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Abstract. This study was aimed to build a multi-station au-
tomatic classification system for volcanic seismic signatures
such as hybrid, long period, tremor, tectonic, and volcano–
tectonic events. This system was based on a probabilistic
model made using transfer learning, which has, as the main
tool, a pre-trained convolutional network named AlexNet.
We designed five experiments using different datasets with
data that were real, synthetic, two different combinations of
these (combined 1 and combined 2), and a balanced subset
without synthetic data. The experiment presented the highest
scores when a process of data augmentation was introduced
into processing sequence. Thus, the lack of real data in some
classes (imbalance) dramatically affected the quality of the
results, because the learning step (training) was overfitted to
the more numerous classes. To test the model stability with
variable inputs, we implemented a k-fold cross-validation
procedure. Under this approach, the results reached high pre-
dictive performance, considering that only the percentage of
recognition of the tectonic events (TC) class was partially af-
fected. The results obtained showed the performance of the
probabilistic model, reaching high scores over different test
datasets. The most valuable benefit of using this technique
was that the use of volcano seismic signals from multiple

stations provided a more generalizable model which, in the
near future, can be extended to multi-volcano database sys-
tems. The impact of this work is significant in the evalua-
tion of hazard and risk by monitoring the dynamic evolution
of volcanic centers, which is crucial for understanding the
stages in a volcano’s eruptive cycle.

1 Introduction

1.1 The problem of monitoring

The task of detecting the seismic activity of an active volcano
and the subsequent characterization (classification) of these
events is, in many cases, the most time-consuming in obser-
vatories worldwide. This is because of the massive amount
of data that are collected daily in a continuous record by a
single seismic network with a few stations. In this context,
big data analysis tools have become an attractive option for
reaching levels of processing that have never been achieved
using traditional techniques.

This study proposed the use of machine learning and trans-
fer learning techniques to automatically classify volcanic
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seismic events. Determining the type of volcanic event in
a continuous seismic record (time series) will facilitate the
construction of a model of evolution associated with the dy-
namics of a volcanic center. This should create better under-
standing and evaluation of the hazards and risks associated
with volcanic activity, improving efforts made in this matter
(e.g., de Natale et al., 2019; Magrin et al., 2017; Rapolla et
al., 2010). The novelty of this approach is in its use of previ-
ously trained deep convolutional networks, such as AlexNet,
in a scenario that considers the information recorded by a net-
work of multiple stations. It permits variability in the input of
data and improves the generalization of the system. The gen-
eralization of the system directly impacts the performance of
the training models of pattern recognition for each class and
creates the possibility of applying the generated models in a
common multi-volcano database system in the near future.

1.2 A summary of methods used in volcano seismic
recognition

Among the classification techniques, methods based on a
probabilistic approach and hidden Markov models (HMMs)
are most relevant. The advantages of HMMs include the pos-
sibility of managing data with different durations, compu-
tational efficiency, and an elegant interpretation of results
based on Bayes’ theorem (Carniel, 2014). Several studies
have been performed on volcanic systems using this tech-
nique with different approaches. Continuous HMMs were
used for the simultaneous detection and classification of con-
tinuous volcanic responses (Beyreuther and Wassermann,
2008), whereas discrete HMMs were applied to analyze and
classify events as described by Ohrnberger (2001). Other ap-
plications for HMMs were considered in the works of Beb-
bington (2007), who used the method to analyze a catalogue
of flank eruptions recorded at Mt. Etna. Hidden semi-Markov
models were applied by Beyreuther and Wasserman (2011)
using time dependence to improve the performance of the
method. Beyreuther et al. (2012) also introduced state clus-
tering to improve the time discretization in induced seismic-
ity experiments. Contrastingly, Bicego et al. (2013) used an
HMM method, based on a hybrid generative–discriminative
classification paradigm, in pre-triggered signals recorded at
the Galeras Volcano in Colombia.

Other classification techniques, such as artificial neural
networks, provide an efficient approach for the classification
of not only seismic events, but also time slices of continu-
ous signals, such as volcanic tremors (Carniel, 2014). The
multi-layer perceptron (MLP) is often used for the analy-
sis of seismic signals recorded at volcanoes. Esposito et al.
(2013) applied the MLP technique for landslide recognition,
while Esposito et al. (2014) utilized MLP to estimate the pos-
sible trend of the seismicity level in Campi Flegrei (Italy).
Self-organizing maps (SOMs), another class of artificial neu-
ral networks, have been used to analyze very long period
events at the Stromboli volcano (Esposito et al., 2008), as

well as volcanic tremors at the Etna volcano (Langer et al.,
2009, 2011), Raoul Island volcano (Carniel et al., 2013a),
and Ruapehu volcano (Carniel et al., 2013b). Furthermore,
self-organizing maps with time-varying structures (SOM-
TVS) have been applied to volcanic signals to achieve im-
provements in relation to SOMs (Araujo and Rego, 2013).

