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Abstract. Slope units are terrain partitions bounded by
drainage and divide lines. In landslide modeling, including
susceptibility modeling and event-specific modeling of land-
slide occurrence, slope units provide several advantages over
gridded units, such as better capturing terrain geometry, im-
proved incorporation of geospatial landslide-occurrence data
in different formats (e.g., point and polygon), and better
accommodating the varying data accuracy and precision in
landslide inventories. However, the use of slope units in re-
gional (> 100 km2) landslide studies remains limited due,
in part, to the large computational costs and/or poor repro-
ducibility with current delineation methods. We introduce
a computationally efficient algorithm for the parameter-free
delineation of slope units that leverages tools from within
TauDEM and GRASS, using an R interface. The algorithm
uses geomorphic laws to define the appropriate scaling of the
slope units representative of hillslope processes, avoiding the
often ambiguous determination of slope unit size. We then
demonstrate how slope units enable more robust regional-
scale landslide susceptibility and event-specific landslide oc-
currence maps.

1 Introduction

Landslides cause substantial losses of life, infrastructure, and
property every year across the world (Froude and Petley,
2018). One of the most common tools for mitigating these
losses is landslide-susceptibility mapping, which provides
information on the spatial patterns and likelihood of land-
slide occurrence. Data-driven statistical models are typically
used for creating these maps due to their computational effi-
ciency and the relative availability of data needed to develop
and deploy these models (van Westen et al., 2008). Statistical
models analyze the spatial distribution of known landslides
in relation to local terrain conditions (e.g., slope, curvature,
aspect), and other areas with similar conditions are identi-
fied as being susceptible to landslides. In essence, the mod-
els identify features in the terrain similar to known landslides
as a measure of landslide susceptibility. As such, the quality
of the landslide inventory used to develop the susceptibil-
ity model is paramount for creating reliable maps. However,
inventories with accurate information on landslide position-
ing, extent, triggering mechanism, and type are unavailable
in many parts of the world. More often, if an inventory exists
at all, it consists of a compilation of landslide data collected
at different scales, times, accuracies, and formats (e.g., poly-
gons or points) with limited information on the landslide type
or triggering mechanism (Mirus et al., 2020).

Another tool used to mitigate losses associated with land-
slides are near-real-time or forecasted landslide occurrence
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models (Nowicki Jessee et al., 2018; Nowicki et al., 2014;
Tanyas et al., 2019; Kirschbaum and Stanley, 2018). Rather
than characterizing the potential of landslide existence from
static terrain conditions, these models include a dynamic in-
put designed to characterize landslide potential from a par-
ticular forcing event. For example, Tanyas et al. (2019) ana-
lyzed the static terrain conditions and dynamic ground mo-
tion metrics (e.g., peak ground velocity) from 25 earthquake-
induced landslide-event inventories from across the world to
create a landslide model that can estimate the distribution of
landslides during an earthquake. Herein, we will refer to this
model type as a landslide occurrence model. Like suscepti-
bility models, landslide occurrence models often suffer from
imperfect and heterogeneous landslide data. Thus, a common
problem in the landslide community is determining an effec-
tive way of assessing landslide susceptibility and/or occur-
rence, despite the imperfect data available for model devel-
opment.

The foundation of any landslide map (susceptibility and
occurrence) is the mapping unit used to subdivide the terrain
for landslide analysis. Grid cells (pixels) are the most used
mapping unit, constituting about 86 % of all publications on
landslide susceptibility as of 2018 (Reichenbach et al., 2018).
This is due largely to their ease in processing. However, grid-
based mapping units have several major drawbacks. First,
the grid cells have no physical relationship to landslide pro-
cesses. Landslides occur at various spatial scales and mani-
fest a large range of footprints not appropriately captured by
grid cells. Second, variable scales of data that describe the lo-
cal terrain conditions used to develop landslide models (i.e.,
predictors or covariates) can lead to model biases. For ex-
ample, the size of the grid cell can have major effects on the
output of the landslide model (Chang et al., 2019; Guzzetti et
al., 1999; Catani et al., 2013). To mitigate these effects, some
researchers suggest creating multiple models at different res-
olutions (e.g., Guzzetti et al., 1999). Third, landslide inven-
tories are often mapped using a mix of formats (i.e., polygon
and points). This requires modelers to standardize the data in
some way (Zêzere et al., 2017; Jacobs et al., 2020; Süzen and
Doyuran, 2004; Zhu et al., 2017; Tanyas et al., 2019). For
regional-scale (> 100 km2) models that use high-resolution
(< 100 m) rasters, this standardization is often implemented
by sampling a single representative cell from within each
landslide polygon (Qi et al., 2010; Gorum et al., 2011; Xu
et al., 2014; Oliveira et al., 2015). Alternatively, some stud-
ies use lower-resolution rasters (> 100 m) and sample all the
cells that touch a landslide polygon or point (e.g., Nowicki et
al., 2014).

