Articles | Volume 22, issue 1
https://doi.org/10.5194/nhess-22-41-2022
https://doi.org/10.5194/nhess-22-41-2022
Research article
 | 
06 Jan 2022
Research article |  | 06 Jan 2022

Development of a seismic site-response zonation map for the Netherlands

Janneke van Ginkel, Elmer Ruigrok, Jan Stafleu, and Rien Herber

Related authors

Spectral characteristics of seismic ambient vibrations reveal subglacial hydraulic changes beneath Glacier de la Plaine Morte, Switzerland
Janneke van Ginkel, Fabian Walter, Fabian Lindner, Miroslav Hallo, Matthias Huss, and Donat Fäh
EGUsphere, https://doi.org/10.5194/egusphere-2024-646,https://doi.org/10.5194/egusphere-2024-646, 2024
Short summary
Using horizontal-to-vertical spectral ratios to construct shear-wave velocity profiles
Janneke van Ginkel, Elmer Ruigrok, and Rien Herber
Solid Earth, 11, 2015–2030, https://doi.org/10.5194/se-11-2015-2020,https://doi.org/10.5194/se-11-2015-2020, 2020
Short summary

Related subject area

Earthquake Hazards
Modelling seismic ground motion and its uncertainty in different tectonic contexts: challenges and application to the 2020 European Seismic Hazard Model (ESHM20)
Graeme Weatherill, Sreeram Reddy Kotha, Laurentiu Danciu, Susana Vilanova, and Fabrice Cotton
Nat. Hazards Earth Syst. Sci., 24, 1795–1834, https://doi.org/10.5194/nhess-24-1795-2024,https://doi.org/10.5194/nhess-24-1795-2024, 2024
Short summary
Scoring and ranking probabilistic seismic hazard models: an application based on macroseismic intensity data
Vera D'Amico, Francesco Visini, Andrea Rovida, Warner Marzocchi, and Carlo Meletti
Nat. Hazards Earth Syst. Sci., 24, 1401–1413, https://doi.org/10.5194/nhess-24-1401-2024,https://doi.org/10.5194/nhess-24-1401-2024, 2024
Short summary
A dense micro-electromechanical system (MEMS)-based seismic network in populated areas: rapid estimation of exposure maps in Trentino (NE Italy)
Davide Scafidi, Alfio Viganò, Jacopo Boaga, Valeria Cascone, Simone Barani, Daniele Spallarossa, Gabriele Ferretti, Mauro Carli, and Giancarlo De Marchi
Nat. Hazards Earth Syst. Sci., 24, 1249–1260, https://doi.org/10.5194/nhess-24-1249-2024,https://doi.org/10.5194/nhess-24-1249-2024, 2024
Short summary
Exploring inferred geomorphological sediment thickness as a new site proxy to predict ground-shaking amplification at regional scale: application to Europe and eastern Türkiye
Karina Loviknes, Fabrice Cotton, and Graeme Weatherill
Nat. Hazards Earth Syst. Sci., 24, 1223–1247, https://doi.org/10.5194/nhess-24-1223-2024,https://doi.org/10.5194/nhess-24-1223-2024, 2024
Short summary
Surface rupture kinematics of the 2020 Mw 6.6 Masbate (Philippines) earthquake determined from optical and radar data
Khelly Shan Sta. Rita, Sotiris Valkaniotis, and Alfredo Mahar Francisco Lagmay
Nat. Hazards Earth Syst. Sci., 24, 1135–1161, https://doi.org/10.5194/nhess-24-1135-2024,https://doi.org/10.5194/nhess-24-1135-2024, 2024
Short summary

Cited articles

Akkar, S., Sandıkkaya, M., and Bommer, J. J.: Empirical ground-motion models for point-and extended-source crustal earthquake scenarios in Europe and the Middle East, B. Earthq. Eng., 12, 359–387, 2014. a
Albarello, D. and Lunedei, E.: Combining horizontal ambient vibration components for H/V spectral ratio estimates, Geophys. J. Int., 194, 936–951, 2013. a
Bard, P.-Y.: Microtremor measurements: a tool for site effect estimation, in: Proceeding of the Second International Symposium on the Effects of Surface Geology on Seismic Motion, AA Balkema, Rotterdam, 3, 1251–1279, 1998. a
Bard, P.-Y.: Extracting information from ambient seismic noise: the SESAME project (Site EffectS assessment using AMbient Excitations), European Project EVG1-CT-2000-00026 SESAME, 2002. a
Bard, P.-Y., Campillo, M., Chavez-Garcia, F., and Sanchez-Sesma, F.: The Mexico earthquake of September 19, 1985 – A theoretical investigation of large-and small-scale amplification effects in the Mexico City Valley, Earthq. Spectra, 4, 609–633, 1988. a
Download
Short summary
A soft, shallow subsurface composition has the tendency to amplify earthquake waves, resulting in increased ground shaking. Therefore, this paper presents a workflow in order to obtain a map classifying the response of the subsurface based on local geology, earthquake signals, and background noise recordings for the Netherlands. The resulting map can be used as a first assessment in regions with earthquake hazard potential by mining or geothermal energy activities, for example.
Altmetrics
Final-revised paper
Preprint