Articles | Volume 22, issue 1
https://doi.org/10.5194/nhess-22-41-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-22-41-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Development of a seismic site-response zonation map for the Netherlands
Energy and Sustainability Research Institute Groningen,
University of Groningen, Nijenborgh 6, 9747 AG Groningen, the Netherlands
R&D Seismology and Acoustics, Royal Netherlands Meteorological
Institute, Utrechtseweg 297, 3731 GA De Bilt, the Netherlands
Elmer Ruigrok
R&D Seismology and Acoustics, Royal Netherlands Meteorological
Institute, Utrechtseweg 297, 3731 GA De Bilt, the Netherlands
Department of Earth Sciences, Utrecht University, Princetonlaan 8a, 3584 CB Utrecht, the Netherlands
Jan Stafleu
TNO – Geological Survey of the Netherlands, Princetonlaan 6, 3584 CB Utrecht, the Netherlands
Rien Herber
Energy and Sustainability Research Institute Groningen,
University of Groningen, Nijenborgh 6, 9747 AG Groningen, the Netherlands
Related authors
Antoine Paul Zaninetti, Martin P. Lüthi, Adrien Justin Wehrlé, Janneke van Ginkel, and Ana Nap
EGUsphere, https://doi.org/10.5194/egusphere-2025-2963, https://doi.org/10.5194/egusphere-2025-2963, 2025
Short summary
Short summary
We investigate the spectral and thermal properties of the strikingly blue ice present on freshly calved icebergs from polar ice streams using satellite multispectral imaging and on-site thermal imaging. Blue ice has intriguing properties. Whether it is cold or temperate is an important question for the understanding of the fast, complex dynamics of ice streams.
Janneke van Ginkel, Fabian Walter, Fabian Lindner, Miroslav Hallo, Matthias Huss, and Donat Fäh
The Cryosphere, 19, 1469–1490, https://doi.org/10.5194/tc-19-1469-2025, https://doi.org/10.5194/tc-19-1469-2025, 2025
Short summary
Short summary
This study on Glacier de la Plaine Morte in Switzerland employs various passive seismic analysis methods to identify complex hydraulic behaviours at the ice–bedrock interface. In 4 months of seismic records, we detect spatio-temporal variations in the glacier's basal interface, following the drainage of an ice-marginal lake. We identify a low-velocity layer, whose properties are determined using modelling techniques. This low-velocity layer results from temporary water storage subglacially.
Janneke van Ginkel, Elmer Ruigrok, and Rien Herber
Solid Earth, 11, 2015–2030, https://doi.org/10.5194/se-11-2015-2020, https://doi.org/10.5194/se-11-2015-2020, 2020
Short summary
Short summary
Knowledge of subsurface velocities is key to understand how earthquake waves travel through the Earth. We present a method to construct velocity profiles for the upper sediment layer on top of the Groningen field, the Netherlands. Here, the soft-sediment layer causes resonance of seismic waves, and this resonance is used to compute velocities from. Recordings from large earthquakes and the background noise signals are used to derive reliable velocities for the deep sedimentary layer.
Antoine Paul Zaninetti, Martin P. Lüthi, Adrien Justin Wehrlé, Janneke van Ginkel, and Ana Nap
EGUsphere, https://doi.org/10.5194/egusphere-2025-2963, https://doi.org/10.5194/egusphere-2025-2963, 2025
Short summary
Short summary
We investigate the spectral and thermal properties of the strikingly blue ice present on freshly calved icebergs from polar ice streams using satellite multispectral imaging and on-site thermal imaging. Blue ice has intriguing properties. Whether it is cold or temperate is an important question for the understanding of the fast, complex dynamics of ice streams.