Notably, the support vector machine (SVM) approach de-
veloped by Vapnik (1995), which is based on linear discrimi-
nation, should be mentioned. For a two-class problem, SVM
uses linear elements for discrimination, i.e., lines, planes, or
hyperplanes. Masotti et al. (2006, 2008) used this technique
in analyzing volcanic tremor data recorded at Mt. Etna in
2001. Langer et al. (2009) applied this approach to compare
several supervised and unsupervised pattern-classification
techniques. Ceamanos et al. (2010) built a multi-SVM classi-
fier for remote-sensing hyperspectral data. The simultaneous
application of SVM and MLP was also performed by Giacco
et al. (2009), who used the two methods to discriminate be-
tween explosion quakes, landslides, and tremors recorded at
the Stromboli volcano.

Thus, numerous studies have been conducted to develop
an automated system for the detection and classification of
volcanic signals. The early systems consisted of classifiers
that used data from a single station to design different ap-
proaches (Masotti et al., 2006; Beyreuther and Wassermann,
2008; Rouland et al., 2009; Langer et al., 2011; Bicego et
al., 2015). However, after some years, the systems evolved
into more complex algorithms that facilitated the building of
models using the information from a few stations or chan-
nels (Z, E, N). Nevertheless, they did not use the data from
all the possible stations in the network, instead their results
were based on one station or channel that was used as a pat-
tern (Álvarez et al., 2012; Esposito et al., 2013; Carniel et al.,
2013b; Cortés et al., 2014, 2015; Curilem et al., 2014a, b;
Bicego et al., 2015). Interestingly, the work of Curilem et
al. (2016), based on station-dependent classifiers, shows the
possibility to mix information from different stations to cre-
ate models that enable the classification of events at differ-
ent stations, despite the fact that experiments were performed
with a reduced database.

1.3 Supervised machine learning as strategy for
automatization

The systems that allow us to build probabilistic mod-
els for an automatic classification of volcanic event are
called Volcano–Seismic Recognition (VRS). The probabilis-
tic models are built from data determined previously by an
expert geophysicist. The models obtained are later used over
continuous seismic records for automatic and unsupervised
classification.

As previously mentioned, pattern recognition and auto-
matic classification require the previous classification of seis-
mic signals into different classes, making this one of the most
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important, but also one of the most time-consuming, tasks
when accomplished daily by a human operator.

The study was aimed to present a novel approach that
considered a supervised machine-learning strategy (transfer
learning) using AlexNet, a previously trained deep convo-
lutional neural network, to create a multi-station automatic
classification system for volcanic seismic signatures.

Transfer learning for deep neural networks is the process
of first training a base network on a source dataset and then
transferring the learned features (network weights) to a sec-
ond network to receive training on a target-related dataset.
From a practical point of view, the reuse or transfer of infor-
mation from previously learned tasks for the learning of new
tasks has the potential to significantly improve the efficiency
of a reinforcement learning agent.

AlexNet was the first convolutional network which used
GPU to boost performance. Its architecture consists of five
convolutional layers, three max-pooling layers, two normal-
ization layers, two fully connected layers, and one softmax
layer (Zulkeflie et al., 2019). Each convolutional layer con-
sists of convolutional filters and a nonlinear activation func-
tion ReLU. The pooling layers are used to perform max pool-
ing. Input size is fixed due to the presence of fully con-
nected layers and is mentioned at most of the places as
224×224×3. However, due to some padding it works out to
be 227×227×3. Overall, AlexNet has 60 million parameters.

In 2012, AlexNet won the ImageNet visual object recogni-
tion challenge, i.e., the ImageNet Large Scale Visual Recog-
nition Challenge (ILSVRC) (Krizhevsky et al., 2012). The
numbers of classes to be classified by the ImageNet dataset
consist of 1000. Therefore the final fully connected layer also
contains 1000 neurons. The ReLU activation function is im-
plemented to the first seven layers, respectively. A dropout
ratio of 0.5 is applied to the sixth and seventh layer. The
eighth layer output is finally supplied to a softmax function.
Dropout is a regularization technique, being used to over-
come the overfitting problem that remains a challenge in a
deep neural network. Thus, it reduces the training time for
each epoch.

The main characteristics of AlexNet implementation can
be summarized in four aspects: (a) data augmentation is car-
ried out to reduce overfitting. This data augmentation in-
cludes mirroring and cropping the images to increase the
variation in the training dataset. The network uses an over-
lapped max-pooling layer after the first, second, and fifth
CONV (convolutional) layers. Overlapped maxpool layers
are simply maxpool layers with strides less than the win-
dow size. The 3× 3 maxpool layer is used with a stride of
two, hence creating overlapped receptive fields. This over-
lapping improved the top-one and top-five errors by 0.4 %
and 0.3 %, respectively. (b) Before AlexNet, the most com-
monly used activation functions were sigmoid and tanh. Due
to the saturated nature of these functions, they suffer from
the vanishing gradient (VG) problem and make it difficult
for the network to train. AlexNet uses the ReLU activation

function which does not suffer from the VG problem. The
original paper (Krizhevsky et al., 2012) showed that the net-
work with ReLU achieved a 25 % error rate about 6 times
faster than the same network with tanh non-linearity. (c) Al-
though ReLU helps with the vanishing gradient problem, due
to its unbounded nature the learned variables can become un-
necessarily high. To prevent this, AlexNet introduced local
response normalization (LRN). The idea behind LRN is to
carry out a normalization in a neighborhood of pixels by am-
plifying the excited neuron while dampening the surround-
ing neurons at the same time. (d) AlexNet also addresses the
overfitting problem by using drop-out layers where a connec-
tion is dropped during training with a probability of p = 0.5.
Although this avoids the network from overfitting by help-
ing it escape from bad local minima, the number of iterations
required for convergence is doubled.

2 Methodological testing site

2.1 Seismic monitoring of Lascar volcano

The Lascar volcano (23◦22′ S, 67◦44′W; 5.592 m a.s.l.) is lo-
cated in northern Chile, 270 km NE from Antofagasta and
70 km SE from San Pedro de Atacama, on the western border
of the Altiplano-Puna “plateau” (Fig. 1). Lascar is considered
the most active volcano in the Central Andean Volcanic Zone
(de Silva and Francis, 1991). It is a compound elongated
strato-volcano, comprised of two truncated western and east-
ern cones (Gardeweg et al., 1998) that host five nested craters
aligned ENE–WSW. The Lascar volcano has been seismi-
cally monitored by the CKELAR-VOLCANES group using
a temporal network of 11 three-component stations (Shallow
Posthole Seismometers, Model F72-2.0). These short-period
2 Hz seismometers were monitored continuously at 200 Hz
from March to October 2018 in this first step of process-
ing. Notably, only the Z channel was considered in build-
ing our database. The reason for this is that the spectrograms
obtained in the different channels of a particular station are
very similar, but in the case of the Z channel, the P phase
is clearly identified for tectonic and volcano–tectonic events;
the use of the other channels is reserved for future studies.

2.2 Lascar’s database

Lascar’s database corresponds to a catalogue of 6145 seismic
events, from which only 3947 can be classified as volcanic
events. The others, based on the distance to the hypocenters,
are mainly tectonic events (not directly related to volcanic ac-
tivity) recorded by Lascar’s network during the period of ob-
servation. To guarantee the reliability of the database regard-
ing volcanic activity, all observations were manually seg-
mented, labeled, and checked from the continuous seismic
record by CKELAR-VOLCANES experts. The processing
routines consider the following 4 steps.
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Figure 1. Location map of the Lascar volcano experiment. The red dots indicate the position of the short-period seismic stations, and the
black bold text represents the corresponding names. The LC10 and LC11 (B2DA) are located eastward, near the crater of the Lascar volcano.
The DEM data are a product of ASTER Global Digital Elevation Model version 3 (ASTGTM v003), these can be downloaded directly
by OPeNDAP link (https://lpdaac.usgs.gov/tools/opendap/, last access: 24 February 2023). The processing of the DEM was made using
MATLAB©.

a. Signal detection. The analysts detect the signal from
the continuous seismic record using SEISAN software
(Havskov and Ottemöller, 2000); once detected, they
proceed to write down the start and end times of the
signal in a list (based on the duration times of the event
for each station, Fig. 2a).

b. Preliminary classification. The analysts give, as appro-
priate, a preliminary label of hybrid (HY), long period
(LP), tectonic (TC), tremor (TR), or volcano–tectonic
(VT) to the event. Both detection and preliminary clas-
sification are based solely on visual observation of its
raw waveforms (seismograms) from the different sta-
tions that recorded the event (Fig. 2b).

c. Classification. The analysts, using the duration time
of each event and the ObsPy package (Beyreuther et
al., 2010), trim the signal, apply a linear detrend, and

apply a bandpass filter between 0.5 and 25 [Hz]. Af-
ter that, they proceed to plot, one by one, the seismo-
grams of the different stations, their amplitude spectra,
and their spectrograms. Therefore, they decide by visual
inspection of the frequency content and the seismogram
of all stations that recorded the event the respective class
(Fig. 2c).

d. Signal segmentation. The analysts, using the list of ab-
solute time of durations of each event, proceed to the
segmentation of the signal to prepare an isolate corpus
of seismograms as a database (Fig. 2d). The selection
of the station for each event is decided by visual inspec-
tion of the frequency content and the seismogram of all
stations that recorded the event, in relation to the level
of noise in both the seismograms and the spectrograms
(Fig. 3).
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Finally, the database used for the automatic classification ex-
periment corresponds to an isolated corpus of seismograms
of five classes of events (Figs. 4 and 5): 213 events cataloged
as (HY), 577 events cataloged as (LP), 471 events correspond
to (TR), 2686 events recorded as (VT), and 2198 events,
not related to volcanic activity, classified as (TC) (Tables 1
and 2).

3 Methods

We proposed a framework based on transfer learning, con-
sisting of a previously trained deep convolutional neural net-
work called AlexNet (Krizhevsky et al., 2012). The main rea-
sons for adopting this approach were, on one hand, to avoid
the steps of an extensive search and selection of features and,
on the other hand, to deal with the limited number of labeled
data. The data considered as input were spectrograms of the
labeled dataset (waveform) from each class of seismic event.
The line of processing consists of five steps: the first step de-
scribes the process applied in the time series (seismogram);
the second step details obtaining spectrograms from the la-
beled seismograms; the third step consists of using the data
augmentation technique to increase the number of data in the
training and test datasets; the fourth step indicates how the
prediction model is built; and, finally, the fifth step is per-
formed to estimate the model’s performance. In the follow-
ing paragraphs, each step is explained in detail.

Step 1 (pre-processing). The observations were recorded
with the same type of sensors, but at times the sample ra-
tio should have been varied because of technical problems.
Thus, many of the stations recorded at 200 Hz, but a few sta-
tions recorded at 500 or 100 Hz. Considering this, we decided
to apply two processing alternatives. (a) Resample the entire
time series at 100 Hz; thereafter, we removed the mean and
normalized the signals. Following this process, we applied a
10th order Butterworth bandpass filter between 1 and 10 Hz.
(b) Remove the mean and normalize, to apply the 10th order
Butterworth bandpass filter between 1 and 20 Hz, and after
then resample the time series to 100 [Hz]. The entire pre-
processing was implemented using ObsPy (Beyreuther et al.,
2010).

Step 2 (spectrogram). The spectrograms were calculated
by applying a short-time Fourier transform using the formula

S[x(t)](n,k)=

∣∣∣∣∣N−1∑
m=0

x(m) ·w(m− n) · ei2πmk

∣∣∣∣∣
2

, (1)

where x(t) and y(t) represent the seismic signal and short-
time Fourier transform sliding window, respectively. The
sliding window size was set to 1 s with a 95 % overlap. The
frequency interval used to calculate the spectrograms ranged
from 1 to 10 Hz. All spectrograms were transformed to RGB
images of 224× 224 pixels.

Step 3 (data augmentation). Due to the imbalance pro-
duced on the labeled data, we decided to apply the data aug-

mentation technique to generate a balanced number of dif-
ferent classes of seismic events (Table 2). Considering all the
techniques for data augmentation, a time stretch was chosen.
This transformation was implemented by rotations around
the frequency axis that were as random as possible, between
5 % and 25 % of the length of the signal, which were ap-
plied at the beginning, middle, or ending of the spectrogram
as appropriate (Fig. 6). The amount of data that were created
for each class depended on the number of events in the most
populated class; in this particular case the VT class was used
as reference. The new signals generated were processed us-
ing the same procedure applied to the original signals (see
Steps 1 and 2). The number of synthetic data were created by
considering all possible combinations of integers that repre-
sent a rotation angle between 5 % and 25 %, that is, 21 pos-
sibilities. Subsequently, we apply these 21 rotation angles to
the three possible rotation axes, corresponding to a total of 63
combinations of transformations to each event, without con-
sidering the repetition in the combination. Thus, each class
has several synthetic data according to this relationship (63
times number of event per class). Accordingly with the trans-
formations exposed above, the synthetic database was cre-
ated using two criteria: (a) considering the least populated
class (HY) with 213 events, the number of events selected
for each class must be equal to the maximum number of syn-
thetic data that can be generated in the (HY) class, it means
13 419 events to obtain a balanced dataset. Thus, in the case
of the (HY) class, all the synthetic data will be used, and for
the other classes, a random selection procedure, without rep-
etition, will be implemented. Therefore, the number of events
for this synthetic database comes to 67 095. (b) The amount
of data that were created for each class depended on the num-
ber of events in the most populated class; in this case the (VT)
class was used as reference (2686 events). Thus, the number
of events for each class must be equal to 2686 and the amount
of synthetic data that must be selected per each class depend-
ing on the number of events necessary to reach this quantity.
Therefore, the total number of events for this database will
be 13 430.