Slope units alleviate many of the problems of grid map-
ping units and are based on drainage and divide lines that ef-
fectively segregate the terrain according to the hillslope pro-
cesses that shaped it (Carrara, 1983; Guzzetti et al., 1999).
First, the slope units’ relationship with the natural terrain al-
lows modelers to use an array of statistics of the predictors
inside of the mapping unit (e.g., max, min, standard devi-

ation). Second, the amalgamation of grid cells to create a
slope unit provides a natural subset of the terrain that reduces
the need for multiple raster resolutions for the susceptibility
analysis (Jacobs et al., 2020). Third, slope units provide an
alternative solution for the incorporation of landslide data in
different formats. In contrast to the common grid-based stan-
dardization procedures, slope units allow modelers to study
the characteristics of the whole hillslope(s) that experienced
a landslide. Fourth, slope units are less sensitive to the ef-
fects of inaccurate landslide locations (Jacobs et al., 2020).
Finally, although the use of slope units requires more pro-
cessing at the beginning of the analysis, the limited number
of mapping units enables the use of input data from every
mapping unit, even over large regions. The representation of
every mapping unit in the study area prevents the potential of
sampling bias common when using grid mapping units (e.g.,
Oommen et al., 2011; Petschko et al., 2014).

Recognition of the advantages of slope units has led to
many different methods for delineating them. However, the
disadvantages of these methods include inhibiting compu-
tational costs, time-intensive manual cleaning and/or delin-
eation, or indeterminate parameterizations that control the
slope units’ scaling. For example, the most rudimentary
method for creating slope units is using watersheds to draw
their boundaries (Carrara, 1988). A drawback of this ap-
proach is that the sizes of the slope units are determined
by the user and difficult to reproduce. Additionally, the
cleaning of artifacts, which occur during the watershed de-
lineation process, can be highly labor-intensive. Computer-
vision techniques (e.g., landform classification) have also
been used to delineate slope units (Luo and Liu, 2018; Mar-
tinello et al., 2022; Zhao et al., 2012; Cheng and Zhou, 2018),
which overcome the reproducibility and labor issues of the
manual delineation method. However, the scale of the slope
units is still often arbitrarily set. The algorithm r.slopeunits
developed by Alvioli et al. (2020, 2016) uses watershed de-
lineations whose shape and dimensions are determined by
the user or an iterative optimization procedure (i.e., a param-
eter sweep) that evaluates the algorithm’s outputs while using
different input parameter values (see Alvioli et al., 2020, for
details). Although the algorithm can avoid manual parameter
assignments (i.e., parameter free), the computational expense
of the parameter sweep can be prohibitive for large areas.
For example, Alvioli et al. (2020) summarize a 3-month pro-
cess to delineate slope units based on a 25 m digital elevation
model (DEM) for the country of Italy while omitting the flat
regions (∼ 24 % of the total area) using a 64-core machine
with 320 GB of memory. Additionally, the optimization pro-
cedure required for the parameter-free delineation of slope
units is not openly available. The limitations of all the cur-
rent slope unit delineation methods prevent the widespread
use of slope units in susceptibility modeling.

The scaling of slope units should not be arbitrarily set to
avoid the modifiable areal unit problem (MAUP) (Openshaw
and Taylor, 1983; Buzzelli, 2020; Goodchild, 2011). The
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MAUP occurs when the cartographic representation of data
varies significantly by the scale of the mapping unit used to
represent the data. MAUP is a challenging issue to overcome;
however, determining a scale of the slope units so that they
effectively capture the hillslope processes that lead to land-
slides can greatly mitigate the negative effects of the MAUP
(Buzzelli, 2020). Alvioli et al. (2020) recognized this chal-
lenge, which motivated the development of their custom op-
timization procedure. Importantly, the optimal scale for cap-
turing hillslope processes is spatially variant. Thus, the ideal
scaling of slope units should adjust to the local topography.

The objective of this paper is to introduce Slope Unit
Maker (SUMak), an open-source, slope-unit delineation tool
that is computationally efficient and parameter-free, and to
demonstrate how slope-unit-based landslide maps are gen-
erally a better mapping unit for regional (> 100 km2) land-
slide analysis. SUMak leverages the watershed optimization
algorithm available in the software package “Terrain Anal-
ysis Using Digital Elevation Models” (TauDEM) (Tarboton,
2015) to determine the optimal scale of the watersheds for
capturing hillslope processes. This optimization avoids the
computationally inefficient parameter sweeps required by
other parameter-free algorithms, making it markedly faster.
To demonstrate the utility of SUMak, we divide this article
into two parts: (1) an explanation and demonstration of our
slope unit delineation algorithm and (2) an example of how
slope units are generally a better mapping unit for regional
landslide modeling due to the larger mapping units that align
with the local terrain. In part two, we first show that slope
units provide a conservative means of displaying the nebu-
lous susceptibility model output caused by imprecise input
data (e.g., no time component, imprecise locations, and/or
variable formats). We do this by comparing landslide suscep-
tibility map outputs from grid and slope-unit-based maps in
two watersheds in the state of Oregon (USA) which have in-
ventory data mapped at a range of scales and formats. Next,
we demonstrate the advantages of slope units for assessing
event-based landslide occurrence using a landslide catalog
from Hurricane Maria over the island of Puerto Rico (Hughes
et al., 2019). Landslide models are developed using logistic
regression and XGBoost machine learning algorithms.

2 Methods and data

2.1 Slope unit delineation

To efficiently map slope units over a given terrain, we adapt
tools from the software TauDEM (Tarboton, 2015) which de-
termine the scale where the topography transitions from flu-
vial to hillslope processes using the constant drop law (Sup-
plement Fig. S1). The constant drop law states that the aver-
age drop in elevation along Strahler stream orders (Strahler,
1957) is constant (i.e., independent of order) at scales, or
aerial extents, of the terrain controlled by fluvial processes.

At sufficiently small scales, the constant drop law does not
hold, indicating that hillslope processes are controlling the
terrain morphology. The scale at which the constant drop law
breaks is determined by applying a series of flow accumu-
lation thresholds to the input DEM and finding the thresh-
old where the mean stream drop of the first-order streams
is statistically different from the higher-order streams, using
a T test (Davis, 2002). The stream accumulation threshold
just below where the law breaks is then used to delineate the
largest watersheds that capture the hillslope processes of that
terrain. This scaling law is independent of the raster reso-
lution (Tarboton et al., 1991; Tarboton, 1989) and has been
used extensively in the field of fluvial geomorphology. We
further process these optimally scaled watersheds by split-
ting them by the longest flow path within the watershed using
GRASS (GRASS Development Team, 2020). Thus, the wa-
tersheds essentially become what would be objectively rec-
ognized as a slope. We argue that basing the scaling of slope
units used for landslide analysis on established geomorphic
laws provides the best justification for their appropriate siz-
ing and odds of mitigating the negative effects of the MAUP.

If the domain of interest has significant variation in topog-
raphy, TauDEM may choose a threshold that does not ad-
equately characterize every area within the domain. Thus,
SUMak provides different options for subdividing the do-
main in preparation for the application of the slope unit op-
timization procedure described above. We refer to these pre-
liminary subdivisions as intermediate watersheds. Intermedi-
ate watersheds must be small enough to limit the variation in
topography but large enough to avoid significantly reducing
computational efficiency. While experimenting with different
watershed dimensions on the topographically diverse regions
of Sicily, Puerto Rico, and the Umpqua and Calapooia wa-
tersheds, we found an accumulation threshold of ∼ 100 km2

to adequately strike this balance. This threshold can be ad-
justed to meet the user’s needs, or SUMak has an option to in-
put predetermined intermediate watersheds. After appropri-
ate intermediate watersheds are created, the algorithm runs
the rest of the processing steps individually for each inter-
mediate watershed in parallel as detailed in Sect. S1 and the
online repository (Woodard, 2023).

2.2 Susceptibility maps

Several papers have evaluated the relative effectiveness of
slope units over grid mapping units in statistical landslide
susceptibility models (Jacobs et al., 2020; Steger et al., 2017;
Zêzere et al., 2017; Van Den Eeckhaut et al., 2009; Mar-
tinello et al., 2022). However, none of these studies has thor-
oughly evaluated the effectiveness of slope units for better vi-
sualizing the imprecise susceptibility model outputs caused
by inconsistent input data or their advantages in displaying
near real-time or forecasted landslide occurrence maps. To
demonstrate these benefits, we use the Middle Umpqua and
Calapooia 10-digit hydrologic unit code (HUC) watersheds
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(U.S. Geological Survey, 2004) in the state of Oregon (USA)
and the island of Puerto Rico, which have areas of 257, 743,
and 8870 km2, respectively. Each area’s landslide catalog in-
cludes an assortment of landslide types (slumps, debris flows,
rockfalls, deep-seated landslides, and others), which are not
differentiated in this study. The landslide data from Ore-
gon were collected over decades using a combination of 1 m
DEM data and their derivatives, geologic maps, orthophotos,
aerial photography, and field reconnaissance and consist of
both point and polygon data (Burns and Madin, 2009). The
Oregon landslide catalogs contain no temporal constraints
on landslide occurrence. The Umpqua dataset contains 941
points and 3213 polygons, while the Calapooia dataset con-
tains 33 points and 456 polygons. In this dataset, polygons
cover the extent of the landslide-affected area, while points
are placed at the centroid of the landslide-affected areas. All
data were reviewed for accuracy after their initial mapping.
The areas of the individual landslides mapped using poly-
gons are highly variable, spanning 30–4.4× 106 and 1500–
1.88× 107 m2 in Umpqua and Calapooia, respectively. This
data variability can lead to problems when using grid map-
ping units because the landslide data are standardized to a
consistent format for the creation of the landslide suscepti-
bility models. The Puerto Rico landslide dataset consists of
71 431 point locations of the centers of landslide headscarps
that occurred during Hurricane Maria on 20–21 Septem-
ber 2017 (Hughes et al., 2019). Headscarps were manually
identified using high-resolution (15–50 cm), post-event im-
agery and quality checked by three experienced supervisors.
Importantly, the output of the landslide models for Puerto
Rico is not a susceptibility map, rather a landslide occurrence
map. That is, the models output the probability of a landslide
occurring during Hurricane Maria. This type of output is sim-
ilar to the landslide models developed for near-real-time or
forecasted assessment of event-specific landslides (Nowicki
Jessee et al., 2018; Nowicki et al., 2014; Tanyas et al., 2019;
Kirschbaum and Stanley, 2018). Our example from Hurri-
cane Maria is intended to show how event-specific model
outputs might differ between slope unit and pixel-based as-
sessments. Thus, the Oregon watersheds and Puerto Rico
datasets are used to demonstrate the benefits of slope units
when using inconsistent and event-based input data, respec-
tively.

We evaluate four different methods of standardizing land-
slide polygons to points for grid-based susceptibility maps
in the Oregon watersheds. Each method converts the poly-
gons to points which are combined with the landslides orig-
inally mapped as points. The first method converts the land-
slide polygons into a single point at the highest elevation cell
within the polygon using a 10 m DEM from the U.S. Geo-
logical Survey’s three-dimensional (3D) Elevation Program
(3DEP) database (U.S. Geological Survey, 2019), which has
a vertical root mean square error of 0.82 m (Stoker and
Miller, 2022). In cases where there are multiple points, the
highest elevation cell with the highest slope is selected. This

sampling method is designed to capture the attributes near-
est the landslide scarp and the conditions that led to failure
(Zêzere et al., 2017; Süzen and Doyuran, 2004; Jacobs et al.,
2020). The second method follows the same procedure but
is conducted using the same 10 m DEM resampled to 30 m
resolution using a bilinear interpolation method. The coarser
raster may better average the landslide characteristics com-
pared to the finer-resolution rasters. Third, we sample multi-
ple random points from the 10 m DEM within the polygons
with a 200 m spacing, roughly halfway between the average
radii of the landslide polygons from the two study sites (93
and 386 m for Umpqua and Calapooia, respectively). Each
landslide polygon is guaranteed at least one point. Creat-
ing multiple points within the polygons allows us to capture
some of the variability in the large landslides’ measured at-
tributes without eliminating the influence of landslides orig-
inally mapped as points. Using all the raster cells within the
polygons would oversaturate the model with data from the
landslide polygons and greatly reduce the influence of the
landslides originally mapped as points due to their relative
sparsity. Finally, we sample a point within each polygon at
the median elevation value using the 10 m DEM. In the case
of multiple points per polygon, we select the point with the
highest slope. This dataset is used to verify that the cho-
sen statistics in the slope-unit-based approach did not bias
the results and to make the standardization more compatible
with the Oregon point data. We refer to these four sampling
methods as “10m”, “30m”, “10m_multi”, and “10m_med”,
respectively. For the Puerto Rico dataset, we only use the
“30m” sampling method as this dataset is used to demon-
strate the use of slope units for event-based landslide inven-
tories rather than inconsistent inventories. For all study sites,
non-landslide data are randomly sampled from areas outside
the landslide polygons and points buffered with a radius de-
rived from the average area of the landslide polygons within
each study area. For Puerto Rico, this radius is set to a value
between the two Oregon mean polygon radii (100 m). If a
landslide originally mapped as a point is within the bound-
aries of a landslide polygon, it is removed before standardiza-
tion. The sampling ratio of landslide and non-landslide points
is set to 1 : 1, following the most common practice (Petschko
et al., 2014; Reichenbach et al., 2018). Table S1 shows the
number of points for each study site and sampling method,
respectively.

