Articles | Volume 22, issue 6
https://doi.org/10.5194/nhess-22-2117-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-22-2117-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Quantification of meteorological conditions for rockfall triggers in Germany
Katrin M. Nissen
CORRESPONDING AUTHOR
Institute for Meteorology, Freie Universität Berlin, Berlin, Germany
Stefan Rupp
Institute for Applied Physical Geography, University of Vechta, Vechta, Germany
Thomas M. Kreuzer
Institute for Geography and Geology, University of Würzburg, Würzburg, Germany
Björn Guse
Section Hydrology, GFZ German Research Centre for Geoscience, Potsdam, Germany
Bodo Damm
Institute for Applied Physical Geography, University of Vechta, Vechta, Germany
Uwe Ulbrich
Institute for Meteorology, Freie Universität Berlin, Berlin, Germany
Related authors
Subham Mukherjee, Kei Namba, Katrin M. Nissen, Ehsan Razipoor, Stefan Heiland, and Brigitta Schütt
EGUsphere, https://doi.org/10.5194/egusphere-2025-469, https://doi.org/10.5194/egusphere-2025-469, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
Berlin’s parks are vital for recreation, biodiversity, and climate resilience, yet they face growing challenges from socio-economic inequalities and climate change. Our review examines how factors like gentrification and extreme weather impact access to and sustainability of these parks. By analysing over 200 studies, we highlight the need for inclusive policies, community engagement, and climate-adaptive park designs to ensure that Berlin’s parks remain accessible, resilient, and socially just.
Pedro Henrique Lima Alencar, Saskia Arndt, Kei Namba, Márk Somogyvári, Frederik Bart, Fabio Brill, Juan Dueñas, Peter Feindt, Daniel Johnson, Nariman Mahmoodi, Christoph Merz, Subham Mukherjee, Katrin Nissen, Eva Nora Paton, Tobias Sauter, Dörthe Tetzlaff, Franziska Tügel, Thomas Vogelpohl, Stenka Valentinova Vulova, Behnam Zamani, and Hui Hui Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-428, https://doi.org/10.5194/egusphere-2025-428, 2025
Short summary
Short summary
As climate change escalates, the Berlin-Brandenburg region faces new challenges. Climate change-induced extreme events are expected to cause new conflicts to emerge and aggravate existing ones. To guide future research, we co-develop a list of key questions on climate and water challenges in the region. Our findings highlight the need for new research approaches. We expect this list to provide a roadmap for actionable knowledge production to address climate and water challenges in the region.
Franziska Tügel, Katrin M. Nissen, Lennart Steffen, Yangwei Zhang, Uwe Ulbrich, and Reinhard Hinkelmann
EGUsphere, https://doi.org/10.5194/egusphere-2025-445, https://doi.org/10.5194/egusphere-2025-445, 2025
Short summary
Short summary
This study examines how extreme rainfall in Berlin, Germany, may intensify due to global warming and how that could worsen flooding in a selected part of the city. We assess the role of the drainage system, infiltration from unsealed surfaces, and a potential adaptation scenario with all roofs as retention roofs in reducing flooding under extreme rainfall. Combining climate and hydrodynamic simulations, we provide insights into future challenges and possible solutions for urban flood management.
Elena Xoplaki, Florian Ellsäßer, Jens Grieger, Katrin M. Nissen, Joaquim G. Pinto, Markus Augenstein, Ting-Chen Chen, Hendrik Feldmann, Petra Friederichs, Daniel Gliksman, Laura Goulier, Karsten Haustein, Jens Heinke, Lisa Jach, Florian Knutzen, Stefan Kollet, Jürg Luterbacher, Niklas Luther, Susanna Mohr, Christoph Mudersbach, Christoph Müller, Efi Rousi, Felix Simon, Laura Suarez-Gutierrez, Svenja Szemkus, Sara M. Vallejo-Bernal, Odysseas Vlachopoulos, and Frederik Wolf
Nat. Hazards Earth Syst. Sci., 25, 541–564, https://doi.org/10.5194/nhess-25-541-2025, https://doi.org/10.5194/nhess-25-541-2025, 2025
Short summary
Short summary
Europe frequently experiences compound events, with major impacts. We investigate these events’ interactions, characteristics, and changes over time, focusing on socio-economic impacts in Germany and central Europe. Highlighting 2018’s extreme events, this study reveals impacts on water, agriculture, and forests and stresses the need for impact-focused definitions and better future risk quantification to support adaptation planning.
Viet Dung Nguyen, Sergiy Vorogushyn, Katrin Nissen, Lukas Brunner, and Bruno Merz
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 195–216, https://doi.org/10.5194/ascmo-10-195-2024, https://doi.org/10.5194/ascmo-10-195-2024, 2024
Short summary
Short summary
We present a novel stochastic weather generator conditioned on circulation patterns and regional temperature, accounting for dynamic and thermodynamic atmospheric changes. We extensively evaluate the model for the central European region. It statistically downscales precipitation for future periods, generating long, spatially and temporally consistent series. Results suggest an increase in extreme precipitation over the region, offering key benefits for hydrological impact studies.
Katrin M. Nissen, Martina Wilde, Thomas M. Kreuzer, Annika Wohlers, Bodo Damm, and Uwe Ulbrich
Nat. Hazards Earth Syst. Sci., 23, 2737–2748, https://doi.org/10.5194/nhess-23-2737-2023, https://doi.org/10.5194/nhess-23-2737-2023, 2023
Short summary
Short summary
The effect of climate change on rockfall probability in the German low mountain regions is investigated in observations and in 23 different climate scenario simulations. Under a pessimistic greenhouse gas scenario, the simulations suggest a decrease in rockfall probability. This reduction is mainly caused by a decrease in the number of freeze–thaw cycles due to higher atmospheric temperatures.
Michael Dietze, Rainer Bell, Ugur Ozturk, Kristen L. Cook, Christoff Andermann, Alexander R. Beer, Bodo Damm, Ana Lucia, Felix S. Fauer, Katrin M. Nissen, Tobias Sieg, and Annegret H. Thieken
Nat. Hazards Earth Syst. Sci., 22, 1845–1856, https://doi.org/10.5194/nhess-22-1845-2022, https://doi.org/10.5194/nhess-22-1845-2022, 2022
Short summary
Short summary
The flood that hit Europe in July 2021, specifically the Eifel, Germany, was more than a lot of fast-flowing water. The heavy rain that fell during the 3 d before also caused the slope to fail, recruited tree trunks that clogged bridges, and routed debris across the landscape. Especially in the upper parts of the catchments the flood was able to gain momentum. Here, we discuss how different landscape elements interacted and highlight the challenges of holistic future flood anticipation.
Andreas Trojand, Henning W. Rust, and Uwe Ulbrich
Nat. Hazards Earth Syst. Sci., 25, 2331–2350, https://doi.org/10.5194/nhess-25-2331-2025, https://doi.org/10.5194/nhess-25-2331-2025, 2025
Short summary
Short summary
The study investigates how the intensity of previous windstorm events and the time between two events affect the vulnerability of residential buildings in Germany. By analyzing 23 years of data, it was found that higher intensity of previous events generally reduces vulnerability in subsequent storms, while shorter intervals between events increase vulnerability. The results emphasize the approach of considering vulnerability in risk assessments as temporally dynamic.
Rike Lorenz, Nico Becker, Barry Gardiner, Uwe Ulbrich, Marc Hanewinkel, and Benjamin Schmitz
Nat. Hazards Earth Syst. Sci., 25, 2179–2196, https://doi.org/10.5194/nhess-25-2179-2025, https://doi.org/10.5194/nhess-25-2179-2025, 2025
Short summary
Short summary
Tree fall events have an impact on forests and transport systems. Our study explored tree fall in relation to wind and other weather conditions. We used tree fall data along railway lines and ERA5 and radar meteorological data to build a logistic regression model. We found that high and prolonged wind speeds, wet conditions, and high air density increase tree fall risk. These factors might change in the changing climate, which in return will change risks for trees, forests and transport.
Sergiy Vorogushyn, Li Han, Heiko Apel, Viet Dung Nguyen, Björn Guse, Xiaoxiang Guan, Oldrich Rakovec, Husain Najafi, Luis Samaniego, and Bruno Merz
Nat. Hazards Earth Syst. Sci., 25, 2007–2029, https://doi.org/10.5194/nhess-25-2007-2025, https://doi.org/10.5194/nhess-25-2007-2025, 2025
Short summary
Short summary
The July 2021 flood in central Europe was one of the deadliest floods in Europe in the recent decades and the most expensive flood in Germany. In this paper, we show that the hydrological impact of this event in the Ahr valley could have been even worse if the rainfall footprint trajectory had been only slightly different. The presented methodology of spatial counterfactuals generates plausible unprecedented events and helps to better prepare for future extreme floods.
Subham Mukherjee, Kei Namba, Katrin M. Nissen, Ehsan Razipoor, Stefan Heiland, and Brigitta Schütt
EGUsphere, https://doi.org/10.5194/egusphere-2025-469, https://doi.org/10.5194/egusphere-2025-469, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
Berlin’s parks are vital for recreation, biodiversity, and climate resilience, yet they face growing challenges from socio-economic inequalities and climate change. Our review examines how factors like gentrification and extreme weather impact access to and sustainability of these parks. By analysing over 200 studies, we highlight the need for inclusive policies, community engagement, and climate-adaptive park designs to ensure that Berlin’s parks remain accessible, resilient, and socially just.
Pedro Henrique Lima Alencar, Saskia Arndt, Kei Namba, Márk Somogyvári, Frederik Bart, Fabio Brill, Juan Dueñas, Peter Feindt, Daniel Johnson, Nariman Mahmoodi, Christoph Merz, Subham Mukherjee, Katrin Nissen, Eva Nora Paton, Tobias Sauter, Dörthe Tetzlaff, Franziska Tügel, Thomas Vogelpohl, Stenka Valentinova Vulova, Behnam Zamani, and Hui Hui Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-428, https://doi.org/10.5194/egusphere-2025-428, 2025
Short summary
Short summary
As climate change escalates, the Berlin-Brandenburg region faces new challenges. Climate change-induced extreme events are expected to cause new conflicts to emerge and aggravate existing ones. To guide future research, we co-develop a list of key questions on climate and water challenges in the region. Our findings highlight the need for new research approaches. We expect this list to provide a roadmap for actionable knowledge production to address climate and water challenges in the region.
Maria Staudinger, Anna Herzog, Ralf Loritz, Tobias Houska, Sandra Pool, Diana Spieler, Paul D. Wagner, Juliane Mai, Jens Kiesel, Stephan Thober, Björn Guse, and Uwe Ehret
EGUsphere, https://doi.org/10.5194/egusphere-2025-1076, https://doi.org/10.5194/egusphere-2025-1076, 2025
Short summary
Short summary
Four process-based and four data-driven hydrological models are compared using different training data. We found process-based models to perform better with small data sets but stop learning soon, while data-driven models learn longer. The study highlights the importance of memory in data and the impact of different data sampling methods on model performance. The direct comparison of these models is novel and provides a clear understanding of their performance under various data conditions.
Franziska Tügel, Katrin M. Nissen, Lennart Steffen, Yangwei Zhang, Uwe Ulbrich, and Reinhard Hinkelmann
EGUsphere, https://doi.org/10.5194/egusphere-2025-445, https://doi.org/10.5194/egusphere-2025-445, 2025
Short summary
Short summary
This study examines how extreme rainfall in Berlin, Germany, may intensify due to global warming and how that could worsen flooding in a selected part of the city. We assess the role of the drainage system, infiltration from unsealed surfaces, and a potential adaptation scenario with all roofs as retention roofs in reducing flooding under extreme rainfall. Combining climate and hydrodynamic simulations, we provide insights into future challenges and possible solutions for urban flood management.
Elena Xoplaki, Florian Ellsäßer, Jens Grieger, Katrin M. Nissen, Joaquim G. Pinto, Markus Augenstein, Ting-Chen Chen, Hendrik Feldmann, Petra Friederichs, Daniel Gliksman, Laura Goulier, Karsten Haustein, Jens Heinke, Lisa Jach, Florian Knutzen, Stefan Kollet, Jürg Luterbacher, Niklas Luther, Susanna Mohr, Christoph Mudersbach, Christoph Müller, Efi Rousi, Felix Simon, Laura Suarez-Gutierrez, Svenja Szemkus, Sara M. Vallejo-Bernal, Odysseas Vlachopoulos, and Frederik Wolf
Nat. Hazards Earth Syst. Sci., 25, 541–564, https://doi.org/10.5194/nhess-25-541-2025, https://doi.org/10.5194/nhess-25-541-2025, 2025
Short summary
Short summary
Europe frequently experiences compound events, with major impacts. We investigate these events’ interactions, characteristics, and changes over time, focusing on socio-economic impacts in Germany and central Europe. Highlighting 2018’s extreme events, this study reveals impacts on water, agriculture, and forests and stresses the need for impact-focused definitions and better future risk quantification to support adaptation planning.
Ralf Loritz, Alexander Dolich, Eduardo Acuña Espinoza, Pia Ebeling, Björn Guse, Jonas Götte, Sibylle K. Hassler, Corina Hauffe, Ingo Heidbüchel, Jens Kiesel, Mirko Mälicke, Hannes Müller-Thomy, Michael Stölzle, and Larisa Tarasova
Earth Syst. Sci. Data, 16, 5625–5642, https://doi.org/10.5194/essd-16-5625-2024, https://doi.org/10.5194/essd-16-5625-2024, 2024
Short summary
Short summary
The CAMELS-DE dataset features data from 1582 streamflow gauges across Germany, with records spanning from 1951 to 2020. This comprehensive dataset, which includes time series of up to 70 years (median 46 years), enables advanced research on water flow and environmental trends and supports the development of hydrological models.
Viet Dung Nguyen, Sergiy Vorogushyn, Katrin Nissen, Lukas Brunner, and Bruno Merz
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 195–216, https://doi.org/10.5194/ascmo-10-195-2024, https://doi.org/10.5194/ascmo-10-195-2024, 2024
Short summary
Short summary
We present a novel stochastic weather generator conditioned on circulation patterns and regional temperature, accounting for dynamic and thermodynamic atmospheric changes. We extensively evaluate the model for the central European region. It statistically downscales precipitation for future periods, generating long, spatially and temporally consistent series. Results suggest an increase in extreme precipitation over the region, offering key benefits for hydrological impact studies.
Bjorn Stevens, Stefan Adami, Tariq Ali, Hartwig Anzt, Zafer Aslan, Sabine Attinger, Jaana Bäck, Johanna Baehr, Peter Bauer, Natacha Bernier, Bob Bishop, Hendryk Bockelmann, Sandrine Bony, Guy Brasseur, David N. Bresch, Sean Breyer, Gilbert Brunet, Pier Luigi Buttigieg, Junji Cao, Christelle Castet, Yafang Cheng, Ayantika Dey Choudhury, Deborah Coen, Susanne Crewell, Atish Dabholkar, Qing Dai, Francisco Doblas-Reyes, Dale Durran, Ayoub El Gaidi, Charlie Ewen, Eleftheria Exarchou, Veronika Eyring, Florencia Falkinhoff, David Farrell, Piers M. Forster, Ariane Frassoni, Claudia Frauen, Oliver Fuhrer, Shahzad Gani, Edwin Gerber, Debra Goldfarb, Jens Grieger, Nicolas Gruber, Wilco Hazeleger, Rolf Herken, Chris Hewitt, Torsten Hoefler, Huang-Hsiung Hsu, Daniela Jacob, Alexandra Jahn, Christian Jakob, Thomas Jung, Christopher Kadow, In-Sik Kang, Sarah Kang, Karthik Kashinath, Katharina Kleinen-von Königslöw, Daniel Klocke, Uta Kloenne, Milan Klöwer, Chihiro Kodama, Stefan Kollet, Tobias Kölling, Jenni Kontkanen, Steve Kopp, Michal Koran, Markku Kulmala, Hanna Lappalainen, Fakhria Latifi, Bryan Lawrence, June Yi Lee, Quentin Lejeun, Christian Lessig, Chao Li, Thomas Lippert, Jürg Luterbacher, Pekka Manninen, Jochem Marotzke, Satoshi Matsouoka, Charlotte Merchant, Peter Messmer, Gero Michel, Kristel Michielsen, Tomoki Miyakawa, Jens Müller, Ramsha Munir, Sandeep Narayanasetti, Ousmane Ndiaye, Carlos Nobre, Achim Oberg, Riko Oki, Tuba Özkan-Haller, Tim Palmer, Stan Posey, Andreas Prein, Odessa Primus, Mike Pritchard, Julie Pullen, Dian Putrasahan, Johannes Quaas, Krishnan Raghavan, Venkatachalam Ramaswamy, Markus Rapp, Florian Rauser, Markus Reichstein, Aromar Revi, Sonakshi Saluja, Masaki Satoh, Vera Schemann, Sebastian Schemm, Christina Schnadt Poberaj, Thomas Schulthess, Cath Senior, Jagadish Shukla, Manmeet Singh, Julia Slingo, Adam Sobel, Silvina Solman, Jenna Spitzer, Philip Stier, Thomas Stocker, Sarah Strock, Hang Su, Petteri Taalas, John Taylor, Susann Tegtmeier, Georg Teutsch, Adrian Tompkins, Uwe Ulbrich, Pier-Luigi Vidale, Chien-Ming Wu, Hao Xu, Najibullah Zaki, Laure Zanna, Tianjun Zhou, and Florian Ziemen
Earth Syst. Sci. Data, 16, 2113–2122, https://doi.org/10.5194/essd-16-2113-2024, https://doi.org/10.5194/essd-16-2113-2024, 2024
Short summary
Short summary
To manage Earth in the Anthropocene, new tools, new institutions, and new forms of international cooperation will be required. Earth Virtualization Engines is proposed as an international federation of centers of excellence to empower all people to respond to the immense and urgent challenges posed by climate change.
Madlen Peter, Henning W. Rust, and Uwe Ulbrich
Nat. Hazards Earth Syst. Sci., 24, 1261–1285, https://doi.org/10.5194/nhess-24-1261-2024, https://doi.org/10.5194/nhess-24-1261-2024, 2024
Short summary
Short summary
The paper introduces a statistical modeling approach describing daily extreme precipitation in Germany more accurately by including changes within the year and between the years simultaneously. The changing seasonality over years is regionally divergent and mainly weak. However, some regions stand out with a more pronounced linear rise of summer intensities, indicating a possible climate change signal. Improved modeling of extreme precipitation is beneficial for risk assessment and adaptation.
Elena Macdonald, Bruno Merz, Björn Guse, Viet Dung Nguyen, Xiaoxiang Guan, and Sergiy Vorogushyn
Hydrol. Earth Syst. Sci., 28, 833–850, https://doi.org/10.5194/hess-28-833-2024, https://doi.org/10.5194/hess-28-833-2024, 2024
Short summary
Short summary
In some rivers, the occurrence of extreme flood events is more likely than in other rivers – they have heavy-tailed distributions. We find that threshold processes in the runoff generation lead to such a relatively high occurrence probability of extremes. Further, we find that beyond a certain return period, i.e. for rare events, rainfall is often the dominant control compared to runoff generation. Our results can help to improve the estimation of the occurrence probability of extreme floods.
Katrin M. Nissen, Martina Wilde, Thomas M. Kreuzer, Annika Wohlers, Bodo Damm, and Uwe Ulbrich
Nat. Hazards Earth Syst. Sci., 23, 2737–2748, https://doi.org/10.5194/nhess-23-2737-2023, https://doi.org/10.5194/nhess-23-2737-2023, 2023
Short summary
Short summary
The effect of climate change on rockfall probability in the German low mountain regions is investigated in observations and in 23 different climate scenario simulations. Under a pessimistic greenhouse gas scenario, the simulations suggest a decrease in rockfall probability. This reduction is mainly caused by a decrease in the number of freeze–thaw cycles due to higher atmospheric temperatures.
Johannes Riebold, Andy Richling, Uwe Ulbrich, Henning Rust, Tido Semmler, and Dörthe Handorf
Weather Clim. Dynam., 4, 663–682, https://doi.org/10.5194/wcd-4-663-2023, https://doi.org/10.5194/wcd-4-663-2023, 2023
Short summary
Short summary
Arctic sea ice loss might impact the atmospheric circulation outside the Arctic and therefore extremes over mid-latitudes. Here, we analyze model experiments to initially assess the influence of sea ice loss on occurrence frequencies of large-scale circulation patterns. Some of these detected circulation changes can be linked to changes in occurrences of European temperature extremes. Compared to future global temperature increases, the sea-ice-related impacts are however of secondary relevance.
Edmund P. Meredith, Uwe Ulbrich, and Henning W. Rust
Geosci. Model Dev., 16, 851–867, https://doi.org/10.5194/gmd-16-851-2023, https://doi.org/10.5194/gmd-16-851-2023, 2023
Short summary
Short summary
Cell-tracking algorithms allow for the study of properties of a convective cell across its lifetime and, in particular, how these respond to climate change. We investigated whether the design of the algorithm can affect the magnitude of the climate-change signal. The algorithm's criteria for identifying a cell were found to have a strong impact on the warming response. The sensitivity of the warming response to different algorithm settings and cell types should thus be fully explored.
Michael Dietze, Rainer Bell, Ugur Ozturk, Kristen L. Cook, Christoff Andermann, Alexander R. Beer, Bodo Damm, Ana Lucia, Felix S. Fauer, Katrin M. