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Abstract. Occurrences of tropical cyclones at a location are
rare, and for many locations, only short periods of observa-
tions or hindcasts are available. Hence, estimation of return
values (corresponding to a period considerably longer than
that for which data are available) for cyclone-induced sig-
nificant wave height (SWH) from small samples is challeng-
ing. The STM-E (space-time maximum and exposure) model
was developed to provide reduced bias in estimates of return
values compared to competitor approaches in such situations
and realistic estimates of return value uncertainty. STM-E ex-
ploits data from a spatial neighbourhood satisfying certain
conditions, rather than data from a single location, for return
value estimation.

This article provides critical assessment of the STM-E
model for tropical cyclones in the Caribbean Sea near Guade-
loupe for which a large database of synthetic cyclones is
available, corresponding to more than 3000 years of observa-
tion. Results indicate that STM-E yields values for the 500-
year return value of SWH and its variability, estimated from
200 years of cyclone data, consistent with direct empirical
estimates obtained by sampling 500 years of data from the
full synthetic cyclone database; similar results were found
for estimation of the 100-year return value from samples cor-
responding to approximately 50 years of data. In general,
STM-E also provides reduced bias and more realistic uncer-
tainty estimates for return values relative to single-location
analysis.

1 Introduction

Tropical cyclones (also named hurricanes or typhoons
depending on the region of interest) are one of the deadliest
and most devastating natural hazards that can significantly
impact lives, economies, and the environment in coastal
areas. In 2005, hurricane Katrina, which hit New Orleans,
was the most costly natural disaster of all time for the
insurance sector, with losses totalling more than USD 1011

(Barbier, 2015). In 2017, hurricanes Harvey, Irma, and
Maria caused record losses within just 4 weeks totalling
more than USD 9× 1010 (https://www.munichre.com/
en/risks/natural-disasters-losses-are-trending-upwards/
hurricanes-typhoons-cyclones.html#-1979426458, last
access: 1 February 2022). Tropical cyclones present
multiple hazards, including large damaging winds, high
waves, storm surges, and heavy rainfall, as exemplified
by Typhoon Hagibis in Japan (see context description
in Dasgupta et al., 2020) or Cyclone Idai in Mozam-
bique in 2019 (https://data.jrc.ec.europa.eu/dataset/
4f8c752b-3440-4e61-a48d-4d1d9311abfa, last access:
1 February 2022).

Waves are one of the major hazards associated with trop-
ical cyclones, of critical importance regarding marine flood-
ing, especially for volcanic islands like those in the Lesser
Antilles, North Atlantic Ocean basin (Krien et al., 2015);
Hawaii, northeast Pacific Ocean basin (Kennedy et al., 2012);
or Réunion, southwest Indian Ocean basin (Lecacheux et al.,

Published by Copernicus Publications on behalf of the European Geosciences Union.

https://www.munichre.com/en/risks/natural-disasters-losses-are-trending-upwards/hurricanes-typhoons-cyclones.html#-1979426458
https://www.munichre.com/en/risks/natural-disasters-losses-are-trending-upwards/hurricanes-typhoons-cyclones.html#-1979426458
https://www.munichre.com/en/risks/natural-disasters-losses-are-trending-upwards/hurricanes-typhoons-cyclones.html#-1979426458
https://data.jrc.ec.europa.eu/dataset/4f8c752b-3440-4e61-a48d-4d1d9311abfa
https://data.jrc.ec.europa.eu/dataset/4f8c752b-3440-4e61-a48d-4d1d9311abfa


432 R. Wada et al.: Statistical estimation of spatial wave extremes for tropical cyclones from small data samples

2021). Here, the absence of a continental shelf and the
steep coastal slopes limit the generation of high atmospheric
storm surge but increase the potential impact of incoming
waves. Moreover, wind-waves propagate with little loss of
energy over the deep ocean: this might potentially increase
the spatial extent as well as time duration over which dam-
aging coastal impacts occur during a tropical cyclone event
(Merrifield et al., 2014); this contrasts with tropical-cyclone-
induced storm surge, which tends to be concentrated in the
vicinity of the cyclone centre.

To help decision makers in diverse fields such as waste-
water management, transport and infrastructure, health,
coastal zone management, and insurance, one key ingredient
is the availability of data for the frequencies and magnitudes
of coastal extreme-cyclone-induced significant wave heights
(SWHs), e.g. estimates of 100-year return values (e.g. as il-
lustrated for Réunion by Lecacheux et al., 2012: Fig. 4).
Yet, for many locations, only short periods of observations
or hindcasts of tropical cyclones are available, which can be
challenging for estimation of return values (corresponding
to a period considerably longer than that for which data are
available). For this purpose, a widely used approach relies on
the combination of synthetic cyclone track generation, wave
modelling, and extreme value analysis. The approach con-
sists in the following steps.

1. Tropical cyclones, extracted from either historical data
(Knapp et al., 2010) or climate model simulations (Lin
et al., 2012), are statistically resampled and modelled to
generate synthetic but realistic tropical cyclone records.
Based on a Monte Carlo approach (Emanuel et al.,
2006; Vickery et al., 2000; Bloemendaal et al., 2020), a
tropical cyclone data set with the same statistical char-
acteristics as the input data set, but spanning hundreds
to thousands of years, can then be generated.

2. For each synthetic cyclone, a hydrodynamic numerical
model is used to compute the corresponding SWH or
surge level over the whole domain of interest. An ex-
ample of such a simulator is the Global Tide and Surge
Model of Bloemendaal et al. (2019).

3. SWH values at the desired coastal locations are ex-
tracted. Extreme value analysis (Coles, 2001) can then
be used to estimate the corresponding return values. As
an illustration of the whole procedure, one can refer to
the probabilistic hurricane-induced storm surge hazard
assessment (including wave effects) performed by Krien
et al. (2015) at the Guadeloupe archipelago, Lesser An-
tilles.

Implementation of steps (1) and (2) can however be prob-
lematic. Generation of synthetic cyclones with realistic char-
acteristics is a research topic in itself. Further, the hydrody-
namic numerical model can be prohibitively costly to exe-
cute, limiting the number of model runs feasible, resulting in

sparse, non-representative data for extreme value modelling.
To overcome this computational burden, possible solutions
can either be based on parametric analytical models (like the
ones used by Stephens and Ramsay, 2014, in the southwest
Pacific Ocean) or on statistical predictive models (sometimes
called meta- or surrogate models; Nadal-Caraballo et al.,
2020). However, such approaches can only be considered
“approximations”. The former parametric analytical mod-
els introduce simplifying assumptions regarding the physi-
cal processes involved. Statistical estimation is problematic,
since inferences must be made concerning extreme quantiles
of the distribution of quantities such as SWH, using a limited
set of data.

Objective and layout

In the present work, we aim to tackle the problem of realis-
tic return value estimation for small samples of tropical cy-
clones using a recently developed procedure named STM-E,
which has already been successfully applied in regions ex-
posed to tropical cyclones near Japan (Wada et al., 2018) and
in the Gulf of Mexico (Wada et al., 2020). STM-E exploits
all cyclone data drawn from a specific geographical region of
interest, provided that certain modelling conditions are not
violated by the data. This means in principle that STM-E
provides less uncertain estimates of return values than sta-
tistical analysis of cyclone data at a single location. To date
however, the STM-E methodology has not been directly val-
idated: the objective of the present work is therefore to pro-
vide direct validation of return values (in terms of bias and
variance characteristics, for return periods T of hundreds of
years) from STM-E analysis using sample data for modelling
corresponding to a much shorter period T0 (< T ) of obser-
vation, drawn from a full synthetic cyclone database corre-
sponding to a very long period TL (TL > T ) of observation.

In the following sections, we present a motivating appli-
cation in the region of the Caribbean archipelago of Guade-
loupe, for which synthetic cyclone data are available for a
period TL corresponding to more that 3000 years. We use the
STM-E method to estimate the T = 500-year return value for
SWH, and its uncertainty, based on random samples of trop-
ical cyclones corresponding to T0 = 200 years of observa-
tion. This case will assess the performance of STM-E when
reasonable sample sizes of extreme values are available for
inference. In addition, we conduct the corresponding estima-
tion for the T = 100-year return value for SWH, and its un-
certainty, based on random samples of tropical cyclones cor-
responding to T0 = 50 years of observation. This case is to
assess the performance of STM-E under practical conditions,
i.e. when the size of the sample of extreme data for anal-
ysis is relatively small. We compare estimates with empiri-
cal maxima from random samples corresponding to T years
of observation from the full synthetic cyclone data (cover-
ing TL years), and from standard extreme value estimates ob-
tained using data (corresponding to T0 years) from the spe-
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cific location of interest only. Section 2 provides an outline
of the motivating application. Section 3 describes the STM-E
methodology. Section 4 presents the results of the application
of STM-E to the region of the main island pair (Basse-Terre
and Grande-Terre) of Guadeloupe. Discussion and conclu-
sions are provided in Sect. 5.

2 Motivating application

The study area is located in a region of the Lesser Antilles
(eastern Caribbean Sea) that is particularly exposed to cy-
clone risks (Jevrejeva et al., 2020), with several thousand
fatalities reported since 1900 (http://www.emdat.be, last ac-
cess: 1 February 2022). We focus on the French overseas re-
gion of Guadeloupe, which is an archipelago located in the
southern part of the Leeward Islands (see Fig. 1).

This French overseas region has been impacted by several
devastating cyclones in the past, including the 1776 event
(category 5 according to the Saffir–Simpson scale; Simp-
son and Saffir, 1974) which led to > 6000 fatalities (Zahibo
et al., 2007), and the “Great Hurricane” of 1928 (Desarthe,
2015) with> 1200 fatalities; the latter was probably the most
destructive tropical cyclone of the 20th century. More re-
cent destructive events include Hugo (in 1989; Koussoula-
Bonneton, 1994) and Maria (in 2017, which severely im-
pacted Guadeloupe’s banana plantations). The tracks of both
Hugo and Maria are illustrated in Fig. 1. Analysis of the
HURDAT database (Landsea and Franklin, 2013) reveals that
approximately 0.6 cyclones per year passed within 400 km of
the study area on average for the period 1970–2019. Almost
all events emanated from the southeast. More than 80 % of
the events passed close to the northern and eastern coasts of
Guadeloupe’s main island pair.

To assess the cyclone-induced storm surge hazard, Krien
et al. (2015) set up a modelling chain similar to that de-
scribed in the introduction: they randomly generate cyclonic
events using the approach of Emanuel et al. (2006) and com-
pute SWH and total water levels for each event over a wide
computational domain (9.5–18.3◦ N, 45–65◦W) using the
ADCIRC–SWAN wave–current coupled numerical model.
Here, the wind drag formula from Wu (1982) was selected,
but with a prescribed maximum value of Cd = 0.0035. The
interested reader can refer to Krien et al. (2015) for more im-
plementation and validation detail. The resulting SWH data
are the basis of the current study to assess the performance of
STM-E in estimating the T -year return value, from data cor-
responding to T0 years of observation, for the cases T0 = 200,
T = 500 and T0 = 50, T = 100.