Slope units for the study sites are delineated using the
same 10 m DEM as the grid-based approaches. We note that
slope units can be delineated with coarser-resolution ele-
vation data with a loss in precision. The sampling scheme
for the slope-unit-based maps is simpler than the grid-based
schemes. Each slope unit in the study area is set to be either
a landslide sample or non-landslide sample dependent upon
the intersection of a landslide point or polygon within that
slope unit. We use an overlap threshold of 0.1 % (i.e., at least
0.1 % of the slope unit is covered by a landslide polygon)
for determining the positive presence of landslides within a
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given slope unit (Jacobs et al., 2020). Figures S2–S3 illus-
trate the slope units that contain landslides. In the Umpqua,
Calapooia, and Puerto Rico study sites, 68 %, 28 %, and 4 %
of the slope units contained landslides, respectively. For the
slope-unit-based maps, we train two different models. The
first uses only the median value of the predictor data within
the slope unit, and the other uses the median and standard de-
viation (SD) of the predictor data. To assure that the sampling
ratio does not bias the comparison between the slope-unit-
and grid-based maps, we set the sampling ratio of landslide
and non-landslide locations to 1 : 1 for the slope unit maps.

We created landslide susceptibility models using the lo-
gistic regression and XGBoost (Chen and Guestrin, 2016)
machine learning algorithms. Logistic regression is the most
commonly used algorithm for data-driven landslide suscep-
tibility modeling (Reichenbach et al., 2018). It calculates the
log odds (log(P/1−P), where P is the probability), of a
binary outcome given some predictor data (x) that describe
the terrain. For M input predictors, logistic regression is ex-
pressed as follows:

log
(

P

1−P

)
= βo+β1x1+β2x2+ . . .+βMxM . (1)

The input data’s coefficients (β) are fit to the input data using
a maximum likelihood criterion. XGBoost (https://xgboost.
readthedocs.io/, last access: 20 December 2023) uses a gra-
dient boosting decision tree algorithm that increases in com-
plexity until the lowest model residuals are reached (Chen
and Guestrin, 2016). This algorithm is fast, is easy to imple-
ment, and has been shown to produce highly accurate suscep-
tibility maps (Sahin, 2020). To increase the model accuracy
while preventing overfitting, we optimize the “max_depth”,
“min_child_weight”, “subsample”, “gamma”, and “colsam-
ple_bytree” hyperparameters of XGBoost (see Sect. S2 for
an explanation of these parameters) using a Bayesian cross-
validation procedure. In short, these hyperparameters adjust
how the model adapts to fit the training data. The Bayesian
cross-validation procedure uses 10 folds and 10 iterations
and assesses the results from the previous iterations to in-
form the next iteration of hyperparameters to use (Snoek et
al., 2012). This procedure prevents the use of unwieldly grid
searches and permits faster optimization of the model hy-
perparameters. For both algorithms, we limit the predictor
variables to elevation, slope, aspect (φ), roughness (standard
deviation of the elevation using a 100 m square window),
and curvature to illustrate the effectiveness of the different
models using only widely available data. Aspect is measured
using cos(φ− 45◦) to make it periodic and to account for
variations in solar heat flux (McCune and Keon, 2002). As
the Puerto Rico landslide dataset has a known trigger, we
also include root zone soil moisture estimates from NASA’s
Soil Moisture Active Passive (SMAP) mission on 21 Septem-
ber 2017. Bessette-Kirton et al. (2019) found the SMAP data
to be a better predictor of landslide distributions from Hurri-
cane Maria than other rainfall datasets. After the models are

trained, we generated maps by applying the trained models
to the entire study areas.

