/nhess-23-3261-2023, 2023
Short summary
Short summary
Landslide warning systems often use statistical models to predict landslides based on rainfall. They are typically trained on large datasets with many landslide occurrences, but in rural areas large datasets may not exist. In this study, we evaluate which statistical model types are best suited to predicting landslides and demonstrate that even a small landslide inventory (five storms) can be used to train useful models for landslide early warning when non-landslide events are also included.
Liam Toney, David Fee, Kate E. Allstadt, Matthew M. Haney, and Robin S. Matoza
Earth Surf. Dynam., 9, 271–293, https://doi.org/10.5194/esurf-9-271-2021, https://doi.org/10.5194/esurf-9-271-2021, 2021
Short summary
Short summary
Large avalanches composed of ice and rock are a serious hazard to mountain communities and backcountry travellers. These processes shake the Earth and disturb the atmosphere, generating seismic waves and sound waves which can travel for hundreds of kilometers. In this study, we use the seismic waves and sound waves produced by two massive avalanches on a volcano in Alaska to reconstruct how the avalanches failed. Our method may assist with rapid emergency response to these global hazards.
Cited articles
Alvioli, M., Marchesini, I., Reichenbach, P., Rossi, M., Ardizzone, F., Fiorucci, F., and Guzzetti, F.: Automatic delineation of geomorphological slope units with r.slopeunits v1.0 and their optimization for landslide susceptibility modeling, Geosci. Model Dev., 9, 3975–3991, https://doi.org/10.5194/gmd-9-3975-2016, 2016.
Alvioli, M., Guzzetti, F., and Marchesini, I.: Parameter-free delineation of slope units and terrain subdivision of Italy, Geomorphology, 358, 107124, https://doi.org/10.1016/j.geomorph.2020.107124, 2020.
Bessette-Kirton, E. K., Cerovski-Darriau, C., Schulz, W. H., Coe, J. A., Kean, J. W., Godt, J. W., Thomas, M. A., and Stephen Hughes, K.: Landslides triggered by Hurricane Maria: Assessment of an extreme event in Puerto Rico, GSA Today, 29, 4–10, https://doi.org/10.1130/GSATG383A.1, 2019.
Brier, G. W.: Verification of Forecasts Expressed in Terms of Probability, Mon. Weather Rev., 78, 1–4, 1950.
Burns, W. J. and Madin, I. P.: Protocol for inventory mapping of landslide deposits from light detection and ranging (lidar) imagery, Oregon Dep. Geol. Miner. Ind., 42, 1–30, 2009.
Buzzelli, M.: Modifiable Areal Unit Problem, in: International Encyclopedia of Human Geography, edited by: Kobayashi, A., Elsevier, Amsterdam, the Netherlands, 169–173, https://doi.org/10.1016/B978-0-08-102295-5.10406-8, 2020.
Carrara, A.: Multivariate models for landslide hazard evaluation, J. Int. Assoc. Math. Geol., 15, 403–426, https://doi.org/10.1007/BF01031290, 1983.
Carrara, A.: Drainage and divide networks derived from high-fidelity digital terrain models, in: Quantitative analysis of mineral and energy resources, edited by: Chung, C. F., Fabbri, A. G., and Sinding-Larsen, R., D. Reidel Publishing Company, 581–597, https://doi.org/10.1007/978-94-009-4029-1_34, 1988.
Catani, F., Lagomarsino, D., Segoni, S., and Tofani, V.: Landslide susceptibility estimation by random forests technique: sensitivity and scaling issues, Nat. Hazards Earth Syst. Sci., 13, 2815–2831, https://doi.org/10.5194/nhess-13-2815-2013, 2013.
Chang, K. T., Merghadi, A., Yunus, A. P., Pham, B. T., and Dou, J.: Evaluating scale effects of topographic variables in landslide susceptibility models using GIS-based machine learning techniques, Sci. Rep., 9, 12296, https://doi.org/10.1038/s41598-019-48773-2, 2019.
