Articles | Volume 23, issue 12
https://doi.org/10.5194/nhess-23-3723-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/nhess-23-3723-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Machine-learning-based nowcasting of the Vögelsberg deep-seated landslide: why predicting slow deformation is not so easy
Adriaan L. van Natijne
CORRESPONDING AUTHOR
Department of Geoscience & Remote Sensing, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, the Netherlands
Thom A. Bogaard
Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, the Netherlands
Thomas Zieher
Institute for Interdisciplinary Mountain Research, Austrian Academy of Sciences, Innrain 25, 6020 Innsbruck, Austria
Jan Pfeiffer
Institute for Interdisciplinary Mountain Research, Austrian Academy of Sciences, Innrain 25, 6020 Innsbruck, Austria
Roderik C. Lindenbergh
Department of Geoscience & Remote Sensing, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, the Netherlands
Related authors
H. S. Kathmann, A. L. van Natijne, and R. C. Lindenbergh
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B2-2022, 1033–1040, https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-1033-2022, https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-1033-2022, 2022
Kshitiz Gautam, Astrid Blom, Mathieu Roebroeck, Marijn Wolf, and Thom Bogaard
EGUsphere, https://doi.org/10.5194/egusphere-2025-2926, https://doi.org/10.5194/egusphere-2025-2926, 2025
This preprint is open for discussion and under review for Earth Surface Dynamics (ESurf).
Short summary
Short summary
The Karnali River in Himalayan Terai of Nepal has shifted from double to single branch since 2009. Likely triggered by a double-peaked monsoon and coarse sediment deposition, this shift has gradually reduced flow into the eastern Geruwa branch. While the Koshi River in Terai is largely shaped by human activity, the Karnali’s shift appears driven by natural, monsoon-driven, sediment dynamics, affecting water distribution and habitats in Bardiya National Park, home to the Bengal tiger.
Francesco Marra, Eleonora Dallan, Marco Borga, Roberto Greco, and Thom Bogaard
EGUsphere, https://doi.org/10.5194/egusphere-2025-3378, https://doi.org/10.5194/egusphere-2025-3378, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
We highlight an important conceptual difference between the duration used in intensity-duration thresholds and the duration used in the intensity-duration-frequency curves that has been overlooked by the landslide literature so far.
Yushan Liu, Alireza Amiri-Simkooei, Roderik Lindenbergh, and Mirjam Snellen
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-2-W10-2025, 169–176, https://doi.org/10.5194/isprs-archives-XLVIII-2-W10-2025-169-2025, https://doi.org/10.5194/isprs-archives-XLVIII-2-W10-2025-169-2025, 2025
Benjamin B. Mirus, Thom Bogaard, Roberto Greco, and Manfred Stähli
Nat. Hazards Earth Syst. Sci., 25, 169–182, https://doi.org/10.5194/nhess-25-169-2025, https://doi.org/10.5194/nhess-25-169-2025, 2025
Short summary
Short summary
Early warning of increased landslide potential provides situational awareness to reduce landslide-related losses from major storm events. For decades, landslide forecasts relied on rainfall data alone, but recent research points to the value of hydrologic information for improving predictions. In this paper, we provide our perspectives on the value and limitations of integrating subsurface hillslope hydrologic monitoring data and mathematical modeling for more accurate landslide forecasts.
Lea Hartl, Thomas Zieher, Magnus Bremer, Martin Stocker-Waldhuber, Vivien Zahs, Bernhard Höfle, Christoph Klug, and Alessandro Cicoira
Earth Surf. Dynam., 11, 117–147, https://doi.org/10.5194/esurf-11-117-2023, https://doi.org/10.5194/esurf-11-117-2023, 2023
Short summary
Short summary
The rock glacier in Äußeres Hochebenkar (Austria) moved faster in 2021–2022 than it has in about 70 years of monitoring. It is currently destabilizing. Using a combination of different data types and methods, we show that there have been two cycles of destabilization at Hochebenkar and provide a detailed analysis of velocity and surface changes. Because our time series are very long and show repeated destabilization, this helps us better understand the processes of rock glacier destabilization.
Yi Luo, Jiaming Zhang, Zhi Zhou, Juan P. Aguilar-Lopez, Roberto Greco, and Thom Bogaard
Hydrol. Earth Syst. Sci., 27, 783–808, https://doi.org/10.5194/hess-27-783-2023, https://doi.org/10.5194/hess-27-783-2023, 2023
Short summary
Short summary
This paper describes an experiment and modeling of the hydrological response of desiccation cracks under long-term wetting–drying cycles. We developed a new dynamic dual-permeability model to quantify the dynamic evolution of desiccation cracks and associated preferential flow and moisture distribution. Compared to other models, the dynamic dual-permeability model could describe the experimental data much better, but it also provided an improved description of the underlying physics.
D. Hulskemper, K. Anders, J. A. Á. Antolínez, M. Kuschnerus, B. Höfle, and R. Lindenbergh
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-2-W2-2022, 53–60, https://doi.org/10.5194/isprs-archives-XLVIII-2-W2-2022-53-2022, https://doi.org/10.5194/isprs-archives-XLVIII-2-W2-2022-53-2022, 2022
J. P. Meinderts, R. Lindenbergh, D. H. van der Heide, A. Amiri-Simkooei, and L. Truong-Hong
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-2-W2-2022, 69–76, https://doi.org/10.5194/isprs-archives-XLVIII-2-W2-2022-69-2022, https://doi.org/10.5194/isprs-archives-XLVIII-2-W2-2022-69-2022, 2022
Judith Uwihirwe, Alessia Riveros, Hellen Wanjala, Jaap Schellekens, Frederiek Sperna Weiland, Markus Hrachowitz, and Thom A. Bogaard
Nat. Hazards Earth Syst. Sci., 22, 3641–3661, https://doi.org/10.5194/nhess-22-3641-2022, https://doi.org/10.5194/nhess-22-3641-2022, 2022
Short summary
Short summary
This study compared gauge-based and satellite-based precipitation products. Similarly, satellite- and hydrological model-derived soil moisture was compared to in situ soil moisture and used in landslide hazard assessment and warning. The results reveal the cumulative 3 d rainfall from the NASA-GPM to be the most effective landslide trigger. The modelled antecedent soil moisture in the root zone was the most informative hydrological variable for landslide hazard assessment and warning in Rwanda.
L. Truong-Hong, R. C. Lindenbergh, and M. J. Vermeij
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVIII-4-W4-2022, 161–168, https://doi.org/10.5194/isprs-archives-XLVIII-4-W4-2022-161-2022, https://doi.org/10.5194/isprs-archives-XLVIII-4-W4-2022-161-2022, 2022
Jan Pfeiffer, Thomas Zieher, Jan Schmieder, Thom Bogaard, Martin Rutzinger, and Christoph Spötl
Nat. Hazards Earth Syst. Sci., 22, 2219–2237, https://doi.org/10.5194/nhess-22-2219-2022, https://doi.org/10.5194/nhess-22-2219-2022, 2022
Short summary
Short summary
The activity of slow-moving deep-seated landslides is commonly governed by pore pressure variations within the shear zone. Groundwater recharge as a consequence of precipitation therefore is a process regulating the activity of landslides. In this context, we present a highly automated geo-statistical approach to spatially assess groundwater recharge controlling the velocity of a deep-seated landslide in Tyrol, Austria.
A. Nurunnabi, F. N. Teferle, R. C. Lindenbergh, J. Li, and S. Zlatanova
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B1-2022, 59–66, https://doi.org/10.5194/isprs-archives-XLIII-B1-2022-59-2022, https://doi.org/10.5194/isprs-archives-XLIII-B1-2022-59-2022, 2022
H. S. Kathmann, A. L. van Natijne, and R. C. Lindenbergh
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B2-2022, 1033–1040, https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-1033-2022, https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-1033-2022, 2022
M. Kuschnerus, R. Lindenbergh, Q. Lodder, E. Brand, and S. Vos
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B2-2022, 1055–1061, https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-1055-2022, https://doi.org/10.5194/isprs-archives-XLIII-B2-2022-1055-2022, 2022
Judith Uwihirwe, Markus Hrachowitz, and Thom Bogaard
Nat. Hazards Earth Syst. Sci., 22, 1723–1742, https://doi.org/10.5194/nhess-22-1723-2022, https://doi.org/10.5194/nhess-22-1723-2022, 2022
Short summary
Short summary
This research tested the value of regional groundwater level information to improve landslide predictions with empirical models based on the concept of threshold levels. In contrast to precipitation-based thresholds, the results indicated that relying on threshold models exclusively defined using hydrological variables such as groundwater levels can lead to improved landslide predictions due to their implicit consideration of long-term antecedent conditions until the day of landslide occurrence.
F. Dahle, J. Tanke, B. Wouters, and R. Lindenbergh
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-2-2022, 237–244, https://doi.org/10.5194/isprs-annals-V-2-2022-237-2022, https://doi.org/10.5194/isprs-annals-V-2-2022-237-2022, 2022
A. Nurunnabi, F. N. Teferle, D. F. Laefer, R. C. Lindenbergh, and A. Hunegnaw
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVI-2-W1-2022, 401–408, https://doi.org/10.5194/isprs-archives-XLVI-2-W1-2022-401-2022, https://doi.org/10.5194/isprs-archives-XLVI-2-W1-2022-401-2022, 2022
Punpim Puttaraksa Mapiam, Monton Methaprayun, Thom Bogaard, Gerrit Schoups, and Marie-Claire Ten Veldhuis
Hydrol. Earth Syst. Sci., 26, 775–794, https://doi.org/10.5194/hess-26-775-2022, https://doi.org/10.5194/hess-26-775-2022, 2022
Short summary
Short summary
The density of rain gauge networks plays an important role in radar rainfall bias correction. In this work, we aimed to assess the extent to which daily rainfall observations from a dense network of citizen scientists improve the accuracy of hourly radar rainfall estimates in the Tubma Basin, Thailand. Results show that citizen rain gauges significantly enhance the performance of radar rainfall bias adjustment up to a range of about 40 km from the center of the citizen rain gauge network.