Importantly, the meaning of the models’ output probabil-
ity is different depending on the sampling methods used. The
single-cell methods (“10m”, “30m”, “10m_med”) measure
the probability of a cell containing the high point (scarp)
or center point of a landslide deposit recognized by the
team(s) that compiled the landslide inventory. The multiple
cell method (“10m_multi”) measures the probability of a cell
containing a landslide deposit recognized by the team(s) that
compiled the landslide inventory. Lastly, the slope-unit-based
maps measure the probability of a slope unit containing a
landslide recognized by the team(s) that compiled the inven-
tory. For the two Oregon watersheds, the probability output
of each method is used as a measure of landslide susceptibil-
ity. In contrast, the Puerto Rico maps output the probability
of landslide occurrence during Hurricane Maria.

We measure the accuracy of the landslide models using
the area under the curve (AUC) of the receiver operator
characteristics (ROC) and the Brier score (Brier, 1950). The
ROC curve compares the true positive rate against the false-
positive rate at various discrimination thresholds (see Oom-
men et al., 2011, for an overview). If every landslide and non-
landslide from the data is modeled correctly, the AUC values
of the ROC curve will be 1.0. In contrast, AUC values near
0.5 suggest the model classification is equivalent to random
guessing. Values from 0.5–0.6, 0.6–0.7, 0.7–0.8, 0.8–0.9, and
0.9–1.0 can be classified as poor, average, good, very good,
and excellent performance, respectively (Yesilnacar, 2005).
The Brier score (B) measures the mean-square error between
the model predictions (i.e., probability, P ) and observations
(binary variable of landslide presence, O):

B =
1
N

N∑
i=1

(Pi −Oi)
2, (2)

where N is the number of observations (Brier, 1950). Thus,
a B value of zero suggests perfect model fit, and a value of 1
indicates perfect misfit. In contrast to AUC–ROC, the Brier
score provides a measure of the scale of the model fit and
not just its ordering of landslide and non-landslide observa-
tions. Both metrics together provide a comprehensive evalu-
ation of the model results. Following common practice (e.g.,
Molinaro et al., 2005), we use 70 % of the data to perform a
10-fold cross-validation procedure with 10 iterations to op-
timize the models parameters and obtain representative dis-
tributions of the ROC–AUC and Brier score metrics while
reserving 30 % of the data as a final test set. Model devel-
opment and post-processing is conducted within R (R Core
Team, 2022).
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Figure 1. Umpqua and Calapooia watersheds in Oregon. (a, b) Digital elevation models and landslide inventories. Also shown are the
log-normalized histograms of the landslide polygon areas. (c, d) Zoomed-in portions of the slope unit maps with landslide polygons and
grid-sampled points using the four sampling techniques superimposed. The 10 m point samples often overlap the 30 m samples. Sampling
techniques are described in Sect. 2.2.

3 Results

3.1 SUMak slope unit delineation

SUMak quickly delineates slope units over the three study
areas while automatically adapting the scaling of the slope
units by the local terrain. Table 1 shows the time to delin-
eate each of the study areas. Both Oregon watersheds were
delineated in only a few minutes, while the island of Puerto
Rico took substantially longer. This is due to the larger area
and the increased complexity of the delineating watersheds
near coastlines where watersheds get increasingly small due
to decreased accumulation areas. The adaptation of the slope
unit sizes to the local topography is apparent in the slope unit
maps (Figs. S4, 1–2). For example, the Calapooia Watershed
includes a mountainous and flat region (Fig. 1). SUMak cre-
ates smaller slope units over the flat region compared to the
mountainous region to accommodate the difference in scale
where hillslope processes occur (Fig. S4).

3.2 Landslide map comparison

Comparison of the final landslide maps to the distribution
of landslide deposits highlights several differences between
the grid and slope-unit-based maps. The landslide inventories
and examples of the grid sampling methods for the Oregon
watersheds and Puerto Rico are in Figs. 1 and 2, respectively.
The slope units provide a division for landslides that enables
the characterization of the entire slope(s) that experiences a
failure (Figs. 1c, d, 2). In contrast, the grid-based methods
either minimize the entire landslide to a single representa-
tive point even for large (> 1 km2) landslides or an array of
points. Figures 3 and 4 show the final landslide maps of the
Oregon watersheds and Puerto Rico, respectively, using the
30 m sampling method for the grid-based maps and the slope-
unit-based maps using the median and SD predictor values
with XGBoost. The other landslide maps are in Figs. S5–
S10. The slope unit maps generally better distinguish high
and low probability zones with less area displaying probabil-
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Table 1. SUMak performance metrics.

