Articles | Volume 22, issue 2
https://doi.org/10.5194/nhess-22-431-2022
https://doi.org/10.5194/nhess-22-431-2022
Research article
 | 
14 Feb 2022
Research article |  | 14 Feb 2022

Statistical estimation of spatial wave extremes for tropical cyclones from small data samples: validation of the STM-E approach using long-term synthetic cyclone data for the Caribbean Sea

Ryota Wada, Jeremy Rohmer, Yann Krien, and Philip Jonathan

Related authors

Drawing lessons for multi-model ensemble design from emulator experiments: application to future sea level contribution of the Greenland ice sheet
Jeremy Rohmer, Heiko Goelzer, Tamsin Edwards, Goneri Le Cozannet, and Gael Durand
EGUsphere, https://doi.org/10.5194/egusphere-2025-52,https://doi.org/10.5194/egusphere-2025-52, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Insights into the prediction uncertainty of machine-learning-based digital soil mapping through a local attribution approach
Jeremy Rohmer, Stephane Belbeze, and Dominique Guyonnet
SOIL, 10, 679–697, https://doi.org/10.5194/soil-10-679-2024,https://doi.org/10.5194/soil-10-679-2024, 2024
Short summary
Improving interpretation of sea-level projections through a machine-learning-based local explanation approach
Jeremy Rohmer, Remi Thieblemont, Goneri Le Cozannet, Heiko Goelzer, and Gael Durand
The Cryosphere, 16, 4637–4657, https://doi.org/10.5194/tc-16-4637-2022,https://doi.org/10.5194/tc-16-4637-2022, 2022
Short summary
Partitioning the contributions of dependent offshore forcing conditions in the probabilistic assessment of future coastal flooding
Jeremy Rohmer, Deborah Idier, Remi Thieblemont, Goneri Le Cozannet, and François Bachoc
Nat. Hazards Earth Syst. Sci., 22, 3167–3182, https://doi.org/10.5194/nhess-22-3167-2022,https://doi.org/10.5194/nhess-22-3167-2022, 2022
Short summary
Deep uncertainties in shoreline change projections: an extra-probabilistic approach applied to sandy beaches
Rémi Thiéblemont, Gonéri Le Cozannet, Jérémy Rohmer, Alexandra Toimil, Moisés Álvarez-Cuesta, and Iñigo J. Losada
Nat. Hazards Earth Syst. Sci., 21, 2257–2276, https://doi.org/10.5194/nhess-21-2257-2021,https://doi.org/10.5194/nhess-21-2257-2021, 2021
Short summary

Related subject area

Sea, Ocean and Coastal Hazards
Validated probabilistic approach to estimate flood direct impacts on the population and assets on European coastlines
Enrico Duo, Juan Montes, Marine Le Gal, Tomás Fernández-Montblanc, Paolo Ciavola, and Clara Armaroli
Nat. Hazards Earth Syst. Sci., 25, 13–39, https://doi.org/10.5194/nhess-25-13-2025,https://doi.org/10.5194/nhess-25-13-2025, 2025
Short summary
Changing sea level, changing shorelines: integration of remote-sensing observations at the Terschelling barrier island
Benedikt Aschenneller, Roelof Rietbroek, and Daphne van der Wal
Nat. Hazards Earth Syst. Sci., 24, 4145–4177, https://doi.org/10.5194/nhess-24-4145-2024,https://doi.org/10.5194/nhess-24-4145-2024, 2024
Short summary
Regional modelling of extreme sea levels induced by hurricanes
Alisée A. Chaigneau, Melisa Menéndez, Marta Ramírez-Pérez, and Alexandra Toimil
Nat. Hazards Earth Syst. Sci., 24, 4109–4131, https://doi.org/10.5194/nhess-24-4109-2024,https://doi.org/10.5194/nhess-24-4109-2024, 2024
Short summary
New insights into combined surfzone, embayment, and estuarine bathing hazards
Christopher Stokes, Timothy Poate, Gerd Masselink, Tim Scott, and Steve Instance
Nat. Hazards Earth Syst. Sci., 24, 4049–4074, https://doi.org/10.5194/nhess-24-4049-2024,https://doi.org/10.5194/nhess-24-4049-2024, 2024
Short summary
Dynamic projections of extreme sea levels for western Europe based on ocean and wind-wave modelling
Alisée A. Chaigneau, Angélique Melet, Aurore Voldoire, Maialen Irazoqui Apecechea, Guillaume Reffray, Stéphane Law-Chune, and Lotfi Aouf
Nat. Hazards Earth Syst. Sci., 24, 4031–4048, https://doi.org/10.5194/nhess-24-4031-2024,https://doi.org/10.5194/nhess-24-4031-2024, 2024
Short summary

Cited articles

Barbier, E. B.: Policy: Hurricane Katrina's lessons for the world, Nat. News, 524, 285, https://doi.org/10.1038/524285a, 2015. a
Bloemendaal, N., Muis, S., Haarsma, R. J., Verlaan, M., Apecechea, M. I., de Moel, H., Ward, P. J., and Aerts, J. C.: Global modeling of tropical cyclone storm surges using high-resolution forecasts, Clim. Dynam., 52, 5031–5044, 2019. a
Bloemendaal, N., Haigh, I. D., de Moel, H., Muis, S., Haarsma, R. J., and Aerts, J. C.: Generation of a global synthetic tropical cyclone hazard dataset using STORM, Scient. Data, 7, 1–12, 2020. a
Dasgupta, R., Basu, M., Kumar, P., Johnson, B. A., Mitra, B. K., Avtar, R., and Shaw, R.: A rapid indicator-based assessment of foreign resident preparedness in Japan during Typhoon Hagibis, Int. J. Disast. Risk Reduct., 51, 101849, https://doi.org/10.1016/j.ijdrr.2020.101849, 2020. a
Davison, A. C.: Statistical models, Cambridge University Press, Cambridge, UK, ISBN 978-0-521-73449-3, 2003. a
Download
Short summary
Characterizing extreme wave environments caused by tropical cyclones in the Caribbean Sea near Guadeloupe is difficult because cyclones rarely pass near the location of interest. STM-E (space-time maxima and exposure) model utilizes wave data during cyclones on a spatial neighbourhood. Long-duration wave data generated from a database of synthetic tropical cyclones are used to evaluate the performance of STM-E. Results indicate STM-E provides estimates with small bias and realistic uncertainty.
Share
Altmetrics
Final-revised paper
Preprint