In the present work, we use a total of 1971 syn-
thetic cyclones passing nearby Guadeloupe (representative
of 3200 years, i.e. about 0.6 cyclone per annum) and the
corresponding numerically calculated SWH. These results
are used to empirically derive the 100- and 500-year SWH
around the coast of Guadeloupe’s main island pair for a

smaller area of interest (15.8–16.6◦ N, 60.8–62.0◦W; see
Fig. 2). These results are useful to assess flood risk at local
scale, since they provide inputs of high-resolution hydrody-
namic simulations (see for example the use of wave over-
topping simulations at Réunion by Lecacheux et al., 2021).
In the following, we analyse extreme SWH at 19 coastal lo-
cations around Guadeloupe’s main island pair (on the 100 m
iso-depth contour; see blue stars in Fig. 2) and at 12 locations
along a line transect emanating to the northeast of the island,
corresponding to increasing water depth (see red triangles in
Fig. 2).

To illustrate the SWH data, Fig. 3 depicts the spatial distri-
butions of maximum SWH per location for the four cyclones
with the largest single values of SWH in the whole synthetic
cyclone database. All cyclones propagate from the southeast
to the northwest with intense storm severity near the cyclone
track, which reduces quickly away from the track.

3 Methodology

In this section we describe the STM-E methodology used to
estimate return values in the current work. Section 3.1 moti-
vates the STM-E approach, and Sect. 3.2 outlines the mod-
elling procedure. Section 3.3 provides a discussion of some
of the diagnostic tests performed to ensure that STM-E mod-
elling assumptions are satisfied.

3.1 Motivating the STM-E model

The STM-E procedure has been described in Wada et al.
(2018, 2020). The approach is intended to provide straight-
forward estimation of extreme environments over a spatial
region, from a relatively small sample of rare events such as
cyclones, the effects of any one of which do not typically in-
fluence the whole region. For each cyclone event, the space-
time characteristics of the event are summarized using two
quantities, the space-time maximum (STM) of the cyclone
and the spatial exposure (E) of each location in the region to
the event. For any cyclone, the STM is defined as the largest
value of SWH observed anywhere in the spatial region for
the time period of the cyclone. The location exposure E is
defined as the largest value of SWH observed at that location
during the time period of the cyclone, expressed as a fraction
of STM; thus values of E are in the interval [0, 1].

The key modelling assumptions are then that (i) the fu-
ture characteristics of STM and E over the region will be the
same as those of STM and E during the period of observa-
tion, and (ii) in the future, at any location, it is valid to as-
sociate any simulated realization of STM (under an extreme
value model based on historical STM data) with any realiza-
tion of E (under a model for the distribution of E based on
historical exposure data).
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Figure 1. Regional setting. Left panel: full domain. The red rectangle indicates the region where the diagnostic of the STM-E approach is
performed. The orange and green tracks respectively represent those of the Maria (2017) and Hugo (1989) cyclones (data extracted from
Landsea and Franklin (2013) with cyclone status “Hurricane”). Right panel: enlarged view of the diagnostic region.

Figure 2. Illustration of the Guadeloupe archipelago (administra-
tive boundaries are outlined in light blue), showing calculation grid
points (black dots), the selected numbered locations along the iso-
depth contour at 100 m (blue stars), and line transect (red stars). Cal-
culation grid points are more dense in shallow waters. Water depths
along the line transect with locations numbered 20–31 are 58, 235,
543, 754, 819, 1206, 1513, 2350, 3265, 4059, 5074, and 5586 m.

3.2 STM-E procedure

The steps of the modelling procedure are now described. The
first three steps of the procedure involve isolation of data for
analysis. (a) An appropriate region of ocean is selected. The
characteristics of this region need to be such that the un-
derpinning conditions of the STM-E approach are satisfied
(as discussed further in Sect. 3.3). (b) For each tropical cy-
clone event occurring in the region, the largest value of SWH
observed anywhere in the region for the period of the cy-
clone (STM) is retained. (c) Per location in the region, the
largest value of SWH observed during the period of the cy-

clone, expressed as a fraction of STM, is retained as the lo-
cation exposure E to the cyclone.

The next three steps of the analysis involve statistical mod-
elling and simulation. (d) First, an extreme value model is
estimated using the largest values from the sample of STM;
typically, a generalized Pareto distribution (see for exam-
ple Coles, 2001) is assumed. Then a model for the distri-
bution of location exposure E is sought; typically we sim-
ply re-sample at random with replacement from the values of
historical exposures for the location, although model fitting
is also possible. (e) Next, realizations of random occurrences
of STM from (d), each combined with a randomly sampled
exposure E per location, permit estimation of the spatial dis-
tribution of SWH corresponding to return periods of arbitrary
length. (f) Finally, diagnostic tools are used to confirm the
consistency of simulations (e) under the model with histori-
cal cyclone characteristics.

3.3 Diagnostics for STM-E modelling assumptions

The success of the current approach critically relies on our
ability to show that simplifying assumptions regarding the
characteristics of STM and exposure are justified for the data
at hand. In particular, the approach assumes that (i) the distri-
bution STM does not depend on cyclone track, environmen-
tal covariates, space, and time, and (ii) the distribution of ex-
posure per location does not depend on STM, cyclone track,
environmental covariates, and time. Diagnostic tests are un-
dertaken to examine the plausibility of these conditions for
the region of ocean of interest for each application under-
taken. Establishing the validity of the STM-E conditions is
vital for credible estimation of return values. Section 5 of
Wada et al. (2018) provides a detailed discussion of diagnos-
tic tests that should be considered to judge that the STM-E
conditions are not violated in any particular application. For
example, the absence of a spatial trend in STM over the re-
gion can be assessed by quantifying the size of linear trends
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Figure 3. Spatial distributions of maximum SWH for the four largest synthetic cyclone events. Each panel gives the maximum SWH (over
the period of the cyclone) per location.

in STM along transects with arbitrary orientation in the re-
gion. This is then compared with a “null” distribution for lin-
ear trend, estimated using random permutations of the STM
values. Illustrations of some of the diagnostic tests performed
for the current analysis are given in Sect. 4 below.

Return value estimates from STM-E are also potentially
sensitive to the choice of region for analysis. We assume that
the extremal behaviour of STM can be considered homoge-
neous in the region, suggesting that the region should be suf-
ficiently small that the same physics is active throughout it.
However, the region also needs to contain sufficient evidence
for cyclone events and their characteristics to allow reason-
able estimation of tails of distributions for SWH per location.
The absence of dependence between STM andE per location
can be assessed by calculating the rank correlation between
STM (S, a space-time maximum) and exposure (Ej , at loca-
tion j , for locations j = 1, 2, . . . ,p) using Kendall’s τ statis-
tic. If the values of S and Ej increase together, the value of
Kendall’s τ statistic will be near unity. If there is no particular
relationship between S and Ej , the value of Kendall’s τ will
be near zero. For large n, if S and Ej are independent, the
value of Kendall’s τ is approximately Gaussian-distributed
with zero mean and known variance, providing a means of
identifying unusual values which may indicate dependence
between S and Ej . An illustrative spatial plot of Kendall’s τ
is given in Sect. 4.

Finally, estimates from STM-E are potentially sensitive to
the extreme value threshold ψn (or equivalently the sample
size n of the largest observations of STM) chosen to estimate
the tail of the distribution of STM over the region. Results
in Sect. 4 are reported for a number of choices of n for this
reason.

3.4 Modelling STM and estimating return values

Suppose we have isolated a set of n0 values of STM using the
procedure above. We use the largest n≤ n0 values {si}ni=1,
corresponding to exceedances of threshold ψn, to estimate a
generalized Pareto model for STM, with the probability den-
sity function

Pr(S ≤ s|S > ψn)= FS|ψS(s)
largeψn
≈ FGP(s)

= 1−
(

1+
ξ

σn
(s−ψn)

)−1/ξ

for ξ 6= 0

= 1− exp
(
−

1
σn
(s−ψn)

)
otherwise, (1)

with shape parameter ξ ∈ R and scale parameter σn > 0.
Choice of n is important to ensure reasonable model fit and
bias-variance trade-off. The estimated value of ξ should be
approximately constant as a function of n for sufficiently
large ψn and hence small n. The full distribution FS(s) of
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STM can then be estimated using

FS(s)=

{
F ∗n (s) for s ≤ ψn
τn+ (1− τn)FS|ψn(s) otherwise, (2)

where F ∗n (s) is an empirical “counting” estimate below
threshold ψn, and τn is the non-exceedance probability cor-
responding the ψn, again estimated empirically.

Using this model, we can simulate future values Hj of
SWH at any location j (j = 1, 2, . . . ,p) in the region, rel-
atively straightforwardly. Suppose that Ej is the location ex-
posure at location j , and FEj is its cumulative distribution
function, estimated empirically. Since thenHj = Ej ×S, the
cumulative distribution function of Hj can be estimated us-
ing

FHj (h)= P
(
Hj ≤ h

)
=

∫
s

P
(
EjS ≤ h|S = s

)
fS(s)ds

=

∫
s

P
(
Ej ≤ h/s

)
fS(s)ds

=

∫
s

FEj (h/s)fS(s)ds, (3)

where fS(s) is the probability density function of STM, cor-
responding to cumulative distribution function FS(s) esti-
mated in Eq. (2).

4 Application of STM-E to cyclone SWH near
Guadeloupe

The STM-E methodology outlined in Sect. 3 is applied to
data for the neighbourhood of Guadeloupe’s main island pair
described in Sect. 2. The objective of the analysis is to esti-
mate the T -year return value for SWH from T0 years of data –
for (T0, T ) pairs (200, 500) and (50, 100). First, details of the
set-up of the STM-E analysis are provided in Sect. 4.1. Then,
in Sect. 4.2, we describe two competitor methods included
for comparison with STM-E. Section 4.3 then describes es-
timates for the 500-year return value on the 100 m iso-depth
contour around Guadeloupe’s main island pair and the line
transect introduced in Sect. 2, illustrated in Fig. 2, using
maximum likelihood estimation (see for example Hosking
and Wallis, 1987; Davison, 2003). For comparison, Sect. 4.4
then provides estimates obtained using probability-weighted
moments (see for example Furrer and Naveau, 2007; de Zea
Bermudez and Kotz, 2010a, b). Section 4.5 describes some
of the diagnostic tests undertaken to confirm that the fitted
model is reasonable. Section 4.6 outlines the inference for
the T = 100-year return value from data corresponding to
T0 = 50 years.

4.1 Details of STM-E application

The spatial region of interest is the neighbourhood of Guade-
loupe’s main island pair in the Caribbean Sea, corresponding
to the approximate longitudes 12–18◦ N and latitudes 58–
65◦W (see Fig. 1). An initial analysis using Kendall’s τ sug-
gests the full region (9.5–18.3◦ N, 45–65◦W) shows depen-
dency of STM and exposure, with stronger cyclones tending
to pass through the western part of the region. However, if a
very high threshold ψ ≈ 20 m were to be selected for analy-
sis, reasonable decoupling of STM and E could be achieved,
with relatively less intense tropical cyclones neglected. Since
the focus of the current work is the ocean environment of the
Guadeloupe archipelago, a smaller region (see Fig. 1, right
panel) was defined. For this region, Kendall’s τ indicated low
dependence between STM and E for thresholds ψ of 10 m
and above, as illustrated in the left panel of Fig. 4.

