Articles | Volume 23, issue 3
https://doi.org/10.5194/nhess-23-1059-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-23-1059-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Impact of topography on in situ soil wetness measurements for regional landslide early warning – a case study from the Swiss Alpine Foreland
Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
Peter Lehmann
ETH Zurich, Institute of Terrestrial Ecosystems,
Universitätstrasse 16, 8092 Zürich, Switzerland
Christian Hauck
Department of Geosciences, University of Fribourg, Chemin du Musée 4, 1700 Fribourg, Switzerland
Manfred Stähli
Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
Related authors
Adrian Wicki, Per-Erik Jansson, Peter Lehmann, Christian Hauck, and Manfred Stähli
Hydrol. Earth Syst. Sci., 25, 4585–4610, https://doi.org/10.5194/hess-25-4585-2021, https://doi.org/10.5194/hess-25-4585-2021, 2021
Short summary
Short summary
Soil moisture information was shown to be valuable for landslide prediction. Soil moisture was simulated at 133 sites in Switzerland, and the temporal variability was compared to the regional occurrence of landslides. We found that simulated soil moisture is a good predictor for landslides, and that the forecast goodness is similar to using in situ measurements. This encourages the use of models for complementing existing soil moisture monitoring networks for regional landslide early warning.
Tamara Mathys, Muslim Azimshoev, Zhoodarbeshim Bektursunov, Christian Hauck, Christin Hilbich, Murataly Duishonakunov, Abdulhamid Kayumov, Nikolay Kassatkin, Vassily Kapitsa, Leo C. P. Martin, Coline Mollaret, Hofiz Navruzshoev, Eric Pohl, Tomas Saks, Intizor Silmonov, Timur Musaev, Ryskul Usubaliev, and Martin Hoelzle
EGUsphere, https://doi.org/10.5194/egusphere-2024-2795, https://doi.org/10.5194/egusphere-2024-2795, 2024
Short summary
Short summary
This study provides a comprehensive geophysical dataset on permafrost in the data-scarce Tien Shan and Pamir mountain regions of Central Asia. It also introduces a novel modeling method to quantify ground ice content across different landforms. The findings indicate that this approach is well-suited for characterizing ice-rich permafrost, which is crucial for evaluating future water availability and assessing risks associated with thawing permafrost.
Amelie Fees, Alec van Herwijnen, Michael Lombardo, Jürg Schweizer, and Peter Lehmann
Nat. Hazards Earth Syst. Sci., 24, 3387–3400, https://doi.org/10.5194/nhess-24-3387-2024, https://doi.org/10.5194/nhess-24-3387-2024, 2024
Short summary
Short summary
Glide-snow avalanches release at the ground–snow interface, and their release process is poorly understood. To investigate the influence of spatial variability (snowpack and basal friction) on avalanche release, we developed a 3D, mechanical, threshold-based model that reproduces an observed release area distribution. A sensitivity analysis showed that the distribution was mostly influenced by the basal friction uniformity, while the variations in snowpack properties had little influence.
Cassandra E.M. Koenig, Christin Hilbich, Christian Hauck, Lukas U. Arenson, and Pablo Wainstein
EGUsphere, https://doi.org/10.5194/egusphere-2024-2244, https://doi.org/10.5194/egusphere-2024-2244, 2024
Short summary
Short summary
This study presents an analysis of ground temperature data from 53 high-altitude boreholes in permafrost regions of the Central Andes. Results show that thermal characteristics of the region align with other mountain permafrost areas, while also showing unique features. The dataset could improve permafrost models and monitoring efforts, and inform mitigation strategies. The study highlights a notable collaboration between industry, academia, and regulators for advancing climate change research.
Mohammad Farzamian, Teddi Herring, Gonçalo Vieira, Miguel Angel de Pablo, Borhan Yaghoobi Tabar, and Christian Hauck
The Cryosphere, 18, 4197–4213, https://doi.org/10.5194/tc-18-4197-2024, https://doi.org/10.5194/tc-18-4197-2024, 2024
Short summary
Short summary
An automated electrical resistivity tomography (A-ERT) system was developed and deployed in Antarctica to monitor permafrost and active-layer dynamics. The A-ERT, coupled with an efficient processing workflow, demonstrated its capability to monitor real-time thaw depth progression, detect seasonal and surficial freezing–thawing events, and assess permafrost stability. Our study showcased the potential of A-ERT to contribute to global permafrost monitoring networks.
Nedal Aqel, Lea Reusser, Stephan Margreth, Andrea Carminati, and Peter Lehmann
Geosci. Model Dev., 17, 6949–6966, https://doi.org/10.5194/gmd-17-6949-2024, https://doi.org/10.5194/gmd-17-6949-2024, 2024
Short summary
Short summary
The soil water potential (SWP) determines various soil water processes. Since remote sensing techniques cannot measure it directly, it is often deduced from volumetric water content (VWC) information. However, under dynamic field conditions, the relationship between SWP and VWC is highly ambiguous due to different factors that cannot be modeled with the classical approach. Applying a deep neural network with an autoencoder enables the prediction of the dynamic SWP.
Amelie Fees, Michael Lombardo, Alec van Herwijnen, Peter Lehmann, and Jürg Schweizer
EGUsphere, https://doi.org/10.5194/egusphere-2024-2485, https://doi.org/10.5194/egusphere-2024-2485, 2024
Short summary
Short summary
Glide-snow avalanches release at the soil-snow interface due to a loss of friction which is suspected to be linked to interfacial water. The importance of the interfacial water was investigated with a spatio-temporal soil and local snow monitoring setup in an avalanche-prone slope. Seven glide-snow avalanches released on the monitoring grid (season 2021/22 to 2023/24) and provided insights into the source, quantity, and spatial distribution of interfacial water before avalanche release.
Tobias Karl David Weber, Lutz Weihermüller, Attila Nemes, Michel Bechtold, Aurore Degré, Efstathios Diamantopoulos, Simone Fatichi, Vilim Filipović, Surya Gupta, Tobias L. Hohenbrink, Daniel R. Hirmas, Conrad Jackisch, Quirijn de Jong van Lier, John Koestel, Peter Lehmann, Toby R. Marthews, Budiman Minasny, Holger Pagel, Martine van der Ploeg, Shahab Aldin Shojaeezadeh, Simon Fiil Svane, Brigitta Szabó, Harry Vereecken, Anne Verhoef, Michael Young, Yijian Zeng, Yonggen Zhang, and Sara Bonetti
Hydrol. Earth Syst. Sci., 28, 3391–3433, https://doi.org/10.5194/hess-28-3391-2024, https://doi.org/10.5194/hess-28-3391-2024, 2024
Short summary
Short summary
Pedotransfer functions (PTFs) are used to predict parameters of models describing the hydraulic properties of soils. The appropriateness of these predictions critically relies on the nature of the datasets for training the PTFs and the physical comprehensiveness of the models. This roadmap paper is addressed to PTF developers and users and critically reflects the utility and future of PTFs. To this end, we present a manifesto aiming at a paradigm shift in PTF research.
Theresa Maierhofer, Adrian Flores Orozco, Nathalie Roser, Jonas K. Limbrock, Christin Hilbich, Clemens Moser, Andreas Kemna, Elisabetta Drigo, Umberto Morra di Cella, and Christian Hauck
The Cryosphere, 18, 3383–3414, https://doi.org/10.5194/tc-18-3383-2024, https://doi.org/10.5194/tc-18-3383-2024, 2024
Short summary
Short summary
In this study, we apply an electrical method in a high-mountain permafrost terrain in the Italian Alps, where long-term borehole temperature data are available for validation. In particular, we investigate the frequency dependence of the electrical properties for seasonal and annual variations along a 3-year monitoring period. We demonstrate that our method is capable of resolving temporal changes in the thermal state and the ice / water ratio associated with seasonal freeze–thaw processes.
Clemens Moser, Umberto Morra di Cella, Christian Hauck, and Adrián Flores Orozco
EGUsphere, https://doi.org/10.5194/egusphere-2024-1444, https://doi.org/10.5194/egusphere-2024-1444, 2024
Short summary
Short summary
We quantify hydrogeological properties in an active rock glacier by using electrical conductivity and induced polarization in an imaging framework and we used geophysical monitoring to track tracer test injections. The water content is spatially variable, and the water can move rapidly with a velocity in the range of cm/s through the active layer of the rock glacier. Hydrogeological parameters were linked to kinematic data to investigate the role of water content on rock glacier movement.
Benjamin B. Mirus, Thom A. Bogaard, Roberto Greco, and Manfred Stähli
EGUsphere, https://doi.org/10.5194/egusphere-2024-1219, https://doi.org/10.5194/egusphere-2024-1219, 2024
Short summary
Short summary
Early warning of increased landslide potential provides situational awareness to reduce landslide-related losses from major storm events. For decades, landslide forecasts relied on rainfall data alone, but recent research points to the value of hydrologic information for improving predictions. In this article, we provide our perspectives on the value and limitations of integrating subsurface hillslope hydrologic monitoring data and mathematical modeling for more accurate landslide forecasts.
Julie Wee, Sebastián Vivero, Tamara Mathys, Coline Mollaret, Christian Hauck, Christophe Lambiel, Jan Beutel, and Wilfried Haeberli
EGUsphere, https://doi.org/10.5194/egusphere-2024-1283, https://doi.org/10.5194/egusphere-2024-1283, 2024
Short summary
Short summary
This study highlights the importance of a multi-method and multidisciplinary approach to better understand the influence of the internal structure of the Gruben glacier forefield-connected rock glacier and adjacent debris-covered glacier on their driving thermo-mechanical processes and associated surface dynamics. We were able to discriminate glacial from periglacial processes as their spatio-temporal patterns of surface dynamics and geophysical signatures are (mostly) different.
Wilfried Haeberli, Lukas U. Arenson, Julie Wee, Christian Hauck, and Nico Mölg
The Cryosphere, 18, 1669–1683, https://doi.org/10.5194/tc-18-1669-2024, https://doi.org/10.5194/tc-18-1669-2024, 2024
Short summary
Short summary
Rock glaciers in ice-rich permafrost can be discriminated from debris-covered glaciers. The key physical phenomenon relates to the tight mechanical coupling between the moving frozen body at depth and the surface layer of debris in the case of rock glaciers, as opposed to the virtually inexistent coupling in the case of surface ice with a debris cover. Contact zones of surface ice with subsurface ice in permafrost constitute diffuse landforms beyond either–or-type landform classification.
Bernd Etzelmüller, Ketil Isaksen, Justyna Czekirda, Sebastian Westermann, Christin Hilbich, and Christian Hauck
The Cryosphere, 17, 5477–5497, https://doi.org/10.5194/tc-17-5477-2023, https://doi.org/10.5194/tc-17-5477-2023, 2023
Short summary
Short summary
Permafrost (permanently frozen ground) is widespread in the mountains of Norway and Iceland. Several boreholes were drilled after 1999 for long-term permafrost monitoring. We document a strong warming of permafrost, including the development of unfrozen bodies in the permafrost. Warming and degradation of mountain permafrost may lead to more natural hazards.