A. Nurunnabi, F. N. Teferle, J. Li, R. C. Lindenbergh, and S. Parvaz
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVI-4-W5-2021, 397–404, https://doi.org/10.5194/isprs-archives-XLVI-4-W5-2021-397-2021, https://doi.org/10.5194/isprs-archives-XLVI-4-W5-2021-397-2021, 2021
L. Truong-Hong, N. Nguyen, R. Lindenbergh, P. Fisk, and T. Huynh
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLVI-4-W4-2021, 119–124, https://doi.org/10.5194/isprs-archives-XLVI-4-W4-2021-119-2021, https://doi.org/10.5194/isprs-archives-XLVI-4-W4-2021-119-2021, 2021
A. Nurunnabi, F. N. Teferle, J. Li, R. C. Lindenbergh, and A. Hunegnaw
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B1-2021, 31–38, https://doi.org/10.5194/isprs-archives-XLIII-B1-2021-31-2021, https://doi.org/10.5194/isprs-archives-XLIII-B1-2021-31-2021, 2021
Q. Bai, R. C. Lindenbergh, J. Vijverberg, and J. A. P. Guelen
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B2-2021, 115–122, https://doi.org/10.5194/isprs-archives-XLIII-B2-2021-115-2021, https://doi.org/10.5194/isprs-archives-XLIII-B2-2021-115-2021, 2021
M. Kuschnerus, D. Schröder, and R. Lindenbergh
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B2-2021, 745–752, https://doi.org/10.5194/isprs-archives-XLIII-B2-2021-745-2021, https://doi.org/10.5194/isprs-archives-XLIII-B2-2021-745-2021, 2021
K. Anders, L. Winiwarter, H. Mara, R. C. Lindenbergh, S. E. Vos, and B. Höfle
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-2-2021, 137–144, https://doi.org/10.5194/isprs-annals-V-2-2021-137-2021, https://doi.org/10.5194/isprs-annals-V-2-2021-137-2021, 2021
Mieke Kuschnerus, Roderik Lindenbergh, and Sander Vos
Earth Surf. Dynam., 9, 89–103, https://doi.org/10.5194/esurf-9-89-2021, https://doi.org/10.5194/esurf-9-89-2021, 2021
Short summary
Short summary
Sandy coasts are areas that undergo a lot of changes, which are caused by different influences, such as tides, wind or human activity. Permanent laser scanning is used to generate a three-dimensional representation of a part of the coast continuously over an extended period. By comparing three unsupervised learning algorithms, we develop a methodology to analyse the resulting data set and derive which processes are dominating changes in the beach and dunes.
Rolf Hut, Thanda Thatoe Nwe Win, and Thom Bogaard
Geosci. Instrum. Method. Data Syst., 9, 435–442, https://doi.org/10.5194/gi-9-435-2020, https://doi.org/10.5194/gi-9-435-2020, 2020
Short summary
Short summary
GPS drifters that float down rivers are important tools in studying rivers, but they can be expensive. Recently, both GPS receivers and cellular modems have become available at lower prices to tinkering scientists due to the rise of open hardware and the Arduino. We provide detailed instructions on how to build a low-power GPS drifter with local storage and a cellular model that we tested in a fieldwork in Myanmar. These instructions allow fellow geoscientists to recreate the device.
Cited articles
Belward, A. S. and Skøien, J. O.: Who Launched What, When and Why; Trends in Global Land-Cover Observation Capacity from Civilian Earth Observation Satellites, ISPRS J. Photogramm., 103, 115–128, https://doi.org/10.1016/j.isprsjprs.2014.03.009, 2015. a
Bengio, Y., Simard, P., and Frasconi, P.: Learning Long-Term Dependencies with Gradient Descent Is Difficult, IEEE T. Neural Networ., 5, 157–166, https://doi.org/10.1109/72.279181, 1994. a
Bogaard, T. A. and Greco, R.: Landslide Hydrology: From Hydrology to Pore Pressure, WIRES Water, 3, 439–459, https://doi.org/10.1002/wat2.1126, 2015. a, b
Bossi, G. and Marcato, G.: Planning Landslide Countermeasure Works through Long Term Monitoring and Grey Box Modelling, Geosciences, 9, 185, https://doi.org/10.3390/geosciences9040185, 2019. a
Cai, Z., Xu, W., Meng, Y., Shi, C., and Wang, R.: Prediction of Landslide Displacement Based on GA-LSSVM with Multiple Factors, B. Eng. Geol. Environ., 75, 637–646, https://doi.org/10.1007/s10064-015-0804-z, 2016. a
Cao, Y., Yin, K., Alexander, D. E., and Zhou, C.: Using an Extreme Learning Machine to Predict the Displacement of Step-like Landslides in Relation to Controlling Factors, Landslides, 13, 725–736, https://doi.org/10.1007/s10346-015-0596-z, 2016. a
Carlà, T., Intrieri, E., Di Traglia, F., Nolesini, T., Gigli, G., and Casagli, N.: Guidelines on the Use of Inverse Velocity Method as a Tool for Setting Alarm Thresholds and Forecasting Landslides and Structure Collapses, Landslides, 14, 517–534, https://doi.org/10.1007/s10346-016-0731-5, 2017. a
Cerqueira, V., Torgo, L., and Soares, C.: A case study comparing machine learning with statistical methods for time series forecasting: size matters, J. Intell. Inf. Syst., 59, 415–433, https://doi.org/10.1007/s10844-022-00713-9, 2022. a
Chen, H. and Zeng, Z.: Deformation Prediction of Landslide Based on Improved Back-Propagation Neural Network, Cogn. Comput., 5, 56–62, https://doi.org/10.1007/s12559-012-9148-1, 2013. a
Colesanti, C. and Wasowski, J.: Investigating Landslides with Space-Borne Synthetic Aperture Radar (SAR) Interferometry, Eng. Geol., 88, 173–199, https://doi.org/10.1016/j.enggeo.2006.09.013, 2006. a
Connor, J., Martin, R., and Atlas, L.: Recurrent Neural Networks and Robust Time Series Prediction, IEEE T. Neural Networ., 5, 240–254, https://doi.org/10.1109/72.279188, 1994. a
Corominas, J., Moya, J., Ledesma, A., Lloret, A., and Gili, J. A.: Prediction of Ground Displacements and Velocities from Groundwater Level Changes at the Vallcebre Landslide (Eastern Pyrenees, Spain), Landslides, 2, 83–96, https://doi.org/10.1007/s10346-005-0049-1, 2005. a
Crosetto, M., Solari, L., Mróz, M., Balasis-Levinsen, J., Casagli, N., Frei, M., Oyen, A., Moldestad, D. A., Bateson, L., Guerrieri, L., Comerci, V., and Andersen, H. S.: The Evolution of Wide-Area DInSAR: From Regional and National Services to the European Ground Motion Service, Remote Sens., 12, 2043, https://doi.org/10.3390/rs12122043, 2020. a
Deng, L., Smith, A., Dixon, N., and Yuan, H.: Machine Learning Prediction of Landslide Deformation Behaviour Using Acoustic Emission and Rainfall Measurements, Eng. Geol., 293, 106315, https://doi.org/10.1016/j.enggeo.2021.106315, 2021. a
Du, J., Yin, K., and Lacasse, S.: Displacement Prediction in Colluvial Landslides, Three Gorges Reservoir, China, Landslides, 10, 203–218, https://doi.org/10.1007/s10346-012-0326-8, 2013. a
Entekhabi, D., Njoku, E. G., O'Neill, P. E., Kellogg, K. H., Crow, W. T., Edelstein, W. N., Entin, J. K., Goodman, S. D., Jackson, T. J., Johnson, J., Kimball, J., Piepmeier, J. R., Koster, R. D., Martin, N., McDonald, K. C., Moghaddam, M., Moran, S., Reichle, R., Shi, J. C., Spencer, M. W., Thurman, S. W., Tsang, L., and Van Zyl, J.: The Soil Moisture Active Passive (SMAP) Mission, P. IEEE, 98, 704–716, https://doi.org/10.1109/JPROC.2010.2043918, 2010. a, b
Fell, R., Corominas, J., Bonnard, C., Cascini, L., Leroi, E., and Savage, W. Z.: Guidelines for Landslide Susceptibility, Hazard and Risk Zoning for Land-Use Planning, Eng. Geol., 102, 99–111, https://doi.org/10.1016/j.enggeo.2008.03.014, 2008. a, b