The right panel of Fig. 4 shows the location and magnitude
of STM for each of the n= 60 largest cyclones observed in
the region. There is no obvious spatial dependence between
the size of STM and its location. In Sect. 3.3, we discuss the
use of rank correlation of STM along latitude–longitude tran-
sects as a means to quantify dependence in general. In fact,
the Kendall’s τ analysis illustrated in the left panel would
also indicate any strong spatial dependence in STM; there-
fore, results of the rank correlation analysis along latitude–
longitude transects are not presented. We conclude that Fig. 4
does not suggest that the modelling assumptions underlying
STM-E are not satisfied.

The relatively large number of boundary STM values re-
flects occurrences of cyclones, the true STM locations of
which occur outside the analysis region. For these events,
the value of STM used for analysis is the largest value of
SWH observed within the analysis region. In this sense, we
are performing the STM-E analysis conditional on the choice
of region. For example, consider a cyclone for which the lo-
cation of the STM value s∗ falls outside the region of interest.
Then the conditional STM value s for the cyclone (within
the region) will of course be smaller than s∗; however, the
cyclone’s conditional exposure (assessed relative to the con-
ditional STM s for the region, rather than the full STM s∗)
will consequently be larger.

Specific interest lies in the variation in the extreme re-
turn value around Guadeloupe and the rate of increase in re-
turn value with increasing water depth away from the coasts.
It is known that SWH at a location is dependent on water
depth, bathymetry, and coastlines, since ocean waves in shal-
low water for example are influenced by bottom effects, and
since both wind and wave propagation can be weakened in
the vicinity of coastlines. For this reason, two sets of loca-
tions were adopted for the detailed analysis reported here.
The first set corresponds to 19 locations on an approximately
iso-depth contour at 100 m depth around the main island pair
of Guadeloupe. This depth value is typically chosen to de-
fine the boundaries of the local-scale high-resolution flood-
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Figure 4. Diagnostics for STM-E. (a) Plot of Kendall’s τ for analysis region using a threshold of 10 m. Each point corresponds to a location
where SWH data are available and water depth exceeds 100 m. The black dots indicate values of Kendall’s τ within the 90 % confidence
interval. Red (blue) crosses indicate positive (negative) values of Kendall’s τ exceeding the 90 % confidence band. The percentage of recorded
exceedances of the 90 % confidence band for Kendall’s τ is less than 10 %. (b) Locations of all STMs exceeding 10 m coloured by size of
STM in metres.

ing simulations. The second set corresponds to 12 locations
on a line transect emerging approximately normally from the
northeast of the main island pair of Guadeloupe. We focus on
the northeast neighbourhood, because it has the highest ex-
posure to cyclones. The contour and transect are illustrated
in Fig. 2, and location numbers are listed.

The focus of the analysis is estimation of the T = 500-
year return value for SWH on the iso-depth contour and line
transect, based on T0 = 200 years of data. To quantify the
uncertainty in the 500-year return value using STM-E analy-
sis, the following procedure was adopted. (a) Randomly se-
lect the appropriate number of cyclones (corresponding to
T0 years of observation) from the TL years of synthetic cy-
clones. (b) Identify the largest n values of STM in the sample,
for n= 20, 30, 40, 50, and 60 (corresponding to lowering the
extreme value threshold). (c) Estimate a model for the dis-
tribution of STM using maximum likelihood estimation or
the method of probability-weighted moments. (d) Estimate
the empirical distribution of exposure E per location on the
iso-depth contour and line transect. (e) Estimate the 500-year
return value as the quantile of the distribution FHj of signif-
icant wave height at location j with non-exceedance proba-
bility 1− (T0/n)/T . Finally, the whole procedure (a)–(e) is
repeated 100 times to quantify the uncertainty in the T -year
return value.

Figure 5 illustrates the tails of the distribution of STM
from the largest 30 values of STM from each of 100 ran-
dom samples corresponding to 200 years, and from the full
sample of synthetic cyclones. It can be seen that the 500-year
return value for STM lies in the region (20, 30) m.

4.2 Benchmarking against the full cyclone database
and single-location analysis

One obvious feature of the current synthetic cyclone database
is that it corresponds to a long time period relative of TF =

Figure 5. Variability of tail of distributions for STM on log scale.
Each of the 100 red lines is estimated from a sample size of 30 of
largest STM values from a random sample of 124 cyclones corre-
sponding to 200 years of observation. The black points indicate the
corresponding empirical distribution of STM from the full synthetic
cyclone data.

3200 years, much longer than the return period of T =
500 years being estimated in the current analysis. Thus, we
are able to estimate the 500-year return value at any location
using the full synthetic cyclone data, by simply interpolat-
ing the sixth and seventh largest values, corresponding to the
non-exceedance probability in 500 years. This provides a di-
rect empirical estimate.

From previous work, a key advantage found using the
STM-E approach is that it provides less uncertain estimates
at a location compared with conventional single-location
analysis. We wish to demonstrate in the current work that this
is also the case. For this reason, we also calculate estimates
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Figure 6. The 500-year return value for SWH using maximum likelihood estimation for the 100 m iso-depth contour. The x axis gives
the reference numbers of the 19 locations on the contour. Location numbers are given in Fig. 2. Corresponding to each location, the blue
box–whiskers summarize the estimated return value from STM-E for different sample sizes 20, 30, 40, 50, and 60; the red box–whiskers
summarize the estimated return values from single-location analysis for different sample sizes. For each blue and red cluster of box–whiskers
corresponding to a specific location, return value estimates for the increasing sequence of sample sizes are plotted sequentially outwards from
the centre of the cluster. For all box–whiskers, the box represents the inter-quartile interval, and the median and mean are shown as solid
and dashed lines. Whiskers represent the 2.5 % to 97.5 % interval. Exceedances of this 95 % interval are shown as dots. The black horizontal
line for each location corresponds to the empirical estimate of the return value obtained directly from the full synthetic cyclone data for that
location.

for comparison with those from STM-E, based on indepen-
dent analysis of cyclone data from each location of interest.