Johannes Buckel, Jan Mudler, Rainer Gardeweg, Christian Hauck, Christin Hilbich, Regula Frauenfelder, Christof Kneisel, Sebastian Buchelt, Jan Henrik Blöthe, Andreas Hördt, and Matthias Bücker
The Cryosphere, 17, 2919–2940, https://doi.org/10.5194/tc-17-2919-2023, https://doi.org/10.5194/tc-17-2919-2023, 2023
Short summary
Short summary
This study reveals permafrost degradation by repeating old geophysical measurements at three Alpine sites. The compared data indicate that ice-poor permafrost is highly affected by temperature warming. The melting of ice-rich permafrost could not be identified. However, complex geomorphic processes are responsible for this rather than external temperature change. We suspect permafrost degradation here as well. In addition, we introduce a new current injection method for data acquisition.
Tamara Mathys, Christin Hilbich, Lukas U. Arenson, Pablo A. Wainstein, and Christian Hauck
The Cryosphere, 16, 2595–2615, https://doi.org/10.5194/tc-16-2595-2022, https://doi.org/10.5194/tc-16-2595-2022, 2022
Short summary
Short summary
With ongoing climate change, there is a pressing need to understand how much water is stored as ground ice in permafrost. Still, field-based data on permafrost in the Andes are scarce, resulting in large uncertainties regarding ground ice volumes and their hydrological role. We introduce an upscaling methodology of geophysical-based ground ice quantifications at the catchment scale. Our results indicate that substantial ground ice volumes may also be present in areas without rock glaciers.
Theresa Maierhofer, Christian Hauck, Christin Hilbich, Andreas Kemna, and Adrián Flores-Orozco
The Cryosphere, 16, 1903–1925, https://doi.org/10.5194/tc-16-1903-2022, https://doi.org/10.5194/tc-16-1903-2022, 2022
Short summary
Short summary
We extend the application of electrical methods to characterize alpine permafrost using the so-called induced polarization (IP) effect associated with the storage of charges at the interface between liquid and solid phases. We investigate different field protocols to enhance data quality and conclude that with appropriate measurement and processing procedures, the characteristic dependence of the IP response of frozen rocks improves the assessment of thermal state and ice content in permafrost.
Christin Hilbich, Christian Hauck, Coline Mollaret, Pablo Wainstein, and Lukas U. Arenson
The Cryosphere, 16, 1845–1872, https://doi.org/10.5194/tc-16-1845-2022, https://doi.org/10.5194/tc-16-1845-2022, 2022
Short summary
Short summary
In view of water scarcity in the Andes, the significance of permafrost as a future water resource is often debated focusing on satellite-detected features such as rock glaciers. We present data from > 50 geophysical surveys in Chile and Argentina to quantify the ground ice volume stored in various permafrost landforms, showing that not only rock glacier but also non-rock-glacier permafrost contains significant ground ice volumes and is relevant when assessing the hydrological role of permafrost.
Martin Hoelzle, Christian Hauck, Tamara Mathys, Jeannette Noetzli, Cécile Pellet, and Martin Scherler
Earth Syst. Sci. Data, 14, 1531–1547, https://doi.org/10.5194/essd-14-1531-2022, https://doi.org/10.5194/essd-14-1531-2022, 2022
Short summary
Short summary
With ongoing climate change, it is crucial to understand the interactions of the individual heat fluxes at the surface and within the subsurface layers, as well as their impacts on the permafrost thermal regime. A unique set of high-altitude meteorological measurements has been analysed to determine the energy balance at three mountain permafrost sites in the Swiss Alps, where data have been collected since the late 1990s in collaboration with the Swiss Permafrost Monitoring Network (PERMOS).
Bernd Etzelmüller, Justyna Czekirda, Florence Magnin, Pierre-Allain Duvillard, Ludovic Ravanel, Emanuelle Malet, Andreas Aspaas, Lene Kristensen, Ingrid Skrede, Gudrun D. Majala, Benjamin Jacobs, Johannes Leinauer, Christian Hauck, Christin Hilbich, Martina Böhme, Reginald Hermanns, Harald Ø. Eriksen, Tom Rune Lauknes, Michael Krautblatter, and Sebastian Westermann
Earth Surf. Dynam., 10, 97–129, https://doi.org/10.5194/esurf-10-97-2022, https://doi.org/10.5194/esurf-10-97-2022, 2022
Short summary
Short summary
This paper is a multi-authored study documenting the possible existence of permafrost in permanently monitored rockslides in Norway for the first time by combining a multitude of field data, including geophysical surveys in rock walls. The paper discusses the possible role of thermal regime and rockslide movement, and it evaluates the possible impact of atmospheric warming on rockslide dynamics in Norwegian mountains.
Adrian Wicki, Per-Erik Jansson, Peter Lehmann, Christian Hauck, and Manfred Stähli
Hydrol. Earth Syst. Sci., 25, 4585–4610, https://doi.org/10.5194/hess-25-4585-2021, https://doi.org/10.5194/hess-25-4585-2021, 2021
Short summary
Short summary
Soil moisture information was shown to be valuable for landslide prediction. Soil moisture was simulated at 133 sites in Switzerland, and the temporal variability was compared to the regional occurrence of landslides. We found that simulated soil moisture is a good predictor for landslides, and that the forecast goodness is similar to using in situ measurements. This encourages the use of models for complementing existing soil moisture monitoring networks for regional landslide early warning.
Surya Gupta, Tomislav Hengl, Peter Lehmann, Sara Bonetti, and Dani Or
Earth Syst. Sci. Data, 13, 1593–1612, https://doi.org/10.5194/essd-13-1593-2021, https://doi.org/10.5194/essd-13-1593-2021, 2021
Christian Halla, Jan Henrik Blöthe, Carla Tapia Baldis, Dario Trombotto Liaudat, Christin Hilbich, Christian Hauck, and Lothar Schrott
The Cryosphere, 15, 1187–1213, https://doi.org/10.5194/tc-15-1187-2021, https://doi.org/10.5194/tc-15-1187-2021, 2021
Short summary
Short summary
In the semi-arid to arid Andes of Argentina, rock glaciers contain invisible and unknown amounts of ground ice that could become more important in future for the water availability during the dry season. The study shows that the investigated rock glacier represents an important long-term ice reservoir in the dry mountain catchment and that interannual changes of ground ice can store and release significant amounts of annual precipitation.
Maximilian Weigand, Florian M. Wagner, Jonas K. Limbrock, Christin Hilbich, Christian Hauck, and Andreas Kemna
Geosci. Instrum. Method. Data Syst., 9, 317–336, https://doi.org/10.5194/gi-9-317-2020, https://doi.org/10.5194/gi-9-317-2020, 2020
Short summary
Short summary
In times of global warming, permafrost is starting to degrade at alarming rates, requiring new and improved characterization approaches. We describe the design and test installation, as well as detailed data quality assessment, of a monitoring system used to capture natural electrical potentials in the subsurface. These self-potential signals are of great interest for the noninvasive investigation of water flow in the non-frozen or partially frozen subsurface.
Leonie Kiewiet, Ilja van Meerveld, Manfred Stähli, and Jan Seibert
Hydrol. Earth Syst. Sci., 24, 3381–3398, https://doi.org/10.5194/hess-24-3381-2020, https://doi.org/10.5194/hess-24-3381-2020, 2020
Short summary
Short summary
The sources of stream water are important, for instance, for predicting floods. The connectivity between streams and different (ground-)water sources can change during rain events, which affects the stream water composition. We investigated this for stream water sampled during four events and found that stream water came from different sources. The stream water composition changed gradually, and we showed that changes in solute concentrations could be partly linked to changes in connectivity.
Mohammad Farzamian, Gonçalo Vieira, Fernando A. Monteiro Santos, Borhan Yaghoobi Tabar, Christian Hauck, Maria Catarina Paz, Ivo Bernardo, Miguel Ramos, and Miguel Angel de Pablo
The Cryosphere, 14, 1105–1120, https://doi.org/10.5194/tc-14-1105-2020, https://doi.org/10.5194/tc-14-1105-2020, 2020
Short summary
Short summary
A 2-D automated electrical resistivity tomography (A-ERT) system was installed for the first time in Antarctica at Deception Island to (i) monitor subsurface freezing and thawing processes on a daily and seasonal basis and map the spatial and temporal variability of thaw depth and to (ii) study the impact of short-lived extreme meteorological events on active layer dynamics.
Coline Mollaret, Christin Hilbich, Cécile Pellet, Adrian Flores-Orozco, Reynald Delaloye, and Christian Hauck
The Cryosphere, 13, 2557–2578, https://doi.org/10.5194/tc-13-2557-2019, https://doi.org/10.5194/tc-13-2557-2019, 2019
Short summary
Short summary
We present a long-term multisite electrical resistivity tomography monitoring network (more than 1000 datasets recorded from six mountain permafrost sites). Despite harsh and remote measurement conditions, the datasets are of good quality and show consistent spatio-temporal variations yielding significant added value to point-scale borehole information. Observed long-term trends are similar for all permafrost sites, showing ongoing permafrost thaw and ground ice loss due to climatic conditions.
Jan Mudler, Andreas Hördt, Anita Przyklenk, Gianluca Fiandaca, Pradip Kumar Maurya, and Christian Hauck
The Cryosphere, 13, 2439–2456, https://doi.org/10.5194/tc-13-2439-2019, https://doi.org/10.5194/tc-13-2439-2019, 2019
Short summary
Short summary
The capacitively coupled resistivity (CCR) method enables the determination of frequency-dependent electrical parameters of the subsurface. CCR is well suited for application in cryospheric areas because it provides logistical advantages regarding coupling on hard surfaces and highly resistive grounds. With our new spectral two-dimensional inversion, we can identify subsurface structures based on full spectral information. We show the first results of the inversion method on the field scale.
Milad Aminzadeh, Peter Lehmann, and Dani Or
Hydrol. Earth Syst. Sci., 22, 4015–4032, https://doi.org/10.5194/hess-22-4015-2018, https://doi.org/10.5194/hess-22-4015-2018, 2018
Short summary
Short summary
Significant evaporative losses from local water reservoirs in arid regions exacerbate water shortages during dry spells. We propose a systematic approach for modeling energy balance and fluxes from covered water bodies using self-assembling floating elements, considering cover properties and local conditions. The study will provide a scientific and generalized basis for designing and implementing this important water conservation strategy to assist with its adaptation in various arid regions.
Martin Beniston, Daniel Farinotti, Markus Stoffel, Liss M. Andreassen, Erika Coppola, Nicolas Eckert, Adriano Fantini, Florie Giacona, Christian Hauck, Matthias Huss, Hendrik Huwald, Michael Lehning, Juan-Ignacio López-Moreno, Jan Magnusson, Christoph Marty, Enrique Morán-Tejéda, Samuel Morin, Mohamed Naaim, Antonello Provenzale, Antoine Rabatel, Delphine Six, Johann Stötter, Ulrich Strasser, Silvia Terzago, and Christian Vincent
The Cryosphere, 12, 759–794, https://doi.org/10.5194/tc-12-759-2018, https://doi.org/10.5194/tc-12-759-2018, 2018
Short summary
Short summary
This paper makes a rather exhaustive overview of current knowledge of past, current, and future aspects of cryospheric issues in continental Europe and makes a number of reflections of areas of uncertainty requiring more attention in both scientific and policy terms. The review paper is completed by a bibliography containing 350 recent references that will certainly be of value to scholars engaged in the fields of glacier, snow, and permafrost research.
Benjamin Mewes, Christin Hilbich, Reynald Delaloye, and Christian Hauck
The Cryosphere, 11, 2957–2974, https://doi.org/10.5194/tc-11-2957-2017, https://doi.org/10.5194/tc-11-2957-2017, 2017
Cécile Pellet and Christian Hauck
Hydrol. Earth Syst. Sci., 21, 3199–3220, https://doi.org/10.5194/hess-21-3199-2017, https://doi.org/10.5194/hess-21-3199-2017, 2017
Short summary
Short summary
This paper presents a detailed description of the new Swiss soil moisture monitoring network SOMOMOUNT, which comprises six stations distributed along an elevation gradient ranging from 1205 to 3410 m. The liquid soil moisture (LSM) data collected during the first 3 years are discussed with regard to their soil type and climate dependency as well as their altitudinal distribution. The elevation dependency of the LSM was found to be non-linear with distinct dynamics at high and low elevation.
Jonas Wicky and Christian Hauck
The Cryosphere, 11, 1311–1325, https://doi.org/10.5194/tc-11-1311-2017, https://doi.org/10.5194/tc-11-1311-2017, 2017
Short summary
Short summary
Talus slopes are a widespread geomorphic feature, which may show permafrost conditions even at low elevation due to cold microclimates induced by a gravity-driven internal air circulation. We show for the first time a numerical simulation of this internal air circulation of a field-scale talus slope. Results indicate that convective heat transfer leads to a pronounced ground cooling in the lower part of the talus slope favoring the persistence of permafrost.
Antoine Marmy, Jan Rajczak, Reynald Delaloye, Christin Hilbich, Martin Hoelzle, Sven Kotlarski, Christophe Lambiel, Jeannette Noetzli, Marcia Phillips, Nadine Salzmann, Benno Staub, and Christian Hauck
The Cryosphere, 10, 2693–2719, https://doi.org/10.5194/tc-10-2693-2016, https://doi.org/10.5194/tc-10-2693-2016, 2016
Short summary
Short summary
This paper presents a new semi-automated method to calibrate the 1-D soil model COUP. It is the first time (as far as we know) that this approach is developed for mountain permafrost. It is applied at six test sites in the Swiss Alps. In a second step, the calibrated model is used for RCM-based simulations with specific downscaling of RCM data to the borehole scale. We show projections of the permafrost evolution at the six sites until the end of the century and according to the A1B scenario.
A. Ekici, S. Chadburn, N. Chaudhary, L. H. Hajdu, A. Marmy, S. Peng, J. Boike, E. Burke, A. D. Friend, C. Hauck, G. Krinner, M. Langer, P. A. Miller, and C. Beer
The Cryosphere, 9, 1343–1361, https://doi.org/10.5194/tc-9-1343-2015, https://doi.org/10.5194/tc-9-1343-2015, 2015
Short summary
Short summary
This paper compares the performance of different land models in estimating soil thermal regimes at distinct cold region landscape types. Comparing models with different processes reveal the importance of surface insulation (snow/moss layer) and soil internal processes (heat/water transfer). The importance of model processes also depend on site conditions such as high/low snow cover, dry/wet soil types.
M. Stähli, M. Sättele, C. Huggel, B. W. McArdell, P. Lehmann, A. Van Herwijnen, A. Berne, M. Schleiss, A. Ferrari, A. Kos, D. Or, and S. M. Springman
Nat. Hazards Earth Syst. Sci., 15, 905–917, https://doi.org/10.5194/nhess-15-905-2015, https://doi.org/10.5194/nhess-15-905-2015, 2015
Short summary
Short summary
This review paper describes the state of the art in monitoring and predicting rapid mass movements for early warning. It further presents recent innovations in observation technologies and modelling to be used in future early warning systems (EWS). Finally, the paper proposes avenues towards successful implementation of next-generation EWS.
P. Pogliotti, M. Guglielmin, E. Cremonese, U. Morra di Cella, G. Filippa, C. Pellet, and C. Hauck
The Cryosphere, 9, 647–661, https://doi.org/10.5194/tc-9-647-2015, https://doi.org/10.5194/tc-9-647-2015, 2015
Short summary
Short summary
This study presents the thermal state and recent evolution of permafrost at Cime Bianche.
The analysis reveals that (i) spatial variability of MAGST is greater than its interannual variability and is controlled by snow duration and air temperature during the snow-free period, (ii) the ALT has a pronounced spatial variability caused by a different subsurface ice and water content, and (iii) permafrost is warming at significant rates below 8m of depth.
B. Staub, A. Marmy, C. Hauck, C. Hilbich, and R. Delaloye
Geogr. Helv., 70, 45–62, https://doi.org/10.5194/gh-70-45-2015, https://doi.org/10.5194/gh-70-45-2015, 2015
M. Stähli, C. Graf, C. Scheidl, C. R. Wyss, and A. Volkwein
Geogr. Helv., 70, 1–9, https://doi.org/10.5194/gh-70-1-2015, https://doi.org/10.5194/gh-70-1-2015, 2015
A. Ekici, C. Beer, S. Hagemann, J. Boike, M. Langer, and C. Hauck
Geosci. Model Dev., 7, 631–647, https://doi.org/10.5194/gmd-7-631-2014, https://doi.org/10.5194/gmd-7-631-2014, 2014
M. Scherler, S. Schneider, M. Hoelzle, and C. Hauck
Earth Surf. Dynam., 2, 141–154, https://doi.org/10.5194/esurf-2-141-2014, https://doi.org/10.5194/esurf-2-141-2014, 2014
S. Schneider, S. Daengeli, C. Hauck, and M. Hoelzle
Geogr. Helv., 68, 265–280, https://doi.org/10.5194/gh-68-265-2013, https://doi.org/10.5194/gh-68-265-2013, 2013
Related subject area
Databases, GIS, Remote Sensing, Early Warning Systems and Monitoring Technologies
AscDAMs: advanced SLAM-based channel detection and mapping system
Shoreline and land use–land cover changes along the 2004-tsunami-affected South Andaman coast: understanding changing hazard susceptibility
Dynamical changes of seismic properties prior to, during, and after 2014–2015 Holuhraun Eruption, Iceland
A methodology to compile multi-hazard interrelationships in a data-scarce setting: an application to Kathmandu Valley, Nepal
Insights into the development of a landslide early warning system prototype in an informal settlement: the case of Bello Oriente in Medellín, Colombia
The World Wide Lightning Location Network (WWLLN) over Spain
Exploring drought hazard, vulnerability, and related impacts to agriculture in Brandenburg
Tsunami hazard perception and knowledge of alert: early findings in five municipalities along the French Mediterranean coastlines
Review article: Physical Vulnerability Database for Critical Infrastructure Multi-Hazard Risk Assessments – A systematic review and data collection
Exploiting radar polarimetry for nowcasting thunderstorm hazards using deep learning
Machine-learning-based nowcasting of the Vögelsberg deep-seated landslide: why predicting slow deformation is not so easy
Fixed photogrammetric systems for natural hazard monitoring with high spatio-temporal resolution
A neural network model for automated prediction of avalanche danger level
Brief communication: Landslide activity on the Argentinian Santa Cruz River mega dam works confirmed by PSI DInSAR
Earthquake building damage detection based on synthetic-aperture-radar imagery and machine learning
Assessing riverbank erosion in Bangladesh using time series of Sentinel-1 radar imagery in the Google Earth Engine
Quantifying unequal urban resilience to rainfall across China from location-aware big data
Comparison of machine learning techniques for reservoir outflow forecasting
Development of black ice prediction model using GIS-based multi-sensor model validation
Forecasting vegetation condition with a Bayesian auto-regressive distributed lags (BARDL) model
A dynamic hierarchical Bayesian approach for forecasting vegetation condition
Using a single remote-sensing image to calculate the height of a landslide dam and the maximum volume of a lake
Enhancing disaster risk resilience using greenspace in urbanising Quito, Ecuador
Gridded flood depth estimates from satellite-derived inundations
ProbFire: a probabilistic fire early warning system for Indonesia
Index establishment and capability evaluation of space–air–ground remote sensing cooperation in geohazard emergency response
Brief communication: Monitoring a soft-rock coastal cliff using webcams and strain sensors
Multiscale analysis of surface roughness for the improvement of natural hazard modelling
EUNADICS-AV early warning system dedicated to supporting aviation in the case of a crisis from natural airborne hazards and radionuclide clouds
Are sirens effective tools to alert the population in France?
UAV survey method to monitor and analyze geological hazards: the case study of the mud volcano of Villaggio Santa Barbara, Caltanissetta (Sicily)
Timely prediction potential of landslide early warning systems with multispectral remote sensing: a conceptual approach tested in the Sattelkar, Austria
CHILDA – Czech Historical Landslide Database
Review article: Detection of actionable tweets in crisis events
Long-term magnetic anomalies and their possible relationship to the latest greater Chilean earthquakes in the context of the seismo-electromagnetic theory
HazMapper: a global open-source natural hazard mapping application in Google Earth Engine
Opportunities and risks of disaster data from social media: a systematic review of incident information
Online urban-waterlogging monitoring based on a recurrent neural network for classification of microblogging text
Predicting power outages caused by extratropical storms
Near-real-time automated classification of seismic signals of slope failures with continuous random forests
Assessing the accuracy of remotely sensed fire datasets across the southwestern Mediterranean Basin
Responses to severe weather warnings and affective decision-making
The object-specific flood damage database HOWAS 21
A spaceborne SAR-based procedure to support the detection of landslides
GIS-based DRASTIC and composite DRASTIC indices for assessing groundwater vulnerability in the Baghin aquifer, Kerman, Iran
Review article: The spatial dimension in the assessment of urban socio-economic vulnerability related to geohazards
Design and implementation of a mobile device app for network-based earthquake early warning systems (EEWSs): application to the PRESTo EEWS in southern Italy
CCAF-DB: the Caribbean and Central American active fault database
Evaluation of a combined drought indicator and its potential for agricultural drought prediction in southern Spain
Study on real-time correction of site amplification factor
Tengfei Wang, Fucheng Lu, Jintao Qin, Taosheng Huang, Hui Kong, and Ping Shen
Nat. Hazards Earth Syst. Sci., 24, 3075–3094, https://doi.org/10.5194/nhess-24-3075-2024, https://doi.org/10.5194/nhess-24-3075-2024, 2024
Short summary
Short summary
Harsh environments limit the use of drone, satellite, and simultaneous localization and mapping technology to obtain precise channel morphology data. We propose AscDAMs, which includes a deviation correction algorithm to reduce errors, a point cloud smoothing algorithm to diminish noise, and a cross-section extraction algorithm to quantitatively assess the morphology data. AscDAMs solves the problems and provides researchers with more reliable channel morphology data for further analysis.
Vikas Ghadamode, Aruna Kumari Kondarathi, Anand K. Pandey, and Kirti Srivastava
Nat. Hazards Earth Syst. Sci., 24, 3013–3033, https://doi.org/10.5194/nhess-24-3013-2024, https://doi.org/10.5194/nhess-24-3013-2024, 2024
Short summary
Short summary
In 2004-tsunami-affected South Andaman, tsunami wave propagation, arrival times, and run-up heights at 13 locations are computed to analyse pre- and post-tsunami shoreline and land use–land cover changes to understand the evolving hazard scenario. The LULC changes and dynamic shoreline changes are observed in zones 3, 4, and 5 owing to dynamic population changes, infrastructural growth, and gross state domestic product growth. Economic losses would increase 5-fold for a similar tsunami.
Maria R.P. Sudibyo, Eva P. S. Eibl, Sebastian Hainzl, and Matthias Ohrnberger
EGUsphere, https://doi.org/10.5194/egusphere-2024-1445, https://doi.org/10.5194/egusphere-2024-1445, 2024
Short summary
Short summary
We assessed the performance of Permutation Entropy (PE), Phase Permutation Entropy (PPE), and Instantaneous Frequency (IF), which are estimated from a single seismic station, to detect changes before, during and after the 2014/2015 Holuhraun eruption in Iceland. We show that these three parameters are sensitive to the pre-and eruptive processes. Finally, we discuss their potential and limitations in eruption monitoring.
Harriet E. Thompson, Joel C. Gill, Robert Šakić Trogrlić, Faith E. Taylor, and Bruce D. Malamud
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-101, https://doi.org/10.5194/nhess-2024-101, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
We describe a methodology to systematically gather evidence of the breadth of single natural hazards and their multi-hazard interrelationships in data-scarce urban settings. We apply this methodology to Kathmandu Valley, Nepal, where we find evidence of 21 single hazard types, and 83 multi-hazard interrelationships. This evidence is supplemented with multi-hazard scenarios developed by practitioner stakeholders engaged in disaster risk reduction research and practice in Kathmandu Valley.
Christian Werthmann, Marta Sapena, Marlene Kühnl, John Singer, Carolina Garcia, Tamara Breuninger, Moritz Gamperl, Bettina Menschik, Heike Schäfer, Sebastian Schröck, Lisa Seiler, Kurosch Thuro, and Hannes Taubenböck
Nat. Hazards Earth Syst. Sci., 24, 1843–1870, https://doi.org/10.5194/nhess-24-1843-2024, https://doi.org/10.5194/nhess-24-1843-2024, 2024
Short summary
Short summary
Early warning systems (EWSs) promise to decrease the vulnerability of self-constructed (informal) settlements. A living lab developed a partially functional prototype of an EWS for landslides in a Medellín neighborhood. The first findings indicate that technical aspects can be manageable, unlike social and political dynamics. A resilient EWS for informal settlements has to achieve sufficient social and technical redundancy to maintain basic functionality in a reduced-support scenario.
Enrique A. Navarro, Jorge A. Portí, Alfonso Salinas, Sergio Toledo-Redondo, Jaume Segura-García, Aida Castilla, Víctor Montagud-Camps, and Inmaculada Albert
EGUsphere, https://doi.org/10.5194/egusphere-2024-704, https://doi.org/10.5194/egusphere-2024-704, 2024
Short summary
Short summary
The Worldwide Lightning Location Network (WWLLN) operates a planetary distributed network of stations which detect lightning signals at a planetary scale. A detection efficiency of 38 % with a location accuracy between 2 and 3 km is obtained for the area of Spain by comparing data with those of the Meteorological Spanish Agency. The capability to resolve convective-storm cells generated in a Cut-off Low Pressure is also demonstrated in the west of Mediterranean sea.
Fabio Brill, Pedro Henrique Lima Alencar, Huihui Zhang, Friedrich Boeing, Silke Hüttel, and Tobia Lakes
EGUsphere, https://doi.org/10.5194/egusphere-2024-1149, https://doi.org/10.5194/egusphere-2024-1149, 2024
Short summary
Short summary
Droughts are a threat to agricultural crops, but different factors influence how much damage occurs. This is important to know to create meaningful risk maps and to evaluate adaptation options. We investigate the years 2013–2022 in Brandenburg, Germany, and find in particular the soil quality and meteorological drought in June to be statistically related to the observed damage. Measurement of crop health from satellites are also related to soil quality, and not necessarily to anomalous yields.
Johnny Douvinet, Noé Carles, Pierre Foulquier, and Matthieu Peroche
Nat. Hazards Earth Syst. Sci., 24, 715–735, https://doi.org/10.5194/nhess-24-715-2024, https://doi.org/10.5194/nhess-24-715-2024, 2024
Short summary
Short summary
This study provided an opportunity to assess both the perception of the tsunami hazard and the knowledge of alerts in five municipalities located along the French Mediterranean coastlines. The age and location of the respondents explain several differences between the five municipalities surveyed – more so than gender or residence status. This study may help local authorities to develop future tsunami awareness actions and to identify more appropriate strategies to be applied in the short term.
Sadhana Nirandjan, Elco E. Koks, Mengqi Ye, Raghav Pant, Kees C. H. van Ginkel, Jeroen C. J. H. Aerts, and Philip J. Ward
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-208, https://doi.org/10.5194/nhess-2023-208, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
Critical infrastructures (CI) are exposed to natural hazards, which may result in significant damage and burden society. The vulnerability is a key determinant for reducing these risks, yet crucial information is scattered in literature. Our study reviews over 1,250 fragility and vulnerability curves for CI assets, creating a unique publicly available physical vulnerability database that can directly be used for hazard risk assessments, including floods, earthquakes, windstorms and landslides.
Nathalie Rombeek, Jussi Leinonen, and Ulrich Hamann
Nat. Hazards Earth Syst. Sci., 24, 133–144, https://doi.org/10.5194/nhess-24-133-2024, https://doi.org/10.5194/nhess-24-133-2024, 2024
Short summary
Short summary
Severe weather such as hail, lightning, and heavy rainfall can be hazardous to humans and property. Dual-polarization weather radars provide crucial information to forecast these events by detecting precipitation types. This study analyses the importance of dual-polarization data for predicting severe weather for 60 min using an existing deep learning model. The results indicate that including these variables improves the accuracy of predicting heavy rainfall and lightning.
Adriaan L. van Natijne, Thom A. Bogaard, Thomas Zieher, Jan Pfeiffer, and Roderik C. Lindenbergh
Nat. Hazards Earth Syst. Sci., 23, 3723–3745, https://doi.org/10.5194/nhess-23-3723-2023, https://doi.org/10.5194/nhess-23-3723-2023, 2023
Short summary
Short summary
Landslides are one of the major weather-related geohazards. To assess their potential impact and design mitigation solutions, a detailed understanding of the slope is required. We tested if the use of machine learning, combined with satellite remote sensing data, would allow us to forecast deformation. Our results on the Vögelsberg landslide, a deep-seated landslide near Innsbruck, Austria, show that the formulation of such a machine learning system is not as straightforward as often hoped for.
Xabier Blanch, Marta Guinau, Anette Eltner, and Antonio Abellan
Nat. Hazards Earth Syst. Sci., 23, 3285–3303, https://doi.org/10.5194/nhess-23-3285-2023, https://doi.org/10.5194/nhess-23-3285-2023, 2023
Short summary
Short summary
We present cost-effective photogrammetric systems for high-resolution rockfall monitoring. The paper outlines the components, assembly, and programming codes required. The systems utilize prime cameras to generate 3D models and offer comparable performance to lidar for change detection monitoring. Real-world applications highlight their potential in geohazard monitoring which enables accurate detection of pre-failure deformation and rockfalls with a high temporal resolution.
Vipasana Sharma, Sushil Kumar, and Rama Sushil
Nat. Hazards Earth Syst. Sci., 23, 2523–2530, https://doi.org/10.5194/nhess-23-2523-2023, https://doi.org/10.5194/nhess-23-2523-2023, 2023
Short summary
Short summary
Snow avalanches are a natural hazard that can cause danger to human lives. This threat can be reduced by accurate prediction of the danger levels. The development of mathematical models based on past data and present conditions can help to improve the accuracy of prediction. This research aims to develop a neural-network-based model for correlating complex relationships between the meteorological variables and the profile variables.
Guillermo Tamburini-Beliveau, Sebastián Balbarani, and Oriol Monserrat
Nat. Hazards Earth Syst. Sci., 23, 1987–1999, https://doi.org/10.5194/nhess-23-1987-2023, https://doi.org/10.5194/nhess-23-1987-2023, 2023
Short summary
Short summary
Landslides and ground deformation associated with the construction of a hydropower mega dam in the Santa Cruz River in Argentine Patagonia have been monitored using radar and optical satellite data, together with the analysis of technical reports. This allowed us to assess the integrity of the construction, providing a new and independent dataset. We have been able to identify ground deformation trends that put the construction works at risk.
Anirudh Rao, Jungkyo Jung, Vitor Silva, Giuseppe Molinario, and Sang-Ho Yun
Nat. Hazards Earth Syst. Sci., 23, 789–807, https://doi.org/10.5194/nhess-23-789-2023, https://doi.org/10.5194/nhess-23-789-2023, 2023
Short summary
Short summary
This article presents a framework for semi-automated building damage assessment due to earthquakes from remote-sensing data and other supplementary datasets including high-resolution building inventories, while also leveraging recent advances in machine-learning algorithms. For three out of the four recent earthquakes studied, the machine-learning framework is able to identify over 50 % or nearly half of the damaged buildings successfully.
Jan Freihardt and Othmar Frey
Nat. Hazards Earth Syst. Sci., 23, 751–770, https://doi.org/10.5194/nhess-23-751-2023, https://doi.org/10.5194/nhess-23-751-2023, 2023
Short summary
Short summary
In Bangladesh, riverbank erosion occurs every year during the monsoon and affects thousands of households. Information on locations and extent of past erosion can help anticipate where erosion might occur in the upcoming monsoon season and to take preventive measures. In our study, we show how time series of radar satellite imagery can be used to retrieve information on past erosion events shortly after the monsoon season using a novel interactive online tool based on the Google Earth Engine.
Jiale Qian, Yunyan Du, Jiawei Yi, Fuyuan Liang, Nan Wang, Ting Ma, and Tao Pei
Nat. Hazards Earth Syst. Sci., 23, 317–328, https://doi.org/10.5194/nhess-23-317-2023, https://doi.org/10.5194/nhess-23-317-2023, 2023
Short summary
Short summary
Human activities across China show a similar trend in response to rains. However, urban resilience varies significantly by region. The northwestern arid region and the central underdeveloped areas are very fragile, and even low-intensity rains can trigger significant human activity anomalies. By contrast, even high-intensity rains might not affect residents in the southeast.
Orlando García-Feal, José González-Cao, Diego Fernández-Nóvoa, Gonzalo Astray Dopazo, and Moncho Gómez-Gesteira
Nat. Hazards Earth Syst. Sci., 22, 3859–3874, https://doi.org/10.5194/nhess-22-3859-2022, https://doi.org/10.5194/nhess-22-3859-2022, 2022
Short summary
Short summary
Extreme events have increased in the last few decades; having a good estimation of the outflow of a reservoir can be an advantage for water management or early warning systems. This study analyzes the efficiency of different machine learning techniques to predict reservoir outflow. The results obtained showed that the proposed models provided a good estimation of the outflow of the reservoirs, improving the results obtained with classical approaches.
Seok Bum Hong, Hong Sik Yun, Sang Guk Yum, Seung Yeop Ryu, In Seong Jeong, and Jisung Kim
Nat. Hazards Earth Syst. Sci., 22, 3435–3459, https://doi.org/10.5194/nhess-22-3435-2022, https://doi.org/10.5194/nhess-22-3435-2022, 2022
Short summary
Short summary
This study advances previous models through machine learning and multi-sensor-verified results. Using spatial and meteorological data from the study area (Suncheon–Wanju Highway in Gurye-gun), the amount and location of black ice were modelled based on system dynamics to predict black ice and then simulated with the geographic information system (m2). Based on the model results, multiple sensors were buried at four selected points in the study area, and the model was compared with sensor data.
Edward E. Salakpi, Peter D. Hurley, James M. Muthoka, Adam B. Barrett, Andrew Bowell, Seb Oliver, and Pedram Rowhani
Nat. Hazards Earth Syst. Sci., 22, 2703–2723, https://doi.org/10.5194/nhess-22-2703-2022, https://doi.org/10.5194/nhess-22-2703-2022, 2022
Short summary
Short summary
The devastating effects of recurring drought conditions are mostly felt by pastoralists that rely on grass and shrubs as fodder for their animals. Using historical information from precipitation, soil moisture, and vegetation health data, we developed a model that can forecast vegetation condition and the probability of drought occurrence up till a 10-week lead time with an accuracy of 74 %. Our model can be adopted by policymakers and relief agencies for drought early warning and early action.
Edward E. Salakpi, Peter D. Hurley, James M. Muthoka, Andrew Bowell, Seb Oliver, and Pedram Rowhani
Nat. Hazards Earth Syst. Sci., 22, 2725–2749, https://doi.org/10.5194/nhess-22-2725-2022, https://doi.org/10.5194/nhess-22-2725-2022, 2022
Short summary
Short summary
The impact of drought may vary in a given region depending on whether it is dominated by trees, grasslands, or croplands. The differences in impact can also be the agro-ecological zones within the region. This paper proposes a hierarchical Bayesian model (HBM) for forecasting vegetation condition in spatially diverse areas. Compared to a non-hierarchical model, the HBM proved to be a more natural method for forecasting drought in areas with different land covers and
agro-ecological zones.
Weijie Zou, Yi Zhou, Shixin Wang, Futao Wang, Litao Wang, Qing Zhao, Wenliang Liu, Jinfeng Zhu, Yibing Xiong, Zhenqing Wang, and Gang Qin
Nat. Hazards Earth Syst. Sci., 22, 2081–2097, https://doi.org/10.5194/nhess-22-2081-2022, https://doi.org/10.5194/nhess-22-2081-2022, 2022
Short summary
Short summary
Landslide dams are secondary disasters caused by landslides, which can cause great damage to mountains. We have proposed a procedure to calculate the key parameters of these dams that uses only a single remote-sensing image and a pre-landslide DEM combined with landslide theory. The core of this study is a modeling problem. We have found the bridge between the theory of landslide dams and the requirements of disaster relief.
C. Scott Watson, John R. Elliott, Susanna K. Ebmeier, María Antonieta Vásquez, Camilo Zapata, Santiago Bonilla-Bedoya, Paulina Cubillo, Diego Francisco Orbe, Marco Córdova, Jonathan Menoscal, and Elisa Sevilla
Nat. Hazards Earth Syst. Sci., 22, 1699–1721, https://doi.org/10.5194/nhess-22-1699-2022, https://doi.org/10.5194/nhess-22-1699-2022, 2022
Short summary
Short summary
We assess how greenspaces could guide risk-informed planning and reduce disaster risk for the urbanising city of Quito, Ecuador, which experiences earthquake, volcano, landslide, and flood hazards. We use satellite data to evaluate the use of greenspaces as safe spaces following an earthquake. We find disparities regarding access to and availability of greenspaces. The availability of greenspaces that could contribute to community resilience is high; however, many require official designation.
Seth Bryant, Heather McGrath, and Mathieu Boudreault
Nat. Hazards Earth Syst. Sci., 22, 1437–1450, https://doi.org/10.5194/nhess-22-1437-2022, https://doi.org/10.5194/nhess-22-1437-2022, 2022
Short summary
Short summary
The advent of new satellite technologies improves our ability to study floods. While the depth of water at flooded buildings is generally the most important variable for flood researchers, extracting this accurately from satellite data is challenging. The software tool presented here accomplishes this, and tests show the tool is more accurate than competing tools. This achievement unlocks more detailed studies of past floods and improves our ability to plan for and mitigate disasters.
Tadas Nikonovas, Allan Spessa, Stefan H. Doerr, Gareth D. Clay, and Symon Mezbahuddin
Nat. Hazards Earth Syst. Sci., 22, 303–322, https://doi.org/10.5194/nhess-22-303-2022, https://doi.org/10.5194/nhess-22-303-2022, 2022
Short summary
Short summary
Extreme fire episodes in Indonesia emit large amounts of greenhouse gasses and have negative effects on human health in the region. In this study we show that such burning events can be predicted several months in advance in large parts of Indonesia using existing seasonal climate forecasts and forest cover change datasets. A reliable early fire warning system would enable local agencies to prepare and mitigate the worst of the effects.
Yahong Liu and Jin Zhang
Nat. Hazards Earth Syst. Sci., 22, 227–244, https://doi.org/10.5194/nhess-22-227-2022, https://doi.org/10.5194/nhess-22-227-2022, 2022
Short summary
Short summary
Through a comprehensive analysis of the current remote sensing technology resources, this paper establishes the database to realize the unified management of heterogeneous sensor resources and proposes a capability evaluation method of remote sensing cooperative technology in geohazard emergencies, providing a decision-making basis for the establishment of remote sensing cooperative observations in geohazard emergencies.
Diego Guenzi, Danilo Godone, Paolo Allasia, Nunzio Luciano Fazio, Michele Perrotti, and Piernicola Lollino
Nat. Hazards Earth Syst. Sci., 22, 207–212, https://doi.org/10.5194/nhess-22-207-2022, https://doi.org/10.5194/nhess-22-207-2022, 2022
Short summary
Short summary
In the Apulia region (southeastern Italy) we are monitoring a soft-rock coastal cliff using webcams and strain sensors. In this urban and touristic area, coastal recession is extremely rapid and rockfalls are very frequent. In our work we are using low-cost and open-source hardware and software, trying to correlate both meteorological information with measures obtained from crack meters and webcams, aiming to recognize potential precursor signals that could be triggered by instability phenomena.
Natalie Brožová, Tommaso Baggio, Vincenzo D'Agostino, Yves Bühler, and Peter Bebi
Nat. Hazards Earth Syst. Sci., 21, 3539–3562, https://doi.org/10.5194/nhess-21-3539-2021, https://doi.org/10.5194/nhess-21-3539-2021, 2021
Short summary
Short summary
Surface roughness plays a great role in natural hazard processes but is not always well implemented in natural hazard modelling. The results of our study show how surface roughness can be useful in representing vegetation and ground structures, which are currently underrated. By including surface roughness in natural hazard modelling, we could better illustrate the processes and thus improve hazard mapping, which is crucial for infrastructure and settlement planning in mountainous areas.
Hugues Brenot, Nicolas Theys, Lieven Clarisse, Jeroen van Gent, Daniel R. Hurtmans, Sophie Vandenbussche, Nikolaos Papagiannopoulos, Lucia Mona, Timo Virtanen, Andreas Uppstu, Mikhail Sofiev, Luca Bugliaro, Margarita Vázquez-Navarro, Pascal Hedelt, Michelle Maree Parks, Sara Barsotti, Mauro Coltelli, William Moreland, Simona Scollo, Giuseppe Salerno, Delia Arnold-Arias, Marcus Hirtl, Tuomas Peltonen, Juhani Lahtinen, Klaus Sievers, Florian Lipok, Rolf Rüfenacht, Alexander Haefele, Maxime Hervo, Saskia Wagenaar, Wim Som de Cerff, Jos de Laat, Arnoud Apituley, Piet Stammes, Quentin Laffineur, Andy Delcloo, Robertson Lennart, Carl-Herbert Rokitansky, Arturo Vargas, Markus Kerschbaum, Christian Resch, Raimund Zopp, Matthieu Plu, Vincent-Henri Peuch, Michel Van Roozendael, and Gerhard Wotawa
Nat. Hazards Earth Syst. Sci., 21, 3367–3405, https://doi.org/10.5194/nhess-21-3367-2021, https://doi.org/10.5194/nhess-21-3367-2021, 2021
Short summary
Short summary
The purpose of the EUNADICS-AV (European Natural Airborne Disaster Information and Coordination System for Aviation) prototype early warning system (EWS) is to develop the combined use of harmonised data products from satellite, ground-based and in situ instruments to produce alerts of airborne hazards (volcanic, dust, smoke and radionuclide clouds), satisfying the requirement of aviation air traffic management (ATM) stakeholders (https://cordis.europa.eu/project/id/723986).
Johnny Douvinet, Anna Serra-Llobet, Esteban Bopp, and G. Mathias Kondolf
Nat. Hazards Earth Syst. Sci., 21, 2899–2920, https://doi.org/10.5194/nhess-21-2899-2021, https://doi.org/10.5194/nhess-21-2899-2021, 2021
Short summary
Short summary
This study proposes to combine results of research regarding the spatial inequalities due to the siren coverage, the political dilemma of siren activation, and the social problem of siren awareness and trust for people in France. Surveys were conducted using a range of complementary methods (GIS analysis, statistical analysis, questionnaires, interviews) through different scales. Results show that siren coverage in France is often determined by population density but not risks or disasters.
Fabio Brighenti, Francesco Carnemolla, Danilo Messina, and Giorgio De Guidi
Nat. Hazards Earth Syst. Sci., 21, 2881–2898, https://doi.org/10.5194/nhess-21-2881-2021, https://doi.org/10.5194/nhess-21-2881-2021, 2021
Short summary
Short summary
In this paper we propose a methodology to mitigate hazard in a natural environment in an urbanized context. The deformation of the ground is a precursor of paroxysms in mud volcanoes. Therefore, through the analysis of the deformation supported by a statistical approach, this methodology was tested to reduce the hazard around the mud volcano. In the future, the goal is that this dangerous area will become both a naturalistic heritage and a source of development for the community of the area.
Doris Hermle, Markus Keuschnig, Ingo Hartmeyer, Robert Delleske, and Michael Krautblatter
Nat. Hazards Earth Syst. Sci., 21, 2753–2772, https://doi.org/10.5194/nhess-21-2753-2021, https://doi.org/10.5194/nhess-21-2753-2021, 2021
Short summary
Short summary
Multispectral remote sensing imagery enables landslide detection and monitoring, but its applicability to time-critical early warning is rarely studied. We present a concept to operationalise its use for landslide early warning, aiming to extend lead time. We tested PlanetScope and unmanned aerial system images on a complex mass movement and compared processing times to historic benchmarks. Acquired data are within the forecasting window, indicating the feasibility for landslide early warning.