Janneke van Ginkel, Fabian Walter, Fabian Lindner, Miroslav Hallo, Matthias Huss, and Donat Fäh
The Cryosphere, 19, 1469–1490, https://doi.org/10.5194/tc-19-1469-2025, https://doi.org/10.5194/tc-19-1469-2025, 2025
Short summary
Short summary
This study on Glacier de la Plaine Morte in Switzerland employs various passive seismic analysis methods to identify complex hydraulic behaviours at the ice–bedrock interface. In 4 months of seismic records, we detect spatio-temporal variations in the glacier's basal interface, following the drainage of an ice-marginal lake. We identify a low-velocity layer, whose properties are determined using modelling techniques. This low-velocity layer results from temporary water storage subglacially.
Irene Bianchi, Elmer Ruigrok, Anne Obermann, and Edi Kissling
Solid Earth, 12, 1185–1196, https://doi.org/10.5194/se-12-1185-2021, https://doi.org/10.5194/se-12-1185-2021, 2021
Short summary
Short summary
The European Alps formed during collision between the European and Adriatic plates and are one of the most studied orogens for understanding the dynamics of mountain building. In the Eastern Alps, the contact between the colliding plates is still a matter of debate. We have used the records from distant earthquakes to highlight the geometries of the crust–mantle boundary in the Eastern Alpine area; our results suggest a complex and faulted internal crustal structure beneath the higher crests.
Janneke van Ginkel, Elmer Ruigrok, and Rien Herber
Solid Earth, 11, 2015–2030, https://doi.org/10.5194/se-11-2015-2020, https://doi.org/10.5194/se-11-2015-2020, 2020
Short summary
Short summary
Knowledge of subsurface velocities is key to understand how earthquake waves travel through the Earth. We present a method to construct velocity profiles for the upper sediment layer on top of the Groningen field, the Netherlands. Here, the soft-sediment layer causes resonance of seismic waves, and this resonance is used to compute velocities from. Recordings from large earthquakes and the background noise signals are used to derive reliable velocities for the deep sedimentary layer.
Cited articles
Akkar, S., Sandıkkaya, M., and Bommer, J. J.: Empirical ground-motion models
for point-and extended-source crustal earthquake scenarios in Europe and
the Middle East, B. Earthq. Eng., 12, 359–387, 2014. a
Albarello, D. and Lunedei, E.: Combining horizontal ambient vibration
components for H/V spectral ratio estimates, Geophys. J. Int., 194, 936–951, 2013. a
Bard, P.-Y.: Microtremor measurements: a tool for site effect estimation, in:
Proceeding of the Second International Symposium on the Effects of Surface
Geology on Seismic Motion, AA Balkema, Rotterdam, 3, 1251–1279,
1998. a
Bard, P.-Y.: Extracting information from ambient seismic noise: the SESAME
project (Site EffectS assessment using AMbient Excitations),
European Project EVG1-CT-2000-00026 SESAME, 2002. a
Bard, P.-Y., Campillo, M., Chavez-Garcia, F., and Sanchez-Sesma, F.: The
Mexico earthquake of September 19, 1985 – A theoretical investigation of
large-and small-scale amplification effects in the Mexico City Valley,