Step 4 (AlexNet). AlexNet is a deep convolutional neural
network proposed by Krizhevsky et al. (2012) to classify the
1.2 million high-resolution images in the ImageNet LSVRC-
2010 contest into 1000 different classes. AlexNet was used in
our study as a pre-trained deep convolutional neural network
for spectrogram recognition, mainly because the spectrogram
can be easily represented as an RGB image of 224×224 pix-
els.

Step 5 (model performance). This step was considered to
evaluate the performance of the model and, thus, to validate
the classification. This step was executed through a set of
tests composed of signals that were not considered in the
training step. We considered the following measures from the
TorchMetrics in PyTorch:

https://doi.org/10.5194/nhess-23-991-2023 Nat. Hazards Earth Syst. Sci., 23, 991–1006, 2023



996 P. Salazar et al.: Multi-station automatic classification of seismic signatures

Figure 2. Building Lascar’s database: (a) signal detection, (b) preliminary classification, (c) classification, and (d) signal segmentation.

i. Accuracy

Accuracy=
1
N

N∑
1

1
(
yi − ŷi

)
, (2)

where yi and ŷi are the tensor of the target values and
the tensor of the predictions, respectively.

ii. F1-score

F1-score= 2×
Recall×Precision
Recall+Precision

. (3)

iii. Recall

Recall=
TP

TP+FN
, (4)
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Table 1. Contribution of each station to Lascar’s database.

Classes/stations LC01 LC02 LC03 LC04 LC05 LC06 LC07 LC08 LC09 LC10 B2DA

HY 0 0 0 7 45 4 0 3 12 136 6
LP 11 0 4 2 142 28 5 60 23 195 107
TC 9 0 11 97 284 36 157 127 144 1171 162
TR 1 0 5 29 21 4 61 13 35 292 10
VT 2 0 18 52 84 6 206 14 41 2249 14

This experiment considered only the Z channels (vertical).

Table 2. Statistics of the seismic records, based on the majority of the records.

Classes/events Quantity Quantity Maximum Minimum Mean Median Mode Standard deviation
(%) (no.) (s) (s) (s) (s) (s) (s)

HY 3 213 265 10 57.2 59 40 35.3
LP 9 577 600 9 82.3 67 25 63.5
TC 36 2198 670 9 78.5 65 20 56.2
TR 8 471 216 9 46.2 31 20 33.8
VT 44 2686 189 5 19.6 17 10 12.3
Total 100 6145 670 5 49.9 28 20 50

where TP and FN represent the number of true positives
and false negatives, respectively.

iv. Precision

Precision=
TP

TP+FP
, (5)

where TP and FP represent the number of true positives
and false positives, respectively.

v. Cohen’s kappa

κ =
p0−pe

1−pe
, (6)

where p0 is the empirical probability of agreement and
pe is the expected agreement when both annotators as-
sign labels randomly. Note that this is estimated using a
per-annotator empirical prior over the class labels.

4 Results

Due to the fact that our database is clearly imbalanced,
with 3 % (HY), 9 % (LP), 36 % (TC), 8 % (TR), and 44 %
(VT) events (Table 2), we suspect that this natural behavior
most likely affects the automatic classification performance.
Therefore, we designed five experiments based on different
datasets to test the ability of the model to classify the data.
The build of the dataset is explained in the following para-
graphs.

(i) Corpus of real data (6145 events). An imbalanced
database of the Lascar volcano was used, without the appli-
cation of augmentation processes. Thus, the 80 % of real data

(4916 events) were used to build the probabilistic model of
classification, and the other 20 % (1229 events) were used to
test and validate this model (Table 3). This experiment per-
mits us to evaluate the influence of an imbalanced database
in the performance of a probabilistic model based on transfer
learning (AlexNet).

(ii) Synthetic data corpus (67 095 events). Where the syn-
thetic data were created by data augmentation processes (for
more details, see Step 3 in Sect. 3). Once the synthetic
database was created, 80 % of it (53 676 events) was used
to build the probabilistic classification model, and the other
20 % (13 419 events) was used to test and validate it (Ta-
ble 3). This experiment allows us to assess the usefulness of
our implementation of the data augmentation technique and
whether, with synthetic data, transfer learning (AlexNet) was
able to build a probabilistic model with good performance for
automatic event classification.

(iii) Combined 1 (59 821 events). The experiment con-
sisted of using the previous probabilistic model (ii) training
with 53 676 events and testing it with all events of the real
database of 6145 events (Table 3). In this case, the perfor-
mance of the probabilistic model built with synthetic data is
evaluated on real data and, therefore, it will allow validating
the efficiency of the data augmentation technique.