Gholamy, A., Kreinovich, V., and Kosheleva, O.: Why 70/30 or 80/20 Relation between Training and Testing Sets: A Pedagogical Explanation, Departmental Technical Reports (CS), https://scholarworks.utep.edu/cs_techrep/1209 (last access: 8 September 2022), 2018. a
Guzzetti, F., Carrara, A., Cardinali, M., and Reichenbach, P.: Landslide Hazard Evaluation: A Review of Current Techniques and Their Application in a Multi-Scale Study, Central Italy, Geomorphology, 31, 181–216, https://doi.org/10.1016/S0169-555X(99)00078-1, 1999. a, b
Guzzetti, F., Gariano, S. L., Peruccacci, S., Brunetti, M. T., Marchesini, I., Rossi, M., and Melillo, M.: Geographical Landslide Early Warning Systems, Earth-Sci. Rev., 200, 102973, https://doi.org/10.1016/j.earscirev.2019.102973, 2020. a
Hanssen, R. F.: Radar Interferometry: Data Interpretation and Error Analysis, Remote Sensing and Digital Image Processing, vol. 2, Springer Netherlands, Dordrecht, https://doi.org/10.1007/0-306-47633-9, 2001. a
Hartke, S. H., Wright, D. B., Kirschbaum, D. B., Stanley, T. A., and Li, Z.: Incorporation of Satellite Precipitation Uncertainty in a Landslide Hazard Nowcasting System, J. Hydrometeorol., 21, 1741–1759, https://doi.org/10.1175/JHM-D-19-0295.1, 2020. a
Heggen, R. J.: Normalized Antecedent Precipitation Index, J. Hydrol. Eng., 6, 377–381, https://doi.org/10.1061/(ASCE)1084-0699(2001)6:5(377), 2001. a
Herrera, G., Mateos, R. M., García-Davalillo, J. C., Grandjean, G., Poyiadji, E., Maftei, R., Filipciuc, T.-C., Jemec Auflič, M., Jež, J., Podolszki, L., Trigila, A., Iadanza, C., Raetzo, H., Kociu, A., Przyłucka, M., Kułak, M., Sheehy, M., Pellicer, X. M., McKeown, C., Ryan, G., Kopačková, V., Frei, M., Kuhn, D., Hermanns, R. L., Koulermou, N., Smith, C. A., Engdahl, M., Buxó, P., Gonzalez, M., Dashwood, C., Reeves, H., Cigna, F., Liščák, P., Pauditš, P., Mikulėnas, V., Demir, V., Raha, M., Quental, L., Sandić, C., Fusi, B., and Jensen, O. A.: Landslide Databases in the Geological Surveys of Europe, Landslides, 15, 359–379, https://doi.org/10.1007/s10346-017-0902-z, 2018. a
Hill, T., Marquez, L., O'Connor, M., and Remus, W.: Artificial Neural Network Models for Forecasting and Decision Making, Int. J. Forecasting, 10, 5–15, https://doi.org/10.1016/0169-2070(94)90045-0, 1994. a
Hilley, G. E., Bürgmann, R., Ferretti, A., Novali, F., and Rocca, F.: Dynamics of Slow-Moving Landslides from Permanent Scatterer Analysis, Science, 304, 1952–1955, https://doi.org/10.1126/science.1098821, 2004. a
Hochreiter, S.: The Vanishing Gradient Problem during Learning Recurrent Neural Nets and Problem Solutions, Int. J. Uncertain. Fuzz., 06, 107–116, https://doi.org/10.1142/S0218488598000094, 1998. a
Hochreiter, S. and Schmidhuber, J.: Long Short-Term Memory, Neural Comput., 9, 1735–1780, https://doi.org/10.1162/neco.1997.9.8.1735, 1997. a, b, c
Hornik, K., Stinchcombe, M., and White, H.: Multilayer Feedforward Networks Are Universal Approximators, Neural Networks, 2, 359–366, https://doi.org/10.1016/0893-6080(89)90020-8, 1989. a
Huang, F., Huang, J., Jiang, S., and Zhou, C.: Landslide Displacement Prediction Based on Multivariate Chaotic Model and Extreme Learning Machine, Eng. Geol., 218, 173–186, https://doi.org/10.1016/j.enggeo.2017.01.016, 2017. a
Huffman, G., Stocker, E., Bolvin, D., Nelkin, E., and Jackson, T.: GPM IMERG Early Precipitation L3 Half Hourly 0.1 Degree × 0.1 Degree V06, NASA [data set], https://doi.org/10.5067/GPM/IMERG/3B-HH-E/06, 2019. a, b
Intrieri, E., Raspini, F., Fumagalli, A., Lu, P., Del Conte, S., Farina, P., Allievi, J., Ferretti, A., and Casagli, N.: The Maoxian Landslide as Seen from Space: Detecting Precursors of Failure with Sentinel-1 Data, Landslides, 15, 123–133, https://doi.org/10.1007/s10346-017-0915-7, 2018. a
Jain, A., Jianchang Mao, and Mohiuddin, K.: Artificial Neural Networks: A Tutorial, Computer, 29, 31–44, https://doi.org/10.1109/2.485891, 1996. a
Jiang, P. and Chen, J.: Displacement Prediction of Landslide Based on Generalized Regression Neural Networks with K-Fold Cross-Validation, Neurocomputing, 198, 40–47, https://doi.org/10.1016/j.neucom.2015.08.118, 2016. a