4.3 Maximum likelihood estimation

Figure 6 illustrates the 500-year return value for SWH using
maximum likelihood estimation for locations on the 100 m
iso-depth contour around Guadeloupe’s main island pair,
with location numbers given in Fig. 2. The figure caption
gives relevant details of the figure layout. Across the 19 lo-
cations considered, the 500-year return value is estimated us-
ing STM-E (blue), single-location (red), and full synthetic
cyclone data (black); in general, there is good agreement be-
tween estimates per location. Bias characteristics for single-
location and STM-E estimates are relatively similar in gen-
eral. It can be seen however (from the longer red whiskers)
that the uncertainty in single-location estimates is greater in
general from the corresponding STM-E estimates.

As the number of points used for STM-E estimation per
location increases, there is evidence for reduction in the un-
certainty with which the return value is estimated, as might
be expected. However, there is also some evidence for a small
increase in the mean estimated return value. This is explored
further in Sect. 4.5. There is very little corresponding evi-
dence for reduced uncertainty in the single-location analysis.
There are more outlying estimates of return value for single-
location analysis than for STM-E.

The corresponding results for the line transect analysis us-
ing maximum likelihood estimation is given in Fig. 7. The
general characteristics of this figure are similar to those of
Fig. 6. The return value increases as would be expected with
increasing water depth. Single-point estimates are more vari-

able that those from STM-E. Biases appear to be relatively
small and similar for STM-E and single-location estimates.
There is little evidence that the STM-E median estimate in-
creases with increasing sample size. We infer from the anal-
ysis that water depth has little effect on the performance of
the STM-E approach.

4.4 Results estimated using probability-weighted
moments

Estimates for the 500-year return value on the iso-depth con-
tour, obtained using the method of probability-weighted mo-
ments, are shown in Fig. 8. The behaviour of STM-E and
single-location estimates shown is very similar to that illus-
trated for maximum likelihood estimation in Fig. 6.

Results for the line transect using probability-weighted
moments are given in Fig. 9; again, the figure shows simi-
lar trends to Fig. 7. There is some evidence that the STM-E
median estimate increases with increasing sample size and
that this reduces bias.

4.5 Assessment of model performance

Comparing box–whisker plots from centre to left for each lo-
cation in the figures in Sect. 4.3 and 4.4 suggests that there is
sometimes a small increasing trend in return value estimates
from STM-E as a function of increasing sample size for in-
ference. We investigate the trend further here. Figure 10 gives
estimates for the 500-year return value of space-time maxi-
mum STM (as opposed to the full STM-E estimate for SWH)
as a function of sample size used for estimation, using max-
imum likelihood estimation (blue) and probability-weighted
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Figure 7. The 500-year return value for SWH using maximum likelihood estimation for the line transect. The x axis gives the reference
numbers of the 12 locations on the transect. Briefly, for each location, blue and red box–whiskers summarize the estimated return value
from STM-E and single-location analysis respectively; see caption of Fig. 6 for other details. The black horizontal lines for each location
correspond to the empirical estimate of the return value obtained directly from the full synthetic cyclone data for that location. Water depths
at the 12 line transect locations are given in the caption to Fig. 2.

Figure 8. The 500-year return value for SWH estimated using probability-weighted moments for the 100 m depth contour. The x axis gives
the reference numbers of the 19 locations on the contour. Briefly, for each location, blue and red box–whiskers summarize the estimated
return value from STM-E and single-location analysis respectively; see caption of Fig. 6 for other details. The black horizontal lines for each
location correspond to the empirical estimate of the return value obtained directly from the full synthetic cyclone data for each location.

moments (red). Also shown in black is the empirical estimate
of the 500-year STM return value obtained directly from the
synthetic cyclone data. The figure shows a number of inter-
esting effects. Firstly, STM estimates from both maximum
likelihood and the probability-weighted moments increase
with increasing sample size n, and this effect is more pro-
nounced for probability-weighted moments. As a result, the
bias of estimates using probability-weighted moments is con-
siderably larger than that from maximum likelihood estima-
tion for sample size of 60. The uncertainty of estimates from
probability-weighted moments is also somewhat larger than
that from STM-E.

A number of studies in the literature compare the perfor-
mance of different methods of estimation of extreme value
models. The method of probability-weighted moments is
known to perform relatively well relative to maximum likeli-
hood estimation for small samples (see for example Jonathan

et al., 2021, Sect. 7 for a discussion). For small samples, for
example, maximum likelihood estimation is known to under-
estimate the generalized Pareto shape parameter and over-
estimate the corresponding scale parameter, leading to bias
in return value estimates. The results in Fig. 10 indicate that,
if anything, maximum likelihood estimation performs some-
what better than the method of probability-weighted mo-
ments for the current application. Regardless, the trends in
Fig. 10 serve to illustrate the importance of performing the
STM extreme value analysis with great care, particularly for
small sample sizes.

One of the assumptions underpinning the STM-E ap-
proach is that the exposure distribution at a location is not
dependent on the magnitude of STM. We investigate this
further here. Our aim is to show that the empirical cumu-
lative distribution function for exposure (henceforth ECDF
for brevity) corresponding to the largest and smallest STMs
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Figure 9. The 500-year return value for SWH estimated using probability-weighted moments for the line transect. The x axis gives the
reference numbers of the 12 locations on the transect. Briefly, for each location, blue and red box–whiskers summarize the estimated return
value from STM-E and single-location analysis respectively; see caption of Fig. 6 for other details. The black horizontal lines for each
location correspond to the empirical estimate of the return value obtained directly from the full synthetic cyclone data for each location.
Water depths at the 12 line transect locations are given in the caption to Fig. 2.