Chen, T. and Guestrin, C.: XGBoost: A scalable tree boosting system, Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Min., San Fransisco, California, 13–17 August, 785–794, https://doi.org/10.1145/2939672.2939785, 2016.
Cheng, L. and Zhou, B.: A new slope unit extraction method based on improved marked watershed, MATEC Web Conf., 232, 1–5, https://doi.org/10.1051/matecconf/201823204070, 2018.
Davis, J. C.: Statistics and Data Analysis in Geology, Third, edited by: Gerber, M., John Wiley & Sons, Inc., New York, NY, ISBN 978-0-471-17275-8, 2002.
Esri: World Topographic Map, https://www.arcgis.com/home/item.html?id=30e5fe3149c34df1ba922e6f5bbf808f (last access: 20 December 2023), 2021.
Froude, M. J. and Petley, D. N.: Global fatal landslide occurrence from 2004 to 2016, Nat. Hazards Earth Syst. Sci., 18, 2161–2181, https://doi.org/10.5194/nhess-18-2161-2018, 2018.
Goodchild, M. F.: Scale in GIS: An overview, Geomorphology, 130, 5–9, https://doi.org/10.1016/j.geomorph.2010.10.004, 2011.
Gorum, T., Fan, X., van Westen, C. J., Huang, R. Q., Xu, Q., Tang, C., and Wang, G.: Distribution pattern of earthquake-induced landslides triggered by the 12 May 2008 Wenchuan earthquake, Geomorphology, 133, 152–167, https://doi.org/10.1016/j.geomorph.2010.12.030, 2011.
GRASS Development Team: Geographic Resources Analysis Support System (GRASS) Software, Version 7.8, https://grass.osgeo.org (last access: 20 December 2023), 2020.
Guzzetti, F., Carrara, A., Cardinali, M., and Reichenbach, P.: Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy, Geomorphology, 31, 181–216, https://doi.org/10.1016/S0169-555X(99)00078-1, 1999.
Hughes, K. S., Bayouth García, D., Martínez Milian, G. O., Schulz, W. H., and Baum, R. L.: Map of slope-failure locations in Puerto Rico after Hurricane María, https://doi.org/10.5066/P9BVMD74, 2019.
Jacobs, L., Kervyn, M., Reichenbach, P., Rossi, M., Marchesini, I., Alvioli, M., and Dewitte, O.: Regional susceptibility assessments with heterogeneous landslide information: Slope unit- vs. pixel-based approach, Geomorphology, 356, 107084, https://doi.org/10.1016/j.geomorph.2020.107084, 2020.
Kirschbaum, D. and Stanley, T.: Satellite-Based Assessment of Rainfall-Triggered Landslide Hazard for Situational Awareness, Earth's Future, 6, 505–523, https://doi.org/10.1002/2017EF000715, 2018.
Luo, W. and Liu, C. C.: Innovative landslide susceptibility mapping supported by geomorphon and geographical detector methods, Landslides, 15, 465–474, https://doi.org/10.1007/s10346-017-0893-9, 2018.
Martinello, C., Cappadonia, C., Conoscenti, C., and Rotigliano, E.: Landform classification: A high-performing mapping unit partitioning tool for landslide susceptibility assessment – a test in the Imera River basin (northern Sicily, Italy), Landslides, 19, 539–553, https://doi.org/10.1007/s10346-021-01781-8, 2022.
McCune, B. and Keon, D.: Equations for potential annual direct incident radiation and heat load, J. Veg. Sci., 13, 603–606, https://doi.org/10.1111/j.1654-1103.2002.tb02087.x, 2002.
Mirus, B. B., Jones, E. S., Baum, R. L., Godt, J. W., Slaughter, S., Crawford, M. M., Lancaster, J., Stanley, T., Kirschbaum, D. B., Burns, W. J., Schmitt, R. G., Lindsey, K. O., and McCoy, K. M.: Landslides across the USA: Occurrence, susceptibility, and data limitations, Landslides, 17, 2271–2285, https://doi.org/10.1007/s10346-020-01424-4, 2020.