Kingma, D. P. and Ba, J.: Adam: A Method for Stochastic Optimization, in: 3rd International Conference for Learning Representations, arXiv, https://doi.org/10.48550/arXiv.1412.6980, 22 December 2014. a
Kirschbaum, D. and Stanley, T.: Satellite-Based Assessment of Rainfall-Triggered Landslide Hazard for Situational Awareness, Earth's Future, 6, 505–523, https://doi.org/10.1002/2017EF000715, 2018. a
Kohler, M. A. and Linsley, R. K.: Predicting the Runoff from Storm Rainfall, vol. 30, US Department of Commerce, Weather Bureau, https://books.google.nl/books?id=XMtaTBhT5p4C&printsec=frontcover (last access: 17 August 2022), 1951. a
Koppa, A., and Rains, D.: Global Land Evaporation Amsterdam Model (GLEAM) v3.5 [data set], https://www.gleam.eu (last access: 13 April 2021), 2021. a
Krkač, M., Špoljarić, D., Bernat, S., and Arbanas, S. M.: Method for Prediction of Landslide Movements Based on Random Forests, Landslides, 14, 947–960, https://doi.org/10.1007/s10346-016-0761-z, 2017. a, b
Krkač, M., Bernat Gazibara, S., Arbanas, Z., Sečanj, M., and Mihalić Arbanas, S.: A Comparative Study of Random Forests and Multiple Linear Regression in the Prediction of Landslide Velocity, Landslides, 17, 2515–2531, https://doi.org/10.1007/s10346-020-01476-6, 2020. a, b, c, d
Land Tirol, Department of Geoinformation: Vögelsberg deformation time series, Land Tirol [data set], https://www.tirol.gv.at/sicherheit/geoinformation/vermessung-monitoring/monitoring/ (last access: 20 October 2023), 2021. a
Li, C., Criss, R. E., Fu, Z., Long, J., and Tan, Q.: Evolution Characteristics and Displacement Forecasting Model of Landslides with Stair-Step Sliding Surface along the Xiangxi River, Three Gorges Reservoir Region, China, Eng. Geol., 283, 105961, https://doi.org/10.1016/j.enggeo.2020.105961, 2021. a
Li, H., Xu, Q., He, Y., and Deng, J.: Prediction of Landslide Displacement with an Ensemble-Based Extreme Learning Machine and Copula Models, Landslides, 15, 2047–2059, https://doi.org/10.1007/s10346-018-1020-2, 2018. a
Li, H., Xu, Q., He, Y., Fan, X., and Li, S.: Modeling and Predicting Reservoir Landslide Displacement with Deep Belief Network and EWMA Control Charts: A Case Study in Three Gorges Reservoir, Landslides, 17, 693–707, https://doi.org/10.1007/s10346-019-01312-6, 2020. a
Lian, C., Zeng, Z., Yao, W., and Tang, H.: Multiple Neural Networks Switched Prediction for Landslide Displacement, Eng. Geol., 186, 91–99, https://doi.org/10.1016/j.enggeo.2014.11.014, 2015. a
Lins, H. F.: USGS Hydro-Climatic Data Network 2009 (HCDN-2009), Fact Sheet 2012-3047, USGS, 2012. a
Liu, Y., Qiu, H., Yang, D., Liu, Z., Ma, S., Pei, Y., Zhang, J., and Tang, B.: Deformation Responses of Landslides to Seasonal Rainfall Based on InSAR and Wavelet Analysis, Landslides, 19, 199–210, https://doi.org/10.1007/s10346-021-01785-4, 2021. a
Liu, Z., Shao, J., Xu, W., Chen, H., and Shi, C.: Comparison on Landslide Nonlinear Displacement Analysis and Prediction with Computational Intelligence Approaches, Landslides, 11, 889–896, https://doi.org/10.1007/s10346-013-0443-z, 2014. a
Liu, Z.-Q., Guo, D., Lacasse, S., Li, J.-h., Yang, B.-b., and Choi, J.-c.: Algorithms for Intelligent Prediction of Landslide Displacements, J. Zhejiang Univ. Sci. A, 21, 412–429, https://doi.org/10.1631/jzus.A2000005, 2020. a
Logar, J., Turk, G., Marsden, P., and Ambrožič, T.: Prediction of rainfall induced landslide movements by artificial neural networks, Nat. Hazards Earth Syst. Sci. Discuss. [preprint], https://doi.org/10.5194/nhess-2017-253, 2017. a
Ma, J., Tang, H., Liu, X., Hu, X., Sun, M., and Song, Y.: Establishment of a Deformation Forecasting Model for a Step-like Landslide Based on Decision Tree C5.0 and Two-Step Cluster Algorithms: A Case Study in the Three Gorges Reservoir Area, China, Landslides, 14, 1275–1281, https://doi.org/10.1007/s10346-017-0804-0, 2017. a
Makridakis, S., Spiliotis, E., and Assimakopoulos, V.: Statistical and Machine Learning Forecasting Methods: Concerns and Ways Forward, PLOS One, 13, e0194889, https://doi.org/10.1371/journal.pone.0194889, 2018. a