Figure 10. The effect of sample size on estimates of return values
for STM. Box–whiskers summarize estimates for the 500-year STM
return value based on maximum likelihood estimation (blue) and the
method of probability-weighted moments (red), for different sample
sizes. The black dashed line gives an empirical estimate of the return
value obtained directly from the synthetic cyclone data.

is typical of ECDFs in general and are in no way special rela-
tive to ECDFs corresponding to other cyclones. We can quan-
tify the difference between two ECDFs using the Kullback–
Leibler divergence (KL) (Liese and Vajda, 2006). We pro-
ceed to estimate the “null” distribution of KL using 1000 sets
of randomly selected pairs of ECDFs. In addition, we cal-
culate the Kullback–Leibler divergence KL∗ for the pair of
ECDFs corresponding to cyclones with the largest and small-
est STMs. If there is no dependence of ECDF on STM, then
the value of KL∗ should correspond to a random draw from
the null distribution of KL. The left-hand panel of Fig. 11 il-
lustrates the null distribution of KL at Location 21, for a sam-
ple size of 20, together with the corresponding value of KL∗.
We note that the value of KL∗ is not extreme in the null dis-
tribution. In the right-hand panel of Fig. 11, the empirical
cumulative distribution function of the non-exceedance prob-
ability of KL∗ (in the corresponding null distribution) is esti-
mated over all locations and sample sizes. The approximate

uniform density found suggests indeed that KL∗ corresponds
to a random draw from the null distribution; a Kolmogorov–
Smirnov test on the data suggested that it was not signifi-
cantly different to a random sample from a uniform distribu-
tion on [0, 1].

Complementary analyses (not shown) evaluated KL∗ for
ECDFs corresponding to the largest two STMs in the data
and (separately) for ECDFs corresponding to the smallest
two STMs. Results again indicated that both of these choices
for KL∗ could be viewed as random in their null distributions.
Since exposure distribution at a location is not dependent on
the magnitude of STM, we assume the overall performance
of STM-E is mainly governed by the estimation of STM. In
shallow water, where waves are subject to breaking, it would
be expected that the exposure distribution would be depen-
dent on STM, and therefore the validity of the method should
be more carefully checked using the approaches described in
Sect. 3.3.

4.6 Model performance for smaller sample sizes

Here we repeat the analysis in Sect. 4.1–4.5 above for the
T = 100-year return value for SWH on the iso-depth contour
and line transect, based on T0 = 50 years of data. The typi-
cal number of tropical cyclone events occurring in 50 years
is approximately 30, already corresponding to a very small
sample size for extreme value analysis. We retain the largest
n values of STM in the sample, for n= 10, 15, and 20 for
this analysis. The overall performance of STM-E estimates,
relative to those from single-location analysis and an empir-
ical estimate from the full synthetic cyclone data, is summa-
rized in Fig. 12 for the line transect, using the method of
probability-weighted moments (and see also Table 2 in the
next section for a summary including estimates using maxi-
mum likelihood). The figure’s features are similar to those of
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Figure 11. (a) Histogram of KL from random pairs of empirical distribution functions for exposure (corresponding to the “null” distribu-
tion of KL), together with KL∗ for Location 21 with a sample size of 20. (B) QQ plot of the non-exceedance probability of KL∗ (in the
corresponding null distribution for KL) over all locations and sample sizes.

Figure 12. The 100-year return value for SWH using probability-weighted moments for the line transect. The x axis gives the reference
numbers of the 12 locations on the transect. Briefly, for each location, blue and red box–whiskers summarize the estimated return value
from STM-E and single-location analysis respectively; see caption of Fig. 6 for other details. The black horizontal lines correspond to the
empirical estimate of the return value obtained directly from the full synthetic cyclone data for each location. Water depths at the 12 line
transect locations are given in the caption to Fig. 2.

figures discussed earlier. Estimates from STM-E show lower
bias and reduced uncertainty relative to those from single-
location analysis. There is slight underestimation of the re-
turn value, but the empirical estimate sits comfortably within
the 25 %–75 % uncertainty band (corresponding to the “box”
interval). The corresponding plots (not shown) for the iso-
depth contour, and for estimation using maximum likelihood,
are similar.

5 Discussion

This work considers the estimation of T -year return val-
ues for SWH over a geographic region, from small sets of
T0 years of synthetic tropical cyclone data, using the STM-E
(space-time maxima and exposure) methodology. We assess
the methodology by comparing estimates of the T -year re-

turn value (T > T0) for locations in the region from STM-E
with those estimated directly from a large database corre-
sponding to TL (> T ) years of synthetic cyclones. We find
that STM-E provides estimates of the T = 500-year return
value from T0 = 200 years of data in the region of the Guade-
loupe archipelago with low bias. We also compare STM-E
estimates of T -year return values for locations in the region
with those obtained by extreme value analysis of data (for
T0 years) at individual locations. We find that the uncertainty
of STM-E estimates is lower than that of single-location esti-
mates. Comparison of the performance of inferences for the
T = 100-year return value from T0 = 50 also suggests STM-
E outperforms single-location analysis.

For reasonable application of the STM-E approach, it is
important that characteristics of tropical cyclones over the
region under consideration satisfy a number of conditions.
These conditions are shown not to be violated for a region
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Table 1. Performance of STM-E and single-location analysis in estimation of the bias and uncertainty of the 500-year return value, relative
to empirical estimates from the full synthetic cyclone data, for analysis sample sizes of 20, 30, 40, 50, and 60 all extracted from the 200-year
data set. Bias B is assessed as the average difference (over the iso-depth contour and line transect analyses) between the mean STM-E (or
single-location) estimate and the return value estimate from the full cyclone database. Similarly, uncertainty U is assessed in terms of the
average width of the 50 % uncertainty band of the STM-E (or single-location) estimate.