(iv) Combined 2 (13 430 events). This experiment used real
and synthetic data to build and test the model. Thus, in the
case of training we use 10 744 events, and for testing we use
2686 events (Table 3). This approach will allow for evaluat-
ing whether or not the amount of synthetic data created by
data augmentation plays a key role in the performance of the
probabilistic model to automatically classify events.

https://doi.org/10.5194/nhess-23-991-2023 Nat. Hazards Earth Syst. Sci., 23, 991–1006, 2023
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Figure 3. Station selection for each event: example of station selec-
tion for the VT event that occurred on 3 April 2018 22:58:44 UTC,
the event was recorded by the stations (a) LC01, (b) LC03,
(c) LC04, and (d) LC07. The spectrogram of the station LC07 was
selected for its frequency content.

(v) Real database subset (1213 events). The experiment
consists of selecting a subset of real data, where the number
of data in each class depends on the number of events in the
least populated class (HY) with 213 events. Thus, consider-
ing the class (HY) as a reference, we estimate that the num-
ber of events for the other classes will be 250 events, where
970 events correspond to the training set of the model and
the other 243 events correspond to the testing set (Table 3).
This experiment allows us to evaluate the performance of the
probabilistic model built with a minimum number of data
that provides an almost balanced database, without consider-
ing the generation of synthetics data by a data augmentation
process.

Tables 3 and 4 present the statistics and metrics of the dif-
ferent experiments. It is evident that in the case of the un-
balanced database, in experiment (i), the performance of the
experiment was inferior (56.2 % accuracy); however, when
the data augmentation process was applied, in experiments
(ii)–(iv), the results reached a particularly good percentage
of the metric parameters (98.9 %, 98.7 %, 90.6 % accuracy,

Figure 4. Examples of time series (left) and spectrograms (right)
for the different classes in the Lascar database: (a) hybrid events
(HY), (b) long period (LP), (c) tectonic events (TC), (d) tremors
(TR), and (e) volcano–tectonic (VT).

respectively). In the case of the balanced real data subset ex-
periment (v), the performance of the experiments was higher
than experiment (i) 65.2 % in accuracy, but notably lower
than the experiments executed using the database with bal-
anced classes (ii)–(iv). We want to highlight the results of the
experiment, where the real data were used exclusively in the
test (without being included in the model building). In this

Nat. Hazards Earth Syst. Sci., 23, 991–1006, 2023 https://doi.org/10.5194/nhess-23-991-2023
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Figure 5. Temporal evolution in the production of events of the different classes for the Lascar volcano in the period from March to October
2018.

case, the metrics showed the second highest ranking, preced-
ing only the experiment that exclusively included synthetic
data.

In analyzing the complete training and validation phase,
through the loss and accuracy epoch, the process was less ef-
fective when the (i) database was used (Fig. 7a–b), whereas
the best performance was achieved by the process using the
(ii) database (Fig. 7c–d). In the case of the database bal-
anced with data augmentation and real data (iv) database, this
showed a good performance (Fig. 8a–b). Conversely, the per-
formance for the experiment with the database balanced only
using real data (v), the results showed that despite having a
balanced database, these are below the results obtained using
data augmentation (Fig. 8c–d).

To evaluate the accuracy of the classification process for
each experiment, we computed the confusion matrix. In the
case of experiment (i), we noticed that classes with less
data were negatively affected. In this case, a high percent-
age of HY events were confused by TC events, and thus,
the TR events were also mistaken for TC events (Fig. 9a–b).
Conversely, the classification process of experiment (ii) per-
formed well, and no confusion in the class recognition was
found (Fig. 9c–d). For experiment (ii), the performance was
high, considering that the confusion of classes was practi-
cally minimal (Fig. 10a–b). Experiment (iv) also presented a
high score, and the confusion matrix indicated a small prob-
lem in the recognition of TC and VT classes, in which some
are confused by TR and TC, respectively (Fig. 10c–d). In the
case of experiment (v) the main recognition problems are in
the HY and TC class, in which some are confused with TR
and LP (Fig. 11a–b).

To test whether the probabilistic model, built with both
real and augmented data, is stable under the variability of
the input data, a k-fold cross-validation procedure was imple-

mented (Table 5). The results showed that the metrics for the
different classes, as in the previous experiments, were high.
There was only one class (TC) affected (with more variabil-
ity), but good scores were always maintained, which in the
worst case was over 67 %.

In the case of the experiments that used a frequency band
of 1–20 [Hz] (see Step 1, “case b” in Sect. 3), the results
showed a relative improvement compared to “case a” (fre-
quency band 1–10 [Hz]), but this is not comparable to the im-
provement achieved by applying the data augmentation pro-
cess. The best improvement was achieved in experiment (i),
where there is a 6 % difference in accuracy (Table 6).