Michal Bíl, Pavel Raška, Lukáš Dolák, and Jan Kubeček
Nat. Hazards Earth Syst. Sci., 21, 2581–2596, https://doi.org/10.5194/nhess-21-2581-2021, https://doi.org/10.5194/nhess-21-2581-2021, 2021
Short summary
Short summary
The online landslide database CHILDA (Czech Historical Landslide Database) summarises information about landslides which occurred in the area of Czechia (the Czech Republic). The database is freely accessible via the https://childa.cz/ website. It includes 699 records (spanning the period of 1132–1989). Overall, 55 % of all recorded landslide events occurred only within 15 years of the extreme landslide incidence.
Anna Kruspe, Jens Kersten, and Friederike Klan
Nat. Hazards Earth Syst. Sci., 21, 1825–1845, https://doi.org/10.5194/nhess-21-1825-2021, https://doi.org/10.5194/nhess-21-1825-2021, 2021
Short summary
Short summary
Messages on social media can be an important source of information during crisis situations. This article reviews approaches for the reliable detection of informative messages in a flood of data. We demonstrate the varying goals of these approaches and present existing data sets. We then compare approaches based (1) on keyword and location filtering, (2) on crowdsourcing, and (3) on machine learning. We also point out challenges and suggest future research.
Enrique Guillermo Cordaro, Patricio Venegas-Aravena, and David Laroze
Nat. Hazards Earth Syst. Sci., 21, 1785–1806, https://doi.org/10.5194/nhess-21-1785-2021, https://doi.org/10.5194/nhess-21-1785-2021, 2021
Short summary
Short summary
We developed a methodology that generates free externally disturbed magnetic variations in ground magnetometers close to the Chilean convergent margin. Spectral analysis (~ mHz) and magnetic anomalies increased prior to large Chilean earthquakes (Maule 2010, Mw 8.8; Iquique 2014, Mw 8.2; Illapel 2015, Mw 8.3). These findings relate to microcracks within the lithosphere due to stress state changes. This physical evidence should be thought of as a last stage of the earthquake preparation process.
Corey M. Scheip and Karl W. Wegmann
Nat. Hazards Earth Syst. Sci., 21, 1495–1511, https://doi.org/10.5194/nhess-21-1495-2021, https://doi.org/10.5194/nhess-21-1495-2021, 2021
Short summary
Short summary
For many decades, natural disasters have been monitored by trained analysts using multiple satellite images to observe landscape change. This approach is incredibly useful, but our new tool, HazMapper, offers researchers and the scientifically curious public a web-accessible
cloud-based tool to perform similar analysis. We intend for the tool to both be used in scientific research and provide rapid response to global natural disasters like landslides, wildfires, and volcanic eruptions.
Matti Wiegmann, Jens Kersten, Hansi Senaratne, Martin Potthast, Friederike Klan, and Benno Stein
Nat. Hazards Earth Syst. Sci., 21, 1431–1444, https://doi.org/10.5194/nhess-21-1431-2021, https://doi.org/10.5194/nhess-21-1431-2021, 2021
Short summary
Short summary
In this paper, we study when social media is an adequate source to find metadata about incidents that cannot be acquired by traditional means. We identify six major use cases: impact assessment and verification of model predictions, narrative generation, recruiting citizen volunteers, supporting weakly institutionalized areas, narrowing surveillance areas, and reporting triggers for periodical surveillance.
Hui Liu, Ya Hao, Wenhao Zhang, Hanyue Zhang, Fei Gao, and Jinping Tong
Nat. Hazards Earth Syst. Sci., 21, 1179–1194, https://doi.org/10.5194/nhess-21-1179-2021, https://doi.org/10.5194/nhess-21-1179-2021, 2021
Short summary
Short summary
We trained a recurrent neural network model to classify microblogging posts related to urban waterlogging and establish an online monitoring system of urban waterlogging caused by flood disasters. We manually curated more than 4400 waterlogging posts to train the RNN model so that it can precisely identify waterlogging-related posts of Sina Weibo to timely determine urban waterlogging.
Roope Tervo, Ilona Láng, Alexander Jung, and Antti Mäkelä
Nat. Hazards Earth Syst. Sci., 21, 607–627, https://doi.org/10.5194/nhess-21-607-2021, https://doi.org/10.5194/nhess-21-607-2021, 2021
Short summary
Short summary
Predicting the number of power outages caused by extratropical storms is a key challenge for power grid operators. We introduce a novel method to predict the storm severity for the power grid employing ERA5 reanalysis data combined with a forest inventory. The storms are first identified from the data and then classified using several machine-learning methods. While there is plenty of room to improve, the results are already usable, with support vector classifier providing the best performance.
Michaela Wenner, Clément Hibert, Alec van Herwijnen, Lorenz Meier, and Fabian Walter
Nat. Hazards Earth Syst. Sci., 21, 339–361, https://doi.org/10.5194/nhess-21-339-2021, https://doi.org/10.5194/nhess-21-339-2021, 2021
Short summary
Short summary
Mass movements constitute a risk to property and human life. In this study we use machine learning to automatically detect and classify slope failure events using ground vibrations. We explore the influence of non-ideal though commonly encountered conditions: poor network coverage, small number of events, and low signal-to-noise ratios. Our approach enables us to detect the occurrence of rare events of high interest in a large data set of more than a million windowed seismic signals.
Luiz Felipe Galizia, Thomas Curt, Renaud Barbero, and Marcos Rodrigues
Nat. Hazards Earth Syst. Sci., 21, 73–86, https://doi.org/10.5194/nhess-21-73-2021, https://doi.org/10.5194/nhess-21-73-2021, 2021
Short summary
Short summary
This paper aims to provide a quantitative evaluation of three remotely sensed fire datasets which have recently emerged as an important resource to improve our understanding of fire regimes. Our findings suggest that remotely sensed fire datasets can be used to proxy variations in fire activity on monthly and annual timescales; however, caution is advised when drawing information from smaller fires (< 100 ha) across the Mediterranean region.
Philippe Weyrich, Anna Scolobig, Florian Walther, and Anthony Patt
Nat. Hazards Earth Syst. Sci., 20, 2811–2821, https://doi.org/10.5194/nhess-20-2811-2020, https://doi.org/10.5194/nhess-20-2811-2020, 2020
Patric Kellermann, Kai Schröter, Annegret H. Thieken, Sören-Nils Haubrock, and Heidi Kreibich
Nat. Hazards Earth Syst. Sci., 20, 2503–2519, https://doi.org/10.5194/nhess-20-2503-2020, https://doi.org/10.5194/nhess-20-2503-2020, 2020
Short summary
Short summary
The flood damage database HOWAS 21 contains object-specific flood damage data resulting from fluvial, pluvial and groundwater flooding. The datasets incorporate various variables of flood hazard, exposure, vulnerability and direct tangible damage at properties from several economic sectors. This paper presents HOWAS 21 and highlights exemplary analyses to demonstrate the use of HOWAS 21 flood damage data.
Giuseppe Esposito, Ivan Marchesini, Alessandro Cesare Mondini, Paola Reichenbach, Mauro Rossi, and Simone Sterlacchini
Nat. Hazards Earth Syst. Sci., 20, 2379–2395, https://doi.org/10.5194/nhess-20-2379-2020, https://doi.org/10.5194/nhess-20-2379-2020, 2020
Short summary
Short summary
In this article, we present an automatic processing chain aimed to support the detection of landslides that induce sharp land cover changes. The chain exploits free software and spaceborne SAR data, allowing the systematic monitoring of wide mountainous regions exposed to mass movements. In the test site, we verified a general accordance between the spatial distribution of seismically induced landslides and the detected land cover changes, demonstrating its potential use in emergency management.
Mohammad Malakootian and Majid Nozari
Nat. Hazards Earth Syst. Sci., 20, 2351–2363, https://doi.org/10.5194/nhess-20-2351-2020, https://doi.org/10.5194/nhess-20-2351-2020, 2020
Short summary
Short summary
The present study estimated the Kerman–Baghin aquifer vulnerability using DRASTIC and composite DRASTIC (CDRASTIC) indices with the aid of geographic information system (GIS) techniques. The aquifer vulnerability maps indicated very similar results, identifying the north-west parts of the aquifer as areas with high to very high vulnerability. According to the results, parts of the studied aquifer have a high vulnerability and require protective measures.
Diana Contreras, Alondra Chamorro, and Sean Wilkinson
Nat. Hazards Earth Syst. Sci., 20, 1663–1687, https://doi.org/10.5194/nhess-20-1663-2020, https://doi.org/10.5194/nhess-20-1663-2020, 2020
Short summary
Short summary
The socio-economic condition of the population determines their vulnerability to earthquakes, tsunamis, volcanic eruptions, landslides, soil erosion and land degradation. This condition is estimated mainly from population censuses. The lack to access to basic services, proximity to hazard zones, poverty and population density highly influence the vulnerability of communities. Mapping the location of this vulnerable population makes it possible to prevent and mitigate their risk.
Simona Colombelli, Francesco Carotenuto, Luca Elia, and Aldo Zollo
Nat. Hazards Earth Syst. Sci., 20, 921–931, https://doi.org/10.5194/nhess-20-921-2020, https://doi.org/10.5194/nhess-20-921-2020, 2020
Short summary
Short summary
We developed a mobile app for Android devices which receives the alerts generated by a network-based early warning system, predicts the expected ground-shaking intensity and the available lead time at the user position, and provides customized messages to inform the user about the proper reaction to the alert. The app represents a powerful tool for informing in real time a wide audience of end users and stakeholders about the potential damaging shaking in the occurrence of an earthquake.
Richard Styron, Julio García-Pelaez, and Marco Pagani
Nat. Hazards Earth Syst. Sci., 20, 831–857, https://doi.org/10.5194/nhess-20-831-2020, https://doi.org/10.5194/nhess-20-831-2020, 2020
Short summary
Short summary
The Caribbean and Central American region is both tectonically active and densely populated, leading to a large population that is exposed to earthquake hazards. Until now, no comprehensive fault data covering the region have been available. We present a new public fault database for Central America and the Caribbean that synthesizes published studies with new mapping from remote sensing to provide fault sources for the CCARA seismic hazard and risk analysis project and to aid future research.
María del Pilar Jiménez-Donaire, Ana Tarquis, and Juan Vicente Giráldez
Nat. Hazards Earth Syst. Sci., 20, 21–33, https://doi.org/10.5194/nhess-20-21-2020, https://doi.org/10.5194/nhess-20-21-2020, 2020
Short summary
Short summary
A new combined drought indicator (CDI) is proposed that integrates rainfall, soil moisture and vegetation dynamics. The performance of this indicator was evaluated against crop damage data from agricultural insurance schemes in five different areas in SW Spain. Results show that this indicator was able to predict important droughts in 2004–2005 and 2011–2012, marked by crop damage of between 70 % and 95 % of the total insured area. This opens important applications for improving insurance schemes.
