Articles | Volume 23, issue 2
https://doi.org/10.5194/nhess-23-991-2023
https://doi.org/10.5194/nhess-23-991-2023
Research article
 | 
03 Mar 2023
Research article |  | 03 Mar 2023

Multi-station automatic classification of seismic signatures from the Lascar volcano database

Pablo Salazar, Franz Yupanqui, Claudio Meneses, Susana Layana, and Gonzalo Yáñez

Related authors

The Piuquencillo fault system: a long-lived, Andean-transverse fault system and its relationship with magmatic and hydrothermal activity
José Piquer, Orlando Rivera, Gonzalo Yáñez, and Nicolás Oyarzún
Solid Earth, 12, 253–273, https://doi.org/10.5194/se-12-253-2021,https://doi.org/10.5194/se-12-253-2021, 2021
Short summary
Seismic hazard in low slip rate crustal faults, estimating the characteristic event and the most hazardous zone: study case San Ramón Fault, in southern Andes
Nicolás P. Estay, Gonzalo Yáñez, Sebastien Carretier, Elias Lira, and José Maringue
Nat. Hazards Earth Syst. Sci., 16, 2511–2528, https://doi.org/10.5194/nhess-16-2511-2016,https://doi.org/10.5194/nhess-16-2511-2016, 2016
Short summary

Related subject area

Volcanic Hazards
“More poison than words can describe”: what did people die of after the 1783 Laki eruption in Iceland?
Claudia Elisabeth Wieners and Guðmundur Hálfdanarson
Nat. Hazards Earth Syst. Sci., 24, 2971–2994, https://doi.org/10.5194/nhess-24-2971-2024,https://doi.org/10.5194/nhess-24-2971-2024, 2024
Short summary
SEATANI: hazards from seamounts in Southeast Asia, Taiwan, and Andaman and Nicobar Islands (eastern India)
Andrea Verolino, Su Fen Wee, Susanna F. Jenkins, Fidel Costa, and Adam D. Switzer
Nat. Hazards Earth Syst. Sci., 24, 1203–1222, https://doi.org/10.5194/nhess-24-1203-2024,https://doi.org/10.5194/nhess-24-1203-2024, 2024
Short summary
The 2021 La Palma volcanic eruption and its impact on ionospheric scintillation as measured from GNSS reference stations, GNSS-R and GNSS-RO
Carlos Molina, Badr-Eddine Boudriki Semlali, Guillermo González-Casado, Hyuk Park, and Adriano Camps
Nat. Hazards Earth Syst. Sci., 23, 3671–3684, https://doi.org/10.5194/nhess-23-3671-2023,https://doi.org/10.5194/nhess-23-3671-2023, 2023
Short summary
Lava flow hazard modeling during the 2021 Fagradalsfjall eruption, Iceland: applications of MrLavaLoba
Gro B. M. Pedersen, Melissa A. Pfeffer, Sara Barsotti, Simone Tarquini, Mattia de'Michieli Vitturi, Bergrún A. Óladóttir, and Ragnar Heiðar Þrastarson
Nat. Hazards Earth Syst. Sci., 23, 3147–3168, https://doi.org/10.5194/nhess-23-3147-2023,https://doi.org/10.5194/nhess-23-3147-2023, 2023
Short summary
Assessing long-term tephra fallout hazard in southern Italy from Neapolitan volcanoes
Silvia Massaro, Manuel Stocchi, Beatriz Martínez Montesinos, Laura Sandri, Jacopo Selva, Roberto Sulpizio, Biagio Giaccio, Massimiliano Moscatelli, Edoardo Peronace, Marco Nocentini, Roberto Isaia, Manuel Titos Luzón, Pierfrancesco Dellino, Giuseppe Naso, and Antonio Costa
Nat. Hazards Earth Syst. Sci., 23, 2289–2311, https://doi.org/10.5194/nhess-23-2289-2023,https://doi.org/10.5194/nhess-23-2289-2023, 2023
Short summary

Cited articles

Álvarez, I., García, L., Cortés, G., Benítez, C., and De la Torre, Á.: Discriminative feature selection for automatic classification of volcano-seismic signals, IEEE Geosci. Remote S., 9, 151–155, 2012. a
Araujo, A. F. R. and Rego, R. L. M. E.: Self-organizing maps with a time-varying structure, ACM Comput. Surv., 46, 7, https://doi.org/10.1145/2522968.2522975, 2013. a
Bebbington, M.: Identifying volcanic regimes using Hidden Markov Models, Geophys. J. Int., 171, 921–942, https://doi.org/10.1111/j.1365-246X.2007.03559.x, 2007. a
Beyreuther, M. and Wassermann, J.: Continuous earthquake detection and classification using discrete Hidden Markov Models, Geophys. J. Int., 175, 1055–1066, 2008. a, b
Beyreuther, M. and Wassermann, J.: Hidden semi-Markov Model based earthquake classification system using Weighted Finite-State Transducers, Nonlin. Processes Geophys., 18, 81–89, https://doi.org/10.5194/npg-18-81-2011, 2011. a
Download
Short summary
The acquisition of more generalizable models, using machine learning techniques, creates a good opportunity to develop a multi-volcano probabilistic model for volcanoes worldwide. This will improve the understanding and evaluation of the hazards and risks associated with the activity of volcanoes.
Altmetrics
Final-revised paper
Preprint