Mansour, M. F., Morgenstern, N. R., and Martin, C. D.: Expected Damage from Displacement of Slow-Moving Slides, Landslides, 8, 117–131, https://doi.org/10.1007/s10346-010-0227-7, 2011. a
Martens, B., Miralles, D. G., Lievens, H., van der Schalie, R., de Jeu, R. A. M., Fernández-Prieto, D., Beck, H. E., Dorigo, W. A., and Verhoest, N. E. C.: GLEAM v3: satellite-based land evaporation and root-zone soil moisture, Geosci. Model Dev., 10, 1903–1925, https://doi.org/10.5194/gmd-10-1903-2017, 2017. a, b
Miao, F., Wu, Y., Xie, Y., and Li, Y.: Prediction of Landslide Displacement with Step-like Behavior Based on Multialgorithm Optimization and a Support Vector Regression Model, Landslides, 15, 475–488, https://doi.org/10.1007/s10346-017-0883-y, 2018. a
Miao, F., Xie, X., Wu, Y., and Zhao, F.: Data Mining and Deep Learning for Predicting the Displacement of “Step-like” Landslides, Sensors, 22, 481, https://doi.org/10.3390/s22020481, 2022. a, b, c
Miralles, D. G., Holmes, T. R. H., De Jeu, R. A. M., Gash, J. H., Meesters, A. G. C. A., and Dolman, A. J.: Global land-surface evaporation estimated from satellite-based observations, Hydrol. Earth Syst. Sci., 15, 453–469, https://doi.org/10.5194/hess-15-453-2011, 2011. a, b
Muñoz Sabater, J.: ERA5-Land Hourly Data from 2001 to Present, Copernicus Climate Change Service (C3S) Climate Data Store (CDS) [data set], https://doi.org/10.24381/CDS.E2161BAC, 2019. a, b, c, d
Neaupane, K. and Achet, S.: Use of Backpropagation Neural Network for Landslide Monitoring: A Case Study in the Higher Himalaya, Eng. Geol., 74, 213–226, https://doi.org/10.1016/j.enggeo.2004.03.010, 2004. a
Nie, W., Krautblatter, M., Leith, K., Thuro, K., and Festl, J.: A modified tank model including snowmelt and infiltration time lags for deep-seated landslides in alpine environments (Aggenalm, Germany), Nat. Hazards Earth Syst. Sci., 17, 1595–1610, https://doi.org/10.5194/nhess-17-1595-2017, 2017. a
Novellino, A., Cesarano, M., Cappelletti, P., Di Martire, D., Di Napoli, M., Ramondini, M., Sowter, A., and Calcaterra, D.: Slow-Moving Landslide Risk Assessment Combining Machine Learning and InSAR Techniques, CATENA, 203, 105317, https://doi.org/10.1016/j.catena.2021.105317, 2021. a
Parajka, J., Kohnová, S., Merz, R., Szolgay, J., Hlavčová, K., and Blöschl, G.: Comparative Analysis of the Seasonality of Hydrological Characteristics in Slovakia and Austria, Hydrolog. Sci. J., 54, 456–473, https://doi.org/10.1623/hysj.54.3.456, 2009. a
Pfeiffer, J., Zieher, T., Schmieder, J., Rutzinger, M., and Strasser, U.: Spatio-temporal Assessment of the Hydrological Drivers of an Active Deep-seated Gravitational Slope Deformation: The Vögelsberg Landslide in Tyrol (Austria), Earth Surf. Proc. Land., 46, 1865–1881, https://doi.org/10.1002/esp.5129, 2021. a, b, c, d, e, f, g, h, i, j, k
Reichle, R., De Lannoy, G., Koster, R., Crow, W., Kimball, J., and Liu, Q.: SMAP L4 global 3-hourly 9 km EASE-grid surface and root zone soil moisture, version 6, NSIDC [data set], https://doi.org/10.5067/08S1A6811J0U, 2022. a, b
Ren, F., Wu, X., Zhang, K., and Niu, R.: Application of Wavelet Analysis and a Particle Swarm-Optimized Support Vector Machine to Predict the Displacement of the Shuping Landslide in the Three Gorges, China, Environ. Earth Sci., 73, 4791–4804, https://doi.org/10.1007/s12665-014-3764-x, 2015. a
Stanley, T. A., Kirschbaum, D. B., Benz, G., Emberson, R. A., Amatya, P. M., Medwedeff, W., and Clark, M. K.: Data-Driven Landslide Nowcasting at the Global Scale, Front. Earth Sci., 9, 640043, https://doi.org/10.3389/feart.2021.640043, 2021. a
TensorFlow Developers: TensorFlow, Zenodo [code], https://doi.org/10.5281/zenodo.4724125, 2022. a, b
Thomas, M. A., Collins, B. D., and Mirus, B. B.: Assessing the Feasibility of Satellite-based Thresholds for Hydrologically Driven Landsliding, Water Resour. Res., 55, 9006–9023, https://doi.org/10.1029/2019WR025577, 2019. a
van Asch, T. W. J., van Beek, L., and Bogaard, T.: Problems in Predicting the Mobility of Slow-Moving Landslides, Eng. Geol., 91, 46–55, https://doi.org/10.1016/j.enggeo.2006.12.012, 2007. a