Quancai Xie, Qiang Ma, Jingfa Zhang, and Haiying Yu
Nat. Hazards Earth Syst. Sci., 19, 2827–2839, https://doi.org/10.5194/nhess-19-2827-2019, https://doi.org/10.5194/nhess-19-2827-2019, 2019
Short summary
Short summary
This paper evaluates a new method for modeling the site amplification factor. Through implementing this method and making simulations for different cases, we find that this method shows better performance than the previous method and JMA report. We better understand the advantages and disadvantages of this method, although there are some problems that need to be considered carefully and solved; it shows good potential to be used in future earthquake early warning systems.
Cited articles
Abraham, M. T., Satyam, N., Rosi, A., Pradhan, B., and Segoni, S.: Usage of
antecedent soil moisture for improving the performance of rainfall
thresholds for landslide early warning, CATENA, 200, 105147,
https://doi.org/10.1016/j.catena.2021.105147, 2021.
Ashland, F. X.: Critical shallow and deep hydrologic conditions associated
with widespread landslides during a series of storms between February and
April 2018 in Pittsburgh and vicinity, western Pennsylvania, USA,
Landslides, 18, 2159–2174, https://doi.org/10.1007/s10346-021-01665-x, 2021.
Askarinejad, A., Akca, D., and Springman, S. M.: Precursors of instability in
a natural slope due to rainfall: a full-scale experiment, Landslides, 15,
1745–1759, https://doi.org/10.1007/s10346-018-0994-0, 2018.
Babaeian, E., Sadeghi, M., Jones, S. B., Montzka, C., Vereecken, H., and
Tuller, M.: Ground, Proximal, and Satellite Remote Sensing of Soil Moisture,
Rev. Geophys., 57, 530–616, https://doi.org/10.1029/2018RG000618, 2019.
Baum, R. L. and Godt, J. W.: Early warning of rainfall-induced shallow
landslides and debris flows in the USA, Landslides, 7, 259–272,
https://doi.org/10.1007/s10346-009-0177-0, 2010.
Beven, K. and Germann, P.: Macropores and water flow in soils, Water Resour.
Res., 18, 1311–1325, https://doi.org/10.1029/WR018i005p01311, 1982.
Beven, K. and Germann, P.: Macropores and water flow in soils revisited,
Water Resour. Res., 49, 3071–3092, https://doi.org/10.1002/wrcr.20156, 2013.
Beven, K. J. and Kirkby, M. J.: A physically based, variable contributing
area model of basin hydrology, Hydrol. Sci. Bull., 24, 43–69,
https://doi.org/10.1080/02626667909491834, 1979.
Bogaard, T. A. and Greco, R.: Landslide hydrology: from hydrology to pore
pressure, Wiley Interdiscip. Rev. Water, 3, 439–459,
https://doi.org/10.1002/wat2.1126, 2016.
Bordoni, M., Vivaldi, V., Lucchelli, L., Ciabatta, L., Brocca, L., Galve, J.
P., and Meisina, C.: Development of a data-driven model for spatial and
temporal shallow landslide probability of occurrence at catchment scale,
Landslides, 18, 1209–1229, https://doi.org/10.1007/s10346-020-01592-3, 2021.
Brabb, E. E.: Innovative approaches to landslide hazard mapping, in
Proceedings of IVth International Conference and Field Workshop in
Landslides, Vol. 1, 17–22, Japan Landslide Society, Tokyo, Japan,
1985.
Brönnimann, C., Stähli, M., Schneider, P., Seward, L., and Springman,
S. M.: Bedrock exfiltration as a triggering mechanism for shallow
landslides, Water Resour. Res., 49, 5155–5167, https://doi.org/10.1002/wrcr.20386,
2013.
Caine, N.: The Rainfall Intensity – Duration Control of Shallow Landslides
and Debris Flows, Geogr. Ann. Ser. A, Phys. Geogr., 62, 23–27,
https://doi.org/10.1080/04353676.1980.11879996, 1980.
Cerdà, A.: Seasonal changes of the infiltration rates in a mediterranean
scrubland on limestone, J. Hydrol., 198, 209–225,
https://doi.org/10.1016/S0022-1694(96)03295-7, 1997.
Conrad, O., Bechtel, B., Bock, M., Dietrich, H., Fischer, E., Gerlitz, L., Wehberg, J., Wichmann, V., and Böhner, J.: System for Automated Geoscientific Analyses (SAGA) v. 2.1.4, Geosci. Model Dev., 8, 1991–2007, https://doi.org/10.5194/gmd-8-1991-2015, 2015.
Fawcett, T.: An introduction to ROC analysis, Pattern Recognit. Lett.,
27, 861–874, https://doi.org/10.1016/j.patrec.2005.10.010, 2006.
FOEN: Naturereigniskataster StorMe, https://www.bafu.admin.ch/bafu/de/home/themen/naturgefahren/fachinformationen/naturgefahrensituation-und-raumnutzung/gefahrengrundlagen/naturereigniskataster-storme.html, last access:
24 June 2022.
Fox, D. M., Bryan, R. B., and Price, A. G.: The influence of slope angle on
final infiltration rate for interrill conditions, Geoderma, 80,
181–194, https://doi.org/10.1016/S0016-7061(97)00075-X, 1997.
Freeman, T. G.: Calculating catchment area with divergent flow based on a
regular grid, Comput. Geosci., 17, 413–422,
https://doi.org/10.1016/0098-3004(91)90048-I, 1991.
Freer, J., McDonnell, J. J., Beven, K. J., Peters, N. E., Burns, D. A.,
Hooper, R. P., Aulenbach, B., and Kendall, C.: The role of bedrock topography
on subsurface storm flow, Water Resour. Res., 38, 1269,
https://doi.org/10.1029/2001WR000872, 2002.
Froude, M. J. and Petley, D. N.: Global fatal landslide occurrence from 2004 to 2016, Nat. Hazards Earth Syst. Sci., 18, 2161–2181, https://doi.org/10.5194/nhess-18-2161-2018, 2018.
Godt, J. W., Baum, R. L., and Lu, N.: Landsliding in partially saturated
materials, Geophys. Res. Lett., 36, 1–5, https://doi.org/10.1029/2008GL035996, 2009.
Grabs, T., Seibert, J., Bishop, K., and Laudon, H.: Modeling spatial patterns
of saturated areas: A comparison of the topographic wetness index and a
dynamic distributed model, J. Hydrol., 373, 15–23,
https://doi.org/10.1016/j.jhydrol.2009.03.031, 2009.
Greco, R., Comegna, L., Damiano, E., Marino, P., Olivares, L., and
Santonastaso, G. F.: Recurrent rainfall-induced landslides on the slopes
with pyroclastic cover of Partenio Mountains (Campania, Italy): Comparison
of 1999 and 2019 events, Eng. Geol., 288, 106160, https://doi.org/10.1016/j.enggeo.2021.106160,
2021.
Gruber, S. and Peckham, S.: Land-Surface Parameters and Objects in
Hydrology, in Geomorphometry. Concepts, Software, Applications, vol. 33,
edited by: Hengl, T. and Reuter, H. I., 171–194, Elsevier, Amsterdam, https://doi.org/10.1016/S0166-2481(08)00007-X,
2009.
Gupta, S., Papritz, A., Lehmann, P., Hengl, T., Bonetti, S., and Or, D.:
Global Soil Hydraulic Properties dataset based on legacy site observations
and robust parameterization, Sci. Data, 9, 44,
https://doi.org/10.1038/s41597-022-01481-5, 2022.
Guzzetti, F., Peruccacci, S., Rossi, M., and Stark, C. P.: The rainfall
intensity–duration control of shallow landslides and debris flows: an
update, Landslides, 5, 3–17, https://doi.org/10.1007/s10346-007-0112-1, 2008.
Guzzetti, F., Gariano, S. L., Peruccacci, S., Brunetti, M. T., Marchesini,
I., Rossi, M., and Melillo, M.: Geographical landslide early warning systems,
Earth-Science Rev., 200, 102973,
https://doi.org/10.1016/j.earscirev.2019.102973, 2020.
Hu, Z., Yu, G., Zhou, Y., Sun, X., Li, Y., Shi, P., Wang, Y., Song, X.,
Zheng, Z., Zhang, L., and Li, S.: Partitioning of evapotranspiration and its
controls in four grassland ecosystems: Application of a two-source model,
Agric. For. Meteorol., 149, 1410–1420,
https://doi.org/10.1016/j.agrformet.2009.03.014, 2009.
Hungr, O., Leroueil, S., and Picarelli, L.: The Varnes classification of
landslide types, an update, Landslides, 11, 167–194,
https://doi.org/10.1007/s10346-013-0436-y, 2014.
Iverson, R. M., Reid, M. E., and LaHusen, R. G.: Debris-Flow Mobilization
from Landslides, Annu. Rev. Earth Planet. Sci., 25, 85–138,
https://doi.org/10.1146/annurev.earth.25.1.85, 1997.
Jackisch, C., Germer, K., Graeff, T., Andrä, I., Schulz, K., Schiedung, M., Haller-Jans, J., Schneider, J., Jaquemotte, J., Helmer, P., Lotz, L., Bauer, A., Hahn, I., Šanda, M., Kumpan, M., Dorner, J., de Rooij, G., Wessel-Bothe, S., Kottmann, L., Schittenhelm, S., and Durner, W.: Soil moisture and matric potential – an open field comparison of sensor systems, Earth Syst. Sci. Data, 12, 683–697, https://doi.org/10.5194/essd-12-683-2020, 2020.
Jansson, P.-E. and Karlberg, L. (Eds.): Coupled heat and mass transfer model
for soil-plant-atmosphere systems, COUP Manual, Department of Civil and
Environmental Engineering, Royal Institute of Technology, Stockholm, 484, https://www.coupmodel.com/default.htm (last access: 29 July 2022), 2011.
Johnson, K. A. and Sitar, N.: Hydrologic conditions leading to debris-flow
initiation, Can. Geotech. J., 27, 789–801, https://doi.org/10.1139/t90-092, 1990.
Kelleners, T. J., Robinson, D. A., Shouse, P. J., Ayars, J. E., and Skaggs,
T. H.: Frequency dependence of the complex permittivity and its impact on
dielectric sensor calibration in soils, Soil Sci. Soc. Am. J., 69,
67–76, 2005.
Kopecký, M., Macek, M., and Wild, J.: Topographic Wetness Index
calculation guidelines based on measured soil moisture and plant species
composition, Sci. Total Environ., 757, 143785, https://doi.org/10.1016/j.scitotenv.2020.143785,
2021.
Krøøgli, I. K., Devoli, G., Colleuille, H., Boje, S., Sund, M., and Engen, I. K.: The Norwegian forecasting and warning service for rainfall- and snowmelt-induced landslides, Nat. Hazards Earth Syst. Sci., 18, 1427–1450, https://doi.org/10.5194/nhess-18-1427-2018, 2018.
Li, S.-G., Lai, C.-T., Lee, G., Shimoda, S., Yokoyama, T., Higuchi, A. and
Oikawa, T.: Evapotranspiration from a wet temperate grassland and its
sensitivity to microenvironmental variables, Hydrol. Process., 19,
517–532, https://doi.org/10.1002/hyp.5673, 2005.
Livingston, B. E.: A method for controlling plant moisture, Plant World, 11,
39–40, 1908.