5 Discussion

The analyses of this study clearly showed the impact of im-
balance in the database and how the process of machine
learning was conditioned to build probabilistic models of
classifications for the different classes. The model building
process was notably influenced by classes with more events,
which in this case were TC and VT. Under these conditions,
an overfitted model was built in the training phase, which
largely coincided with the recognition of these two classes,
to the detriment of the less numerous ones.

Conversely, the process of data augmentation facilitated a
balance in the data of the different classes, which directly
impacted the performance of the probabilistic model, reach-
ing optimal scores over different test datasets. This can be
explained by the fact that data augmentation provides an ef-
ficient process for searching the features of each class during
the training process.

We want to highlight the results of the experiment, where
the real data were used exclusively in the test (without be-
ing included in the model building). In this case, the metrics
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Figure 6. Transformation by rotations, the time stretching (a) is produced when we change the angle of rotation α around the frequency
axis (b); examples of the tree possibilities of rotations, around a left (c), central (d), and right axis (e), respectively; examples of how the time
stretching is produced by rotations, (f) original spectrogram, (g) rotation of 19 % around the central axis, (h) rotation of 23 % around a right
axis, and (i) rotation of 24 % around a left axis.

Table 3. Statistics related to the transfer learning experiments using AlexNet for hybrid events (HY), long period (LP), tectonic events (TC),
tremors (TR), and volcano–tectonic (VT) classes.

Corpus Data Balanced Epoch Total data 100 % Train data 80 % Test data 20 % Time to build
experiments augmentation data (no.) (no.) (no.) (no.) the model

(minutes)

(i) No No 10 6145 4916 1229 4.6
(ii) Rotation 5 %–25 % Yes 20 67 095 53 676 13 419 164.9
(iii) Rotation 5 %–25 % Yes – – – 6145 0.3
(iv) Rotation 5 %–25 % Yes 20 13 430 10 744 2686 10.6
(v) No Yes 25 1213 970 243 2.2
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Table 4. Performance of the transfer learning experiments to 1–10 [Hz].

Experiments/metrics Accuracy F1 Recall Precision Cohen’s kappa Class accuracy

HY LP TC TR VT

(i) 56.2 57.8 56.2 62.9 65.2 27.8 59.8 89.4 18.9 85
(ii) 98.9 98.9 98.9 98.9 98.6 100 99.8 96.1 99.9 98.6
(iii) 98.7 97.2 98.7 95.8 96.4 100 100 95.2 99.8 98.4
(iv) 90.6 90.2 90.6 90.3 87.9 99.6 96.7 73.2 93.2 90.0
(v) 65.2 65.1 65.2 65.5 56.3 66.7 66.0 58.2 67.4 68.0

Table 5. Performance of the transfer learning experiments applying k-fold validation.

k-fold/metrics Accuracy F1 Recall Precision Cohen’s kappa Class accuracy

HY LP TC TR VT

1 89.2 89.0 89.2 89.2 86.7 99.3 95.2 75.3 84.8 91.3
2 90.1 90.1 90.1 90.4 87.5 90.1 99.6 89.9 84.7 86.6
3 89.3 89.0 89.3 89.1 86.6 89.3 98.3 97.3 71.8 90.7
4 89.8 89.5 89.8 90.1 87.2 89.8 97.3 98.8 67.8 90.6
5 87.9 87.7 87.9 87.8 84.6 87.9 93.1 87.8 77.7 89.1
6 88.6 88.4 88.6 88.7 85.6 88.6 99.6 91.3 81.5 77.9
7 87.6 87.7 87.6 88.1 84.8 87.6 96.6 87.5 82.7 80.6
8 89.8 89.6 89.8 89.7 87.1 89.8 98.6 91.8 75.2 89.9
9 88.7 88.7 88.7 89.0 85.9 88.7 98.9 89.6 78.5 83.5
10 90.4 90.2 90.4 90.2 87.4 90.4 96.0 91.2 79.9 94.9

Figure 7. Training and validation performance scores of the transfer
learning AlexNet for experiment: (a) training and test loss for the
experiment (i); (b) training and test accuracy for the experiment (i);
(c) training and test loss for the experiment (ii), and (d) training and
test accuracy for the experiment (ii).

Figure 8. Training and validation performance scores of the trans-
fer learning AlexNet for experiment: (a) training and test loss for
the experiment (iv), (b) training and test accuracy for the exper-
iment (iv), (c) training and test loss for the experiment (v), and
(d) training and test accuracy for the experiment (v).
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Figure 9. Confusion matrices without normalization (a) and normalized (b), for experiment (i), and without normalization (c) and normalized
(d), for experiment (ii).

Table 6. Performance of the transfer learning experiments for the experiment to 1–20 [Hz].