Maximum likelihood n= 20 30 40 50 60

Bias mean STM-E −0.073 −0.171 −0.225 −0.198 −0.018
Bias median for single location −0.437 −0.225 −0.246 −0.333 −0.419
50 % intervals STM-E 2.589 2.200 1.734 1.589 1.529
50 % intervals for single location 2.842 2.971 3.025 2.915 2.778

Probability-weighted moments n= 20 30 40 50 60

Bias mean STM-E −0.199 −0.263 −0.158 −0.109 −0.381
Bias median for single location −0.158 −0.096 −0.246 −0.494 −0.713
50 % intervals STM-E 2.487 2.053 1.773 1.650 1.594
50 % intervals for single location 3.054 3.154 3.261 3.377 3.436

around the Guadeloupe archipelago but that use of the STM-
E method over a larger spatial domain would not be valid
(see for example Wada et al., 2019). This demonstrates that
selection of an appropriate geographical region for STM-E
analysis is critical to its success. Once such a region is spec-
ified, we find that STM-E provides a simple but principled
approach to return value estimation within the region from
small samples of tropical cyclone data.

Return value estimates from STM (see for exam-
ple Fig. 10) show a small increasing bias with increasing
sample size for extreme value estimation. However, the re-
sulting bias in full STM-E return values is small. Corre-
sponding estimates based on single-location analysis also
show relatively small but increasing negative bias with in-
creasing sample size. In the present work, the tail of the
distribution of STM was estimated by fitting a generalized
Pareto model, using either maximum likelihood estimation
or the method of probability-weighted moments. Estimates
for extreme quantiles of STM using either approach are in
good agreement.

Table 1 summarizes the performance of STM-E and
single-location analysis in estimation of the bias and uncer-
tainty of the 500-year return value, relative to empirical esti-
mates from the full synthetic cyclone data, for analysis sam-
ple sizes of n= 20, 30, 40, 50, and 60. Bias B(n;Mth) and
uncertainty U(n;Mth) are estimated as average characteris-
tics over all |L| = 31 locations ` ∈ L= {1, 2, . . ., 31} on the
iso-depth contour and line transect corresponding to the rel-
evant sample size, using the expressions

B(n;Mth)=
1
|L|
∑
`∈L

(
h̃(`;n,Mth)− h̃0(`;n)

)
,

U(n;Mth)=
1
|L|
∑
`∈L

(
r(`;n,Mth)

r0(`;n)
− 1

)
. (4)

Here, h̃(`;n,Mth) and h̃0(n) correspond to the mean 500-
year return value estimated using sample size n from
the inference method Mth (either maximum likelihood or
probability-weighted moments) and directly from the full
synthetic cyclone database; r(`;n,Mth) and r0(n) are the
corresponding 50 % uncertainty bands. The table summa-
rizes the findings presented pictorially in Figs. 6–8. In terms
of bias, STM-E and single-location estimates underestimate
the return value on average. STM-E is less biased than single-
location estimates except for sample sizes of 20 and 30 us-
ing probability-weighted moments. STM-E also provides es-
timates of the 500-year return value with higher precision
than the single-location analysis.

Table 2 provides the corresponding summary for estima-
tion of the T = 100-year return value from a sample corre-
sponding to approximately T0 = 50 years of data. Features
are similar to those of Table 1.

An appropriate choice of sample size n for STM-E analy-
sis is likely to be related to the size n0 of the full sample avail-
able and the period T0 to which the sample corresponds. For
example, in the current work for T = 500 years, n= 20 and
n0 = 124 are approximately equivalent to the largest 15 % of
cyclones for the sample period T0 = 200 year. That is, the
smallest cyclone considered in the n= 20 STM-E model has
a return period of the order of 10 years. With n= 60, we use
approximately half the sample for STM-E analysis, and the
smallest cyclone in the STM-E analysis has a return period of
the order of 3 years. In the case T = 100 years, T0 = 50, and
n0 ≈ 30, we found that STM-E performance was still reason-
able using n= 12, 15, and 20.

Inferences from the current work confirm the findings of
previous studies (Wada et al., 2018, 2020) that STM-E pro-
vides improved estimates of return values compared to sta-
tistical analysis at a single location. From an operational per-
spective, STM-E is useful for regions like the southwest Pa-
cific Ocean (McInnes et al., 2014) or Indian Ocean basin
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Table 2. Performance of STM-E and single-location analysis in es-
timation of the bias and uncertainty of the 100-year return value,
relative to empirical estimates from the full synthetic cyclone data,
for analysis samples of size of 10, 15, and 20 all extracted from
the 50-year data set. Bias B is assessed as the average difference
(over the iso-depth contour and line transect analyses) between the
mean STM-E (or single-location) estimate and return value esti-
mated from the full cyclone data. Similarly, uncertainty U is as-
sessed in terms of the average width of the 50 % uncertainty band
of the STM-E (or single-location) estimate.

Maximum likelihood n= 10 15 20

Bias mean STM-E −0.476 −0.234 −0.087
Bias mean for single location −0.744 −0.787 −0.771
50 % intervals STM-E 2.545 2.089 1.705
50 % intervals for single location 3.071 3.044 3.005

Probability-weighted moments n= 10 15 20

Bias mean STM-E −0.740 −0.246 −0.017
Bias mean for single location −0.770 −0.737 −0.798
50 % intervals STM-E 2.603 2.105 1.857
50 % intervals for single location 3.087 3.029 3.138

(Lecacheux et al., 2012), where cyclone-induced storm wave
data are limited. For such locations, STM-E achieves low
bias and higher precision and should be preferred to the
single-location approach.
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