Earthq. Spectra, 4, 609–633, 1988. a
Bazzurro, P. and Cornell, C. A.: Nonlinear soil-site effects in probabilistic
seismic-hazard analysis, B. Seismol. Soc. Am.,
94, 2110–2123, 2004. a
Beets, D. J. and van der Spek, A. J.: The Holocene evolution of the barrier and
the back-barrier basins of Belgium and the Netherlands as a function of late
Weichselian morphology, relative sea-level rise and sediment supply,
Netherlands J. Geosci., 79, 3–16, 2000. a
Bindi, D., Massa, M., Luzi, L., Ameri, G., Pacor, F., Puglia, R., and Augliera,
P.: Pan-European ground-motion prediction equations for the average
horizontal component of PGA, PGV, and 5 %-damped PSA at spectral
periods up to 3.0 s using the RESORCE dataset, B. Earthq. Eng., 12, 391–430, 2014. a
Bommer, J. J., Stafford, P. J., Edwards, B., Dost, B., van Dedem, E.,
Rodriguez-Marek, A., Kruiver, P., van Elk, J., Doornhof, D., and Ntinalexis,
M.: Framework for a ground-motion model for induced seismic hazard and risk
analysis in the Groningen gas field, the Netherlands, Earthq. Spectra,
33, 481–498, 2017. a, b, c, d, e
Bonnefoy-Claudet, S., Cornou, C., Bard, P.-Y., Cotton, F., Moczo, P., Kristek,
J., and Donat, F.: H/V ratio: a tool for site effects evaluation. Results
from 1-D noise simulations, Geophys. J. Int., 167,
827–837, 2006a. a
Bonnefoy-Claudet, S., Cotton, F., and Bard, P.-Y.: The nature of noise
wavefield and its applications for site effects studies: A literature
review, Earth-Sci. Rev., 79, 205–227, 2006b. a
Bonnefoy-Claudet, S., Köhler, A., Cornou, C., Wathelet, M., and Bard,
P.-Y.: Effects of Love waves on microtremor ratio, B. Seismol. Soc. Am., 98, 288–300, 2008. a
Borcherdt, R. D.: Effects of local geology on ground motion near San Francisco
Bay, B. Seismol. Soc. Am., 60, 29–61, 1970. a
Bourne, S., Oates, S., van Elk, J., and Doornhof, D.: A seismological model for
earthquakes induced by fluid extraction from a subsurface reservoir, J. Geophys. Res.-Sol. Ea., 119, 8991–9015, 2014. a
Bradley, B. A.: Strong ground motion characteristics observed in the 4
September 2010 Darfield, New Zealand earthquake, Soil Dyn.
Earthq. Eng., 42, 32–46, 2012. a
Buijze, L., Van Den Bogert, P. A., Wassing, B. B., Orlic, B., and Ten Veen, J.:
Fault reactivation mechanisms and dynamic rupture modelling of
depletion-induced seismic events in a Rotliegend gas reservoir, Netherlands
J. Geosci., 96, s131–s148, 2017. a
Busschers, F., Kasse, C., Van Balen, R., Vandenberghe, J., Cohen, K., Weerts,
H., Wallinga, J., Johns, C., Cleveringa, P., and Bunnik, F.: Late Pleistocene
evolution of the Rhine-Meuse system in the southern North Sea basin: imprints
of climate change, sea-level oscillation and glacio-isostacy, Quaternary Sci. Rev., 26, 3216–3248, 2007. a
Camelbeeck, T. and Van Eck, T.: The 1992 Roermond earthquake, the Netherlands,
and its aftershocks, edited by: Camelbeeck, T., van Eck, T., Pelzing, R., Ahorner, L., Loohuis, J., Haak, H. W.,
Hoang-Trong, P., and Hollnack, D., Geologie en Mijnbouw, 73,
181–197, 1994. a
Castellaro, S., Mulargia, F., and Rossi, P. L.: VS30: Proxy for seismic
amplification?, Seismol. Res. Lett., 79, 540–543, 2008. a