Experiments/metrics Accuracy F1 Recall Precision Cohen’s kappa Class accuracy

HY LP TC TR VT

(i) 62.8 63.9 62.8 66.7 67.6 38.9 74.8 73.5 33.3 93.4
(ii) 99.4 99.4 99.4 99.4 99.3 100 99.8 98.2 100 99.2
(iii) 99.5 98.9 99.5 98.3 98.5 100 100 98 100 99.3
(iv) 91.5 91.4 91.5 91.4 89.2 98.4 92.4 83.5 93.3 89.6
(v) 64.2 64.1 64.2 66.2 55.2 50 68 49.1 73.9 80

showed the second highest ranking, preceding only the ex-
periment that exclusively included synthetic data.

Although the frequency content was the main classifica-
tion characteristic to differentiate the different volcanic event
types, the choice of stretch as a data augmentation method
along the time axis was a successful strategy that did not
reduce effectiveness. The artificial production of data using

stretches in frequency should provoke overlap (on the dimen-
sional map) between the different classes of volcanic events
when these are analyzed using the spectrogram image.

The experiment (v), where we use a balanced real data sub-
set, shows us that if we train with a balanced database, but the
events per class are not enough, the results do not reach the
values obtained with the experiments carried out with data
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Figure 10. Confusion matrices without normalization (a) and normalized (b), for experiment (iii), and without normalization (c) and nor-
malized (d), for experiment (iv).

Figure 11. Confusion matrices without normalization (a) and normalized (b), for experiment (v).
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augmentation as a mechanism to balance the classes. Thus,
the probabilistic model built is not fully reliable, and there
are more quantities of events confused with other classes.

Another important topic is the technique used to build
the probabilistic model. Transfer learning with a pre-trained
large neural network, such as AlexNet, facilitated model
building in less time. Instead of manually selecting the best
features, this task was performed by learning features from
the pre-trained models of AlexNet, thereby dramatically sav-
ing time in the process. This point was verified when the
model built using AlexNet was validated using only real data
in experiment (iii), where high scores in the metrics of the
experiment were achieved.

Thus, the use of a transfer learning approach allowed the
transference of the information about the feature characteris-
tics collected from the training dataset to the testing dataset,
improving the efficiency of the process.

The limitations found in our implementation of AlexNet
on spectrograms correspond mainly to the fact that although
AlexNet has its own data augmentation process, it was not
efficient enough to counteract the imbalance in the different
classes studied. This shortcoming was solved by implement-
ing our own data augmentation process.

The other limitation was that the spectrogram must be
scaled to a fixed input size of 224× 224× 3 pixels, due to
the presence of fully connected layers in the convolutional
neural network. While this is not a big problem, it limits the
graphical resolution of the image, although this can be advan-
tageous since our main objective is to obtain a generalized
probabilistic model.

A key issue for the proposed methodology was to gener-
ate a multi-station probabilistic model, developing a system
trained with a multi-station subset and confronted with an-
other independent multi-station subset. This approach per-
mits us to reach a generalized set of characteristics that de-
fined an optimal space for each class. Thus, we can avoid bi-
ases related to site effects (e.g., instruments installed in rocks,
soil).

6 Conclusions

From the experiments implemented in this study, the follow-
ing conclusions were drawn.

First, the usefulness of a multi-station framework to build
a probabilistic model of the Lascar database allowed us to
obtain a more generalizable model, thereby avoiding the bias
associated with the choice of a particular station to retrieve
the features. This fact led us to believe that we are very close
to obtaining high-score results, with the AlexNet tool play-
ing a key role in reaching the challenge of building a multi-
volcano probabilistic model to classify the seismic events.

Second, data augmentation plays a key role as the main
factor to improve the metrics of the experiments, thereby pro-
viding a built model validated by real data.

Last, and perhaps the most relevant, the proposal based
on transfer learning provided an efficient feature retrieval
process using learning features. The performance of this ap-
proach was clearly superior when compared with an exhaus-
tive process of evaluation for a list of 100 statistical features
sent to the system, as it is a process of designed features. Our
approach has a high impact when the time process matters,
as is the case in early warning systems for volcanic activity,
and provides a more generalizable model of prediction.

Following the same methodology used in the case of multi-
station, we can expand, in the near future, our probabilistic
models considering a network with different types of instru-
ments, different setup of the instruments in a network, and
different temporality of the data analyzed and, finally, can
reach a probabilistic model multi-volcano. The portability
generated to apply this methodology will permit us to work
to different scales of operation of a network (from small tem-
poral networks to world-wide volcano observatories). The
acquisition of more generalizable models creates a good op-
portunity to develop a multi-volcano probabilistic model for
volcanoes worldwide.
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