Location Area Coastline DEM Compute Slope Time per Time per
(km2) resolution time unit area slope

(m) (min) count (s km−2) unit (s)

Umpqua 257 No 10 3.11 3841 0.7 0.05
Calapooia 743 No 10 9.97 6990 0.8 0.09
Puerto Rico 8870 Yes 10 383.28 140 367 2.6 0.16

Figure 2. Island of Puerto Rico. (a) Slope unit delineation and
mapped landslide points from Hurricane Maria. (b) Zoomed-in por-
tion of the island. Basemap from Esri’s World Topographic Map
(Esri, 2021).

ities near 0.5. Cumulative distribution functions of the maps’
probabilities are shown in Figs. S11 and S12. Additionally,
the slope-unit-based maps are more granular, which prevents
the more localized variation in probability present in the grid-
based maps. This granularity generally results in a higher
percent of study sites’ areas displaying higher probabilities
(Figs. S13–S14). We note that the difference in map granu-
larity is less for Puerto Rico than for the Oregon watersheds,
likely due to the scale of mapped area, 30 m mapping unit,
and the density of the landslide points (Fig. 2). Finally, the
different maps highlight similar locations within the water-
sheds as having a relatively high or low probabilities.

Both the ROC–AUC and Brier score metrics show a bet-
ter model fit using slope units compared to any of the grid-

based models for our study sites (Figs. 5 and 6). The XG-
Boost and logistic regression machine learning algorithms
show an increase in the median ROC–AUC and a decrease
in the Brier scores for the slope-unit-based maps. For exam-
ple, at Calapooia, the XGBoost algorithm on the grid-based
models showed AUC–ROC values that would qualify as very
good model performance (average of 0.83) when applied to
the test data, while the two final slope-unit-based models had
excellent performance (average of 0.96) when applied to the
test data. The Brier scores of the same models applied to
the test data demonstrate an average mean-square error of
0.17 and 0.07 for the grid-based and slope unit models, re-
spectively. Using the median and SD of the predictor val-
ues in each slope unit also increases the model performance
compared to slope unit models developed with only the me-
dian predictor values. The different sampling techniques for
the grid-based maps showed little variation in the two model
performance metrics. Finally, XGBoost generally shows bet-
ter model performance compared to logistic regression. In
summary, the slope-unit-based models can better differenti-
ate high and low probability areas of the terrain.

4 Discussion

Our slope unit delineation algorithm, SUMak, has significant
advantages over previous delineation methods. In contrast to
other methods which use an optimization function or user-
dictated setting for determining the appropriate scaling and
positions of slope units, SUMak uses established geomor-
phic laws for determining an appropriate scale of the slope
units to capture hillslope processes. This scaling provides a
non-arbitrary scaling of the slope units that are optimized to
capture hillslope processes and help prevent MAUP. Lastly,
SUMak is computationally efficient compared to some other
parameter-free algorithms. These advantages, coupled with it
being open-source and easy-to-use, make it desirable for an
array of geomorphic analyses.

Our analysis highlights some of the benefits and draw-
backs of using grids or slope units for landslide susceptibil-
ity modeling when using landslide data with variable formats
and no temporal component. While both methods generally
highlight the same areas as being more susceptible, the 30
and 10 m resolution grid mapping units used in this study
produce maps with smaller scale variations in susceptibil-
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Figure 3. Landslide susceptibility models for the Umpqua and Calapooia watersheds using (a, b) the 30 m sampling method for the grid-
based maps and (c, d) slope units with median and standard deviation predictor values (SU_medianSD) with XGBoost.

ity. While this level of detail can be advantageous, the vague
nature of the susceptibility models’ output caused by impre-
cise input data (e.g., no time component, imprecise locations,
and variable formats) generally used to make susceptibility
maps can cause misleading results. Indeed, producing high-
resolution (< 100 m) grid-based maps is attempting to output
results beyond the capacity of the input data. For example, in
the Umpqua watershed, all the grid-based maps show only
half of the terrain as having higher (P > 0.5) susceptibility
(Fig. S11). This phenomenon may partially reflect the limits
of the statistical models used. However, slope units consis-
tently produce more granular model results compared to grid-
based maps independent of the model used, suggesting that
the improved model performance is not merely an artifact
of the statistical models. The lack of granularity of the grid-
based maps at the Umpqua watershed may lead some to con-
clude that the watershed is generally not susceptible to land-
sliding. However, the abundance of the mapped landslides in
the region (Fig. 1b) indicates that most of the Umpqua water-
shed is highly prone to landsliding. This shortcoming of the
grid-based maps is also reflected in the poorer model met-
rics (Fig. 5). In contrast, the larger mapping units available
through slope units allow for a more conservative map that,