Marino, P., Peres, D. J., Cancelliere, A., Greco, R., and Bogaard, T. A.: Soil
moisture information can improve shallow landslide forecasting using the
hydrometeorological threshold approach, Landslides, 17, 2041–2054,
https://doi.org/10.1007/s10346-020-01420-8, 2020.
McVicar, T. R., Van Niel, T. G., Li, L., Hutchinson, M. F., Mu, X., and Liu,
Z.: Spatially distributing monthly reference evapotranspiration and pan
evaporation considering topographic influences, J. Hydrol., 338,
196–220, https://doi.org/10.1016/j.jhydrol.2007.02.018, 2007.
MeteoSwiss: Klimabulletin Sommer 2021, Zürich,
https://www.meteoschweiz.admin.ch/home/klima/klima-der-schweiz/monats-und-jahresrueckblick.subpage.html/de/data/publications/2021/9/klimabulletin-sommer-2021.html (last access: 24 June 2022), 2021.
MeteoSwiss: Normal values per measured parameter,
https://www.meteoswiss.admin.ch/home/%0Aclimate/swiss-climate-in-detail/climate-normals/normal-values-per-measured-parameter.html, last access: 24 June 2022.
Mirus, B., Morphew, M., and Smith, J.: Developing Hydro-Meteorological
Thresholds for Shallow Landslide Initiation and Early Warning, Water, 10,
1274, https://doi.org/10.3390/w10091274, 2018a.
Mirus, B. B., Becker, R. E., Baum, R. L., and Smith, J. B.: Integrating
real-time subsurface hydrologic monitoring with empirical rainfall
thresholds to improve landslide early warning, Landslides, 15,
1909–1919, https://doi.org/10.1007/s10346-018-0995-z, 2018b.
Montgomery, D. R., Dietrich, W. E., Torres, R., Anderson, S. P., Heffner, J.
T., and Loague, K.: Hydrologic response of a steep, unchanneled valley to
natural and applied rainfall, Water Resour. Res., 33, 91–109,
https://doi.org/10.1029/96WR02985, 1997.
Moore, I. D., Grayson, R. B., and Ladson, A. R.: Digital terrain modelling: A
review of hydrological, geomorphological, and biological applications,
Hydrol. Process., 5, 3–30, https://doi.org/10.1002/hyp.3360050103, 1991.
Mostbauer, K., Kaitna, R., Prenner, D., and Hrachowitz, M.: The temporally varying roles of rainfall, snowmelt and soil moisture for debris flow initiation in a snow-dominated system, Hydrol. Earth Syst. Sci., 22, 3493–3513, https://doi.org/10.5194/hess-22-3493-2018, 2018.
Or, D.: History of soil science Who invented the tensiometer?, Soil Sci.
Soc. Am. J., 65, 1–3, https://doi.org/10.2136/sssaj2001.6511, 2001.
Pecoraro, G. and Calvello, M.: Integrating local pore water pressure
monitoring in territorial early warning systems for weather-induced
landslides, Landslides, 18, 1191–1207, https://doi.org/10.1007/s10346-020-01599-w,
2021.
Pecoraro, G., Calvello, M., and Piciullo, L.: Monitoring strategies for local
landslide early warning systems, Landslides, 16, 213–231,
https://doi.org/10.1007/s10346-018-1068-z, 2019.
Piciullo, L., Calvello, M., and Cepeda, J. M.: Territorial early warning
systems for rainfall-induced landslides, Earth-Sci. Rev., 179, 228–247, https://doi.org/10.1016/j.earscirev.2018.02.013, 2018.
Robinson, D. A., Campbell, C. S., Hopmans, J. W., Hornbuckle, B. K., Jones,
S. B., Knight, R., Ogden, F., Selker, J., and Wendroth, O.: Soil Moisture
Measurement for Ecological and Hydrological Watershed-Scale Observatories: A
Review, Vadose Zo. J., 7, 358–389, https://doi.org/10.2136/vzj2007.0143, 2008.
Schlüchter, C., Isler, A., Jost, J., Gisler, C., Wanner, J., Murer, R.,
Strasky, S., Grünig, A., and Hofmann, B.: Blätter 1148 Sumiswald,
1149 Wolhusen, 1168 Langnau i.E. – Geol. Atlas Schweiz 1:25 000,
Erläut, Bundesamt für Landestopographie, Wabern, ISBN 978-3-302-40095-2, 236 pp., 2019.
Sidle, R. C. and Swanston, D. N.: Analysis of a small debris slide in
coastal Alaska, Can. Geotech. J., 19, 167–174, https://doi.org/10.1139/t82-018,
1982.
Sidle, R. C., Tsuboyama, Y., Noguchi, S., Hosoda, I., Fujieda, M., and
Shimizu, T.: Stormflow generation in steep forested headwaters: A linked
hydrogeomorphic paradigm, Hydrol. Process., 14, 369–385,
https://doi.org/10.1002/(SICI)1099-1085(20000228)14:3<369::AID-HYP943>3.0.CO;2-P, 2000.
Sørensen, R., Zinko, U., and Seibert, J.: On the calculation of the topographic wetness index: evaluation of different methods based on field observations, Hydrol. Earth Syst. Sci., 10, 101–112, https://doi.org/10.5194/hess-10-101-2006, 2006.
Stähli, M., Sättele, M., Huggel, C., McArdell, B. W., Lehmann, P., Van Herwijnen, A., Berne, A., Schleiss, M., Ferrari, A., Kos, A., Or, D., and Springman, S. M.: Monitoring and prediction in early warning systems for rapid mass movements, Nat. Hazards Earth Syst. Sci., 15, 905–917, https://doi.org/10.5194/nhess-15-905-2015, 2015.
Stehrenberger, E. and Huguenin-Landl, B.: Evaluation Bodenfeuchtemessnetze,
Bern, https://meteotest.ch/assets/src/downloads/Bericht_Evaluation_Bodenfeuchtemessnetze_v1_1-1.pdf (last access:
24 June 2022), 2016.
Tani, M.: Runoff generation processes estimated from hydrological
observations on a steep forested hillslope with a thin soil layer, J.
Hydrol., 200, 84–109, https://doi.org/10.1016/S0022-1694(97)00018-8, 1997.
Terzaghi, K.: Theoretical Soil Mechanics, John Wiley & Sons, Inc.,
Hoboken, NJ, USA, ISBN 9780471853053, 510 pp., 1943.
Thomas, M. A., Mirus, B. B., and Smith, J. B.: Hillslopes in humid-tropical
climates aren't always wet: Implications for hydrologic response and
landslide initiation in Puerto Rico, Hydrol. Process., 34, 4307–4318,
https://doi.org/10.1002/hyp.13885, 2020.
Topp, G. C., Davis, J. L., and Annan, A. P.: Electromagnetic determination of
soil water content: Measurements in coaxial transmission lines, Water
Resour. Res., 16, 574–582, https://doi.org/10.1029/WR016i003p00574, 1980.
Tsuboyama, Y., Sidle, R. C., Noguchi, S., and Hosoda, I.: Flow and solute
transport through the soil matrix and macropores of a hillslope segment,
Water Resour. Res., 30, 879–890, https://doi.org/10.1029/93WR03245, 1994.
Valenzuela P., Domínguez-Cuesta M. J., García M. A. M., and
Jiménez-Sánchez M.: Rainfall thresholds for the triggering of
landslides considering previous soil moisture conditions (Asturias, NW
Spain), Landslides, 15, 273–282,
https://doi.org/10.1007/s10346-017-0878-8, 2018.
Van Asch, T. W. J., Buma, J., and Van Beek, L. P. H.: A view on some
hydrological triggering systems in landslides, Geomorphology, 30,
25–32, https://doi.org/10.1016/S0169-555X(99)00042-2, 1999.
van der Ploeg, M. J., Gooren, H. P. A., Bakker, G., Hoogendam, C. W., Huiskes, C., Koopal, L. K., Kruidhof, H., and de Rooij, G. H.: Polymer tensiometers with ceramic cones: direct observations of matric pressures in drying soils, Hydrol. Earth Syst. Sci., 14, 1787–1799, https://doi.org/10.5194/hess-14-1787-2010, 2010.
Varnes, D. J.: Slope Movement Types and Processes, in Landslides, Analysis
and Control, edited by: Schuster, R. L. and Krizek, R. J., 11–33,
Transportation Research Board, Special Report No. 176, National Academy of
Sciences, ISBN 0-309-02804-3, 235 pp., 1978.
Vereecken, H., Huisman, J. A., Pachepsky, Y., Montzka, C., van der Kruk, J.,
Bogena, H., Weihermüller, L., Herbst, M., Martinez, G., and Vanderborght,
J.: On the spatio-temporal dynamics of soil moisture at the field scale, J.
Hydrol., 516, 76–96, https://doi.org/10.1016/j.jhydrol.2013.11.061, 2014.
Weiler, M., McDonnell, J. J., Tromp-van Meerveld, I., and Uchida, T.:
Subsurface Stormflow, in Encyclopedia of Hydrological Sciences, edited by: Anderson, M. G., 1–14, John Wiley & Sons, Ltd, Chichester, UK, https://doi.org/10.1002/0470848944.hsa119, 2005.
Wicki, A., Lehmann, P., Hauck, C., Seneviratne, S. I., Waldner, P., and
Stähli, M.: Assessing the potential of soil moisture measurements for
regional landslide early warning, Landslides, 17, 1881–1896,
https://doi.org/10.1007/s10346-020-01400-y, 2020.
Wicki, A., Jansson, P.-E., Lehmann, P., Hauck, C., and Stähli, M.: Simulated or measured soil moisture: which one is adding more value to regional landslide early warning?, Hydrol. Earth Syst. Sci., 25, 4585–4610, https://doi.org/10.5194/hess-25-4585-2021, 2021.
Wicki, A., Lehmann, P., Hauck, C., and Stähli, M.: Napf ERT monitoring
data, EnviDat [data set], https://doi.org/10.16904/envidat.369, 2023.
Xu, L., Baldocchi, D. D., and Tang, J.: How soil moisture, rain pulses, and
growth alter the response of ecosystem respiration to temperature, Global
Biogeochem. Cy., 18, 1–10, https://doi.org/10.1029/2004GB002281, 2004.
Zhang, Y. and Schaap, M. G.: Weighted recalibration of the Rosetta
pedotransfer model with improved estimates of hydraulic parameter
distributions and summary statistics (Rosetta3), J. Hydrol., 547, 39–53,
https://doi.org/10.1016/j.jhydrol.2017.01.004, 2017.
Zhao, B., Dai, Q., Han, D., Dai, H., Mao, J., and Zhuo, L.: Probabilistic
thresholds for landslides warning by integrating soil moisture conditions
with rainfall thresholds, J. Hydrol., 574, 276–287,
https://doi.org/10.1016/j.jhydrol.2019.04.062, 2019.
Short summary
Soil wetness measurements are used for shallow landslide prediction; however, existing sites are often located in flat terrain. Here, we assessed the ability of monitoring sites at flat locations to detect critically saturated conditions compared to if they were situated at a landslide-prone location. We found that differences exist but that both sites could equally well distinguish critical from non-critical conditions for shallow landslide triggering if relative changes are considered.
Soil wetness measurements are used for shallow landslide prediction; however, existing sites are...
Altmetrics
Final-revised paper
Preprint