Molinaro, A. M., Simon, R., and Pfeiffer, R. M.: Prediction error estimation: A comparison of resampling methods, Bioinformatics, 21, 3301–3307, https://doi.org/10.1093/bioinformatics/bti499, 2005.
Nowicki Jessee, M. A., Hamburger, M. W., Allstadt, K., Wald, D. J., Robeson, S. M., Tanyas, H., Hearne, M., and Thompson, E. M.: A global empirical model for near-real-time assessment of seismically induced landslides, J. Geophys. Res.-Earth, 123, 1835–1859, https://doi.org/10.1029/2017JF004494, 2018.
Nowicki, M. A., Wald, D. J., Hamburger, M. W., Hearne, M., and Thompson, E. M.: Development of a globally applicable model for near real-time prediction of seismically induced landslides, Eng. Geol., 173, 54–65, https://doi.org/10.1016/j.enggeo.2014.02.002, 2014.
Oliveira, S. C., Zêzere, J. L., and Garcia, R. A. C.: Structure and Characteristics of Landslide Input Data and Consequences on Landslide Suscptibility Assessment and Prediction Capability, in: Engineering Geology for Society and Territory, vol. 2, edited by: Lollino, G., Giordan, D., Crosta, G. B., Corominas, J., Azzam, R., Wasowski, J., and Sciarra, N., Springer Cham, 189–192, https://doi.org/10.1007/978-3-319-09057-3, 2015.
Oommen, T., Baise, L. G., and Vogel, R. M.: Sampling bias and class imbalance in maximum-likelihood logistic regression, Math. Geosci., 43, 99–120, https://doi.org/10.1007/s11004-010-9311-8, 2011.
Openshaw, S. and Taylor, P. J.: The modifiable areal unit problem, Norwich, UK, https://doi.org/10.1002/9781118526729.ch3, 1983.
Petschko, H., Brenning, A., Bell, R., Goetz, J., and Glade, T.: Assessing the quality of landslide susceptibility maps – case study Lower Austria, Nat. Hazards Earth Syst. Sci., 14, 95–118, https://doi.org/10.5194/nhess-14-95-2014, 2014.
Qi, S., Xu, Q., Lan, H., Zhang, B., and Liu, J.: Spatial distribution analysis of landslides triggered by 2008.5.12 Wenchuan Earthquake, China, Eng. Geol., 116, 95–108, https://doi.org/10.1016/j.enggeo.2010.07.011, 2010.
R Core Team: R: A language and environment for statistical computing, CRAN [code], https://www.r-project.org/ (last access: 21 December 2023), 2022.
Reichenbach, P., Rossi, M., Malamud, B. D., Mihir, M., and Guzzetti, F.: A review of statistically-based landslide susceptibility models, Earth-Sci. Rev., 180, 60–91, https://doi.org/10.1016/j.earscirev.2018.03.001, 2018.
Sahin, E. K.: Assessing the predictive capability of ensemble tree methods for landslide susceptibility mapping using XGBoost, gradient boosting machine, and random forest, SN Appl. Sci., 2, 1308, https://doi.org/10.1007/s42452-020-3060-1, 2020.
Snoek, B. J., Larochelle, H., and Adams, R. P.: Practical bayesian optimization of machine learning, Adv. Neur. In., 25, 12 pp., ISBN 9780262561457, 2012.
Steger, S., Brenning, A., Bell, R., and Glade, T.: The influence of systematically incomplete shallow landslide inventories on statistical susceptibility models and suggestions for improvements, Landslides, 14, 1767–1781, https://doi.org/10.1007/s10346-017-0820-0, 2017.
Stoker, J. and Miller, B.: The accuracy and consistency of 3D elevation program data: a systematic analysis, Remote Sens., 14, 940, https://doi.org/10.3390/rs14040940, 2022.
Strahler, A. N.: Quantitative analysis of watershed geomorphology, EOS T. Am. Geophys. Un., 38, 913–920, https://doi.org/10.1029/TR038i006p00913, 1957.