we argue, better captures the level of susceptibility, even with
imprecise input data. This is supported by the better model
metrics (Fig. 5) and a higher proportion of the Umpqua ter-
rain as having higher susceptibility (Figs. 3, S11, and S12).
More conservative grid-based maps are generally achieved
using larger grid cells, which accentuates the unrealistic ge-
ometry of the cells and exacerbates the imprecise mapping of
susceptible areas. Thus, slope units provide an effective map-
ping unit that accurately delineates the terrain into slopes that
can be used to create conservative susceptibility maps that
better accommodate the nebulous output of regional suscep-
tibility models created with inconsistent input data.

Slope units also provide a more conservative output for
event-based landslide occurrence maps that may be more ef-
fective at communicating the likelihood of landsliding over
large regions for some use cases. Like the maps created using
non-temporal landslide datasets, the grid-based occurrence
maps created for Puerto Rico show fine-scale variations in
landslide probability that may be outputting results at too fine
a resolution for the input data used to develop the model. This
resolution results in high spatial heterogeneity of probability
values within a single hillslope. Figure S15 shows a zoomed-
in portion of the model results and illustrates the diversity
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Figure 4. Puerto Rico landslide occurrence models from the 30 m
grid-based maps and using slope units with median and standard
deviation predictor values (SU_medianSD) with XGBoost.

in probability values in the grid-based map compared to the
slope unit map within a relatively small, mountainous terrain.
The grid-based Puerto Rico landslide models are attempting
to specify the pixel that contains the center of the head scarp.
This level of precision may be useful for some purposes but
can be misleading and cause the model to miss the location of
landslides induced by Hurricane Maria. In contrast, the slope
unit maps characterize the susceptibility of the entire hills-
lope and thus provide a more conservative output that better
generalizes the location of hurricane-induced landslides. One
tradeoff of using a larger mapping unit is that the model may
assign the same high-probability value to the entirety of the
slope unit even if landslides only affect a small portion of the
slope unit. This can lead to maps that show larger areas as
being more prone to landsliding compared to grid-based ap-
proaches; thus, slope units may not be appropriate for some
landslide mitigation products.

Here we have focused on using slope units for statistical
landslide susceptibility and near-real-time landslide predic-
tion modeling; however, objectively divided terrain can be
used in an array of geomorphic studies. For instance, slope
units could improve other landslide studies such as physi-
cally based models, early warning systems, debris flow mod-
eling, or hazard assessments. These studies often use grid-
based analysis which suffers from some of the same draw-
backs of grid-based susceptibility modeling. Thus, adopting
slope units as the mapping unit for these studies could yield

Figure 5. (a, b) Receiver operator characteristics (ROC) area under
the curve (AUC) and (c, d) Brier score boxplots from the 10-fold
cross-validation procedure for landslide susceptibility models using
the XGBoost (blue) and logistic regression (red) machine learning
algorithms. The box hinges show the first and third quartiles; the
whiskers extend to a maximum of 1.5 times the inter-quartile range;
the red and blue dots show the data outlying the whiskers; the hori-
zonal bars show the median values of the distributions. Distribu-
tions are for the different sampling methods (10m, 30m, 10m_multi,
10m_med) and the slope unit (SU) maps using only the median
(SU_medians) and the median and standard deviation of the pre-
dictor values (SU_medianSD). The black dots show the scores of
the test datasets.

Figure 6. (a) ROC–AUC and (b) Brier score boxplots from the
10-fold cross-validation procedure for landslide susceptibility mod-
els using the XGBoost (blue) and logistic regression (red) machine
learning algorithms for the Hurricane Maria landslide catalog in
Puerto Rico. Symbology is the same as Fig. 5.
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more favorable results. Slope units could also help downscale
topographically sensitive measurements (e.g., soil moisture,
land cover) and provide a reasonable mapping unit for hy-
drologic and avalanche studies. Thus, SUMak could facili-
tate advances in geospatial analysis across several research
areas beyond landslide susceptibility analysis.

5 Conclusions

The widespread use of slope units as the mapping unit of
choice in landslide studies has been limited partially due to
the lack of an efficient and easy-to-use method for delin-
eating them. Here we introduce a new parameter-free algo-
rithm for the automatic delineation of slope units. The algo-
rithm is relatively computationally efficient and can be im-
plemented anywhere there are digital elevation data. We also
demonstrate that landslide maps created with slope units are
more accurate and conservative compared to grid-based ap-
proaches.
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