Convertito, V., De Matteis, R., Cantore, L., Zollo, A., Iannaccone, G., and
Caccavale, M.: Rapid estimation of ground-shaking maps for seismic emergency
management in the Campania Region of southern Italy, Nat. Hazards, 52, 97–115,
2010. a
De Gans, W.: Quaternary Geology of the Netherlands, in: Geology of the
Netherlands, edited by: Wong, T. E., Batjes, D. A. J., and De Jager, J., Royal Netherlands Academy of Arts and Sciences, Amsterdam,
173–195, 2007. a
Dost, B., Ruigrok, E., and Spetzler, J.: Development of seismicity and
probabilistic hazard assessment for the Groningen gas field, Netherlands
J. Geosci., 96, s235–s245, 2017. a
Fäh, D., Kind, F., and Giardini, D.: A theoretical investigation of average
H/V ratios, Geophys. J. Int., 145, 535–549, 2001. a
Falcone, G., Acunzo, G., Mendicelli, A., Mori, F., Naso, G., Peronace, E.,
Porchia, A., Romagnoli, G., Tarquini, E., and Moscatelli, M.: Seismic
amplification maps of Italy based on site-specific microzonation dataset and
one-dimensional numerical approach, Eng. Geol., 289, 106170, https://doi.org/10.1016/j.enggeo.2021.106170, 2021. a
Field, E. H. and Jacob, K. H.: A comparison and test of various site-response
estimation techniques, including three that are not reference-site dependent,
B. Seismol. Soc. Am., 85, 1127–1143, 1995. a
Gallipoli, M. R., Calamita, G., Tragni, N., Pisapia, D., Lupo, M., Mucciarelli, M., Stabile, T. A., Perrone, A., Amato, L., Izzi, F., La Scaleia, G., Maio, D., Salvia, V.: Evaluation of
soil-building resonance effect in the urban area of the city of Matera
(Italy), Eng. Geol., 272, 105645, https://doi.org/10.1016/j.enggeo.2020.105645, 2020. a
Gariel, J., Horrent, C., Jongmans, D., and Camelbeeck, T.: Strong ground motion
computation of the 1992 Roermond earthquake, the Netherlands, from linear
methods using locally recorded aftershocks, Geologie en Mijnbouw, 73,
315–315, 1995. a
Geluk, M., Duin, E. T., Dusar, M., Rijkers, R., Van den Berg, M., and
Van Rooijen, P.: Stratigraphy and tectonics of the Roer Valley Graben,
Geologie en Mijnbouw, 73, 129–129, 1995. a
Gouw, M. and Erkens, G.: Architecture of the Holocene Rhine-Meuse delta (the
Netherlands) – a result of changing external controls, Netherlands J.
Geosci., 86, 23–54, 2007. a
Guillier, B., Chatelain, J.-L., Bonnefoy-Claudet, S., and Haghshenas, E.: Use
of ambient noise: From spectral amplitude variability to stability,
J. Earthq. Eng., 11, 925–942, 2007. a
Hijma, M. P., Cohen, K. M., Hoffmann, G., Van der Spek, A. J., and Stouthamer,
E.: From river valley to estuary: the evolution of the Rhine mouth in the
early to middle Holocene (western Netherlands, Rhine-Meuse delta),
Netherlands J. Geosci., 88, 13–53, 2009. a
Hinzen, K.-G., Reamer, S. K., and Fleischer, C.: Seismicity in the Northern
Rhine Area (1995–2018), J. Seismol., 25.2, 1–17, 2020. a
KNMI: Netherlands Seismic and Acoustic Network, Royal Netherlands
Meteorological Institute (KNMI), Other/Seismic Network,
https://doi.org/10.21944/e970fd34-23b9-3411-b366-e4f72877d2c5, 1993. a
Kokusho, T. and Sato, K.: Surface-to-base amplification evaluated from KiK-net
vertical array strong motion records, Soil Dyn. Earthq.
Eng., 28, 707–716, 2008. a
Konno, K. and Ohmachi, T.: Ground-motion characteristics estimated from
spectral ratio between horizontal and vertical components of microtremor,
B. Seismol. Soc. Am., 88, 228–241, 1998. a
Kruiver, P. P., van Dedem, E., Romijn, R., de Lange, G., Korff, M., Stafleu, J., Gunnink,
J. L., Rodriguez-Marek, A., Bommer,
J. J., van Elk, J., and Doornhof, D.:
An integrated shear-wave velocity model for the Groningen gas field, the
Netherlands, B. Earthq. Eng., 15, 1–26, https://doi.org/10.1007/s10518-017-0105-y, 2017a. a, b, c, d, e
Kruiver, P. P., Wiersma, A., Kloosterman, F. H., de Lange, G., Korff, M., Stafleu, J., Busschers, F. S., Harting, R., Gunnink, J. L., Green, R. A., van Elk, J., and Doornhof, D.: Characterisation of the Groningen subsurface for seismic hazard and
risk modelling, Netherlands J. Geosci., 96, s215–s233,
2017b. a, b
Kwok, A. O., Stewart, J. P., and Hashash, Y. M.: Nonlinear ground-response
analysis of Turkey Flat shallow stiff-soil site to strong ground motion,
B. Seismol. Soc. Am., 98, 331–343, 2008. a
Lee, V. W. and Trifunac, M. D.: Should average shear-wave velocity in the top
30 m of soil be used to describe seismic amplification?, Soil Dyn.
Earthq. Eng., 30, 1250–1258, 2010. a
Lunedei, E. and Malischewsky, P.: A review and some new issues on the theory of
the technique for ambient vibrations, in: Perspectives on European
Earthquake Engineering and Seismology, Springer International Publishing AG, Switzerland, 371–394,
https://doi.org/10.1007/978-3-319-16964-4, 2015. a
Majer, E. L., Baria, R., Stark, M., Oates, S., Bommer, J., Smith, B., and
Asanuma, H.: Induced seismicity associated with enhanced geothermal systems,
Geothermics, 36, 185–222, 2007. a
Mena, B., Wiemer, S., and Bachmann, C.: Building robust models to forecast the
induced seismicity related to geothermal reservoir enhancement, B. Seismol. Soc. Am., 103, 383–393, 2013. a
Mignan, A., Landtwing, D., Kästli, P., Mena, B., and Wiemer, S.: Induced
seismicity risk analysis of the 2006 Basel, Switzerland, Enhanced Geothermal
System project: Influence of uncertainties on risk mitigation, Geothermics,
53, 133–146, 2015. a
Nakata, N., Snieder, R., Kuroda, S., Ito, S., Aizawa, T., and Kunimi, T.:
Monitoring a building using deconvolution interferometry. I:
Earthquake-data analysis, B. Seismol. Soc. Am.,
103, 1662–1678, 2013. a
Noorlandt, R. P., Kruiver, P. P., de Kleine, M. P. E., Karaoulis, M., de Lange, G., Di Matteo, A., von Ketelhodt, J., Ruigrok, E., Edwards, B., RodriguezMarek, A., Bommer, J. J., van Elk, J., and Doornhof, D.: Characterisation of ground motion recording stations in the
Groningen gas field, J. Seismol., 22, 605–623, 2018. a, b
Panzera, F., Bergamo, P., and Fäh, D.: Canonical Correlation Analysis Based on Site-Response Proxies to Predict Site-Specific Amplification
695 Functions in Switzerland, B. Seismol. Soc. Am., 111, 1905–1920, https://doi.org/10.1785/0120200326, 2021. a
Peeters, J., Busschers, F., Stouthamer, E., Bosch, J., Van den Berg, M.,
Wallinga, J., Versendaal, A., Bunnik, F., and Middelkoop, H.: Sedimentary
architecture and chronostratigraphy of a late Quaternary incised-valley fill:
a case study of the late Middle and Late Pleistocene Rhine system in the
Netherlands, Quaternary Sci. Rev., 131, 211–236, 2016. a
Perron, V., Gélis, C., Froment, B., Hollender, F., Bard, P.-Y., Cultrera,
G., and Cushing, E. M.: Can broad-band earthquake site responses be predicted
by the ambient noise spectral ratio? Insight from observations at two
sedimentary basins, Geophys. J. Int., 215, 1442–1454, 2018. a
Pilz, M., Parolai, S., Leyton, F., Campos, J., and Zschau, J.: A comparison of
site response techniques using earthquake data and ambient seismic noise
analysis in the large urban areas of Santiago de Chile, Geophys. J. Int., 178, 713–728, 2009. a
Poggi, V., Edwards, B., and Fäh, D.: Derivation of a reference shear-wave
velocity model from empirical site amplification, B. Seismol. Soc. Am., 101, 258–274, 2011. a
Schokker, J.: Geologische overzichtskaart van Nederland, TNO Bouw en
Ondergrond, Utrecht, 2010. a
Stafleu, J., Maljers, D., Busschers, F. S., Schokker, J., Gunnink, J. L., and
Dambrink, R. M.: Models Created as 3-D Cellular Voxel Arrays, Applied
Multidimensional Geological Modeling: Informing sustainable human
interactions with the shallow subsurface, John Wiley & Sons, Ltd, 247–271,
https://doi.org/10.1002/9781119163091.ch11, 2021. a, b, c, d
van der Meulen, M. J., Doornenbal, J. C., Gunnink, J. L., Stafleu, J., Schokker, J., Vernes, R. W., van Geer, F. C., van Gessel, S. F., van Heteren, S., van Leeuwen, R. J. W., Bakker, M. A. J., Bogaard, P. J. F., Busschers, F. S., Griffioen, J., Gruijters, S. H. L. L., Kiden, P., Schroot, B. M., Simmelink, H. J., van Berkel, W. O., van der Krogt, R. A. A., Westerhoff, W. E., and van Daalen, T. M.: 3D geology in a 2D country: perspectives for geological surveying in
the Netherlands, Netherlands J. Geosci., 92, 217–241, 2013. a, b, c, d
van Ginkel, J., Ruigrok, E., and Herber, R.: Using horizontal-to-vertical spectral ratios to construct shear-wave velocity profiles, Solid Earth, 11, 2015–2030, https://doi.org/10.5194/se-11-2015-2020, 2020. a, b, c
van Ginkel, J., Ruigrok, E., Stafleu, J., and Herber, R.: seismic-site-response-zonation-map, KNMI Data Platform [data set], available at: https://dataplatform.knmi.nl/dataset/seismic-site-response-zonation-map-1-0, last access: 1 December 2021. a
van Thienen-Visser, K. and Breunese, J.: Induced seismicity of the Groningen
gas field: history and recent developments, The Leading Edge, 34,
664–671, 2015. a
Wapenaar, K., Slob, E., Snieder, R., and Curtis, A.: Tutorial on seismic
interferometry: Part 2 – Underlying theory and new advances, Geophysics,
75, 75A211–75A227, 2010. a
Wassing, B., Dost, B., and Vermillion, N. P.: Seismisch hazard van geinduceerde
aardbevingen: integratie van deelstudies, TNO/KNMI, Utrecht/de Bilt, 2012. a
Weatherill, G., Kotha, S. R., and Cotton, F.: Re-thinking site amplification in
regional seismic risk assessment, Earthq. Spectra, 36, 274–297, 2020. a
Wills, C., Petersen, M., Bryant, W., Reichle, M., Saucedo, G., Tan, S., Taylor,
G., and Treiman, J.: A site-conditions map for California based on geology
and shear-wave velocity, B. Seismol. Soc. Am.,
90, S187–S208, 2000. a
Zagwijn, W.: The Netherlands during the Tertiary and the Quaternary: a
case history of coastal lowland evolution, in: Coastal Lowlands, Springer, Dordrecht,
107–120, 1989. a
Short summary
A soft, shallow subsurface composition has the tendency to amplify earthquake waves, resulting in increased ground shaking. Therefore, this paper presents a workflow in order to obtain a map classifying the response of the subsurface based on local geology, earthquake signals, and background noise recordings for the Netherlands. The resulting map can be used as a first assessment in regions with earthquake hazard potential by mining or geothermal energy activities, for example.
A soft, shallow subsurface composition has the tendency to amplify earthquake waves, resulting...
Altmetrics
Final-revised paper
Preprint