van Natijne, A., Bogaard, T., van Leijen, F., Hanssen, R., and Lindenbergh, R.: World-Wide InSAR Sensitivity Index for Landslide Deformation Tracking, Int. J. Appl. Earth Obs., 111, 102829, https://doi.org/10.1016/j.jag.2022.102829, 2022. a
van Natijne, A. L., Lindenbergh, R. C., and Bogaard, T. A.: Machine Learning: New Potential for Local and Regional Deep-Seated Landslide Nowcasting, Sensors, 20, 1425, https://doi.org/10.3390/s20051425, 2020. a, b, c
Wang, Y., Tang, H., Wen, T., Ma, J., Zou, Z., and Xiong, C.: Point and Interval Predictions for Tanjiahe Landslide Displacement in the Three Gorges Reservoir Area, China, Geofluids, 2019, 8985325, https://doi.org/10.1155/2019/8985325, 2019. a
Wen, T., Tang, H., Wang, Y., Lin, C., and Xiong, C.: Landslide displacement prediction using the GA-LSSVM model and time series analysis: a case study of Three Gorges Reservoir, China, Nat. Hazards Earth Syst. Sci., 17, 2181–2198, https://doi.org/10.5194/nhess-17-2181-2017, 2017. a
World Meteorological Organization (WMO): WMO Atlas of Mortality and Economic Losses from Weather, Climate and Water Extremes (1970–2019) (WMO-no. 1267), Tech. Rep. 1267, WMO, Geneva, https://library.wmo.int/idurl/4/57564 (last access: 8 September 2022), 2021. a
Xie, P., Zhou, A., and Chai, B.: The Application of Long Short-Term Memory (LSTM) Method on Displacement Prediction of Multifactor-Induced Landslides, IEEE Access, 7, 54305–54311, https://doi.org/10.1109/ACCESS.2019.2912419, 2019. a
Yang, B., Yin, K., Lacasse, S., and Liu, Z.: Time Series Analysis and Long Short-Term Memory Neural Network to Predict Landslide Displacement, Landslides, 16, 677–694, https://doi.org/10.1007/s10346-018-01127-x, 2019. a, b
Yatheendradas, S., Kirschbaum, D., Nearing, G., Vrugt, J. A., Baum, R. L., Wooten, R., Lu, N., and Godt, J. W.: Bayesian Analysis of the Impact of Rainfall Data Product on Simulated Slope Failure for North Carolina Locations, Computat. Geosci., https://doi.org/10.1007/s10596-018-9804-y, 2019. a
Zhang, X., Zhu, C., He, M., Dong, M., Zhang, G., and Zhang, F.: Failure Mechanism and Long Short-Term Memory Neural Network Model for Landslide Risk Prediction, Remote Sens., 14, 166, https://doi.org/10.3390/rs14010166, 2021. a
Zhou, C., Yin, K., Cao, Y., and Ahmed, B.: Application of Time Series Analysis and PSO–SVM Model in Predicting the Bazimen Landslide in the Three Gorges Reservoir, China, Eng. Geol., 204, 108–120, https://doi.org/10.1016/j.enggeo.2016.02.009, 2016. a
Zhu, X., Xu, Q., Tang, M., Nie, W., Ma, S., and Xu, Z.: Comparison of Two Optimized Machine Learning Models for Predicting Displacement of Rainfall-Induced Landslide: A Case Study in Sichuan Province, China, Eng. Geol., 218, 213–222, https://doi.org/10.1016/j.enggeo.2017.01.022, 2017. a
Zhu, Z., Wulder, M. A., Roy, D. P., Woodcock, C. E., Hansen, M. C., Radeloff, V. C., Healey, S. P., Schaaf, C., Hostert, P., Strobl, P., Pekel, J.-F., Lymburner, L., Pahlevan, N., and Scambos, T. A.: Benefits of the Free and Open Landsat Data Policy, Remote SENS. Environ., 224, 382–385, https://doi.org/10.1016/j.rse.2019.02.016, 2019. a
Zieher, T., Pfeiffer, J., van Natijne, A., and Lindenbergh, R.: Integrated Monitoring of a Slowly Moving Landslide Based on Total Station Measurements, Multi-Temporal Terrestrial Laser Scanning and Space-Borne Interferometric Synthetic Aperture Radar, in: 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, IEEE, Brussels, Belgium, 11–16 July 2021, 942–945, https://doi.org/10.1109/IGARSS47720.2021.9553324, 2021. a
Short summary
Landslides are one of the major weather-related geohazards. To assess their potential impact and design mitigation solutions, a detailed understanding of the slope is required. We tested if the use of machine learning, combined with satellite remote sensing data, would allow us to forecast deformation. Our results on the Vögelsberg landslide, a deep-seated landslide near Innsbruck, Austria, show that the formulation of such a machine learning system is not as straightforward as often hoped for.
Landslides are one of the major weather-related geohazards. To assess their potential impact and...
Special issue
Altmetrics
Final-revised paper
Preprint