Süzen, M. L. and Doyuran, V.: Data driven bivariate landslide susceptibility assessment using geographical information systems: A method and application to Asarsuyu catchment, Turkey, Eng. Geol., 71, 303–321, https://doi.org/10.1016/S0013-7952(03)00143-1, 2004.
Tanyas, H., Rossi, M., Alvioli, M., van Westen, C. J., and Marchesini, I.: A global slope unit-based method for the near real-time prediction of earthquake-induced landslides, Geomorphology, 327, 126–146, https://doi.org/10.1016/j.geomorph.2018.10.022, 2019.
Tarboton, D. G.: The analysis of river basins and channel networks using digital terrain data, Massachusetts Institute of Technology, 252 pp., http://hdl.handle.net/1721.1/39956 (last access: 20 December 2023), 1989.
Tarboton, D. G.: TauDEM, Utah State University [code], https://hydrology.usu.edu/taudem/taudem5 (last access: 1 August 2023), 2015.
Tarboton, D. G., Bras, R. L., and Rodriguez-Iturbe, I.: On the extraction of channel networks from digital elevation data, Hydrol. Process., 5, 81–100, https://doi.org/10.1002/hyp.3360050107, 1991.
U.S. Geological Survey: National Hydrography Dataset, U.S. Geological Survey [data set], https://apps.nationalmap.gov/downloader/ (last access: 1 August 2023), 2004.
U.S. Geological Survey: 3D Elevation Program arcsecond, U.S. Geological Survey [data set], https://apps.nationalmap.gov/downloader/ (last access: 1 August 2023), 2019.
Van Den Eeckhaut, M., Reichenbach, P., Guzzetti, F., Rossi, M., and Poesen, J.: Combined landslide inventory and susceptibility assessment based on different mapping units: an example from the Flemish Ardennes, Belgium, Nat. Hazards Earth Syst. Sci., 9, 507–521, https://doi.org/10.5194/nhess-9-507-2009, 2009.
van Westen, C. J., Castellanos, E., and Kuriakose, S. L.: Spatial data for landslide susceptibility, hazard, and vulnerability assessment: An overview, Eng. Geol., 102, 112–131, https://doi.org/10.1016/J.ENGGEO.2008.03.010, 2008.
Woodard, J. B.: Slope Unit Maker Software, GitLab [code], https://doi.org/10.5066/P98NXFTN, 2023.
Xu, C., Xu, X., Yao, X., and Dai, F.: Three (nearly) complete inventories of landslides triggered by the May 12, 2008 Wenchuan Mw 7.9 earthquake of China and their spatial distribution statistical analysis, Landslides, 11, 441–461, https://doi.org/10.1007/s10346-013-0404-6, 2014.
Yesilnacar, E. K.: The application of computational intelligence to landslide susceptibility mapping in Turkey, University of Melbourne, 423 pp., 2005.
Zêzere, J. L., Pereira, S., Melo, R., Oliveira, S. C., and Garcia, R. A. C.: Mapping landslide susceptibility using data-driven methods, Sci. Total Environ., 589, 250–267, https://doi.org/10.1016/j.scitotenv.2017.02.188, 2017.
Zhao, M., Li, F., and Tang, G.: Optimal Scale Selection for DEM Based Slope Segmentation in the Loess Plateau, Int. J. Geosci., 3, 37–43, https://doi.org/10.4236/ijg.2012.31005, 2012.
Zhu, J., Baise, L. G., and Thompson, E. M.: An updated geospatial liquefaction model for global application, B. Seismol. Soc. Am., 107, 1365–1385, https://doi.org/10.1785/0120160198, 2017.
Short summary
Dividing landscapes into hillslopes greatly improves predictions of landslide potential across landscapes, but their scaling is often arbitrarily set and can require significant computing power to delineate. Here, we present a new computer program that can efficiently divide landscapes into meaningful slope units scaled to best capture landslide processes. The results of this work will allow an improved understanding of landslide potential and can help reduce the impacts of landslides worldwide.
Dividing landscapes into hillslopes greatly improves predictions of landslide potential across...
Altmetrics
Final-revised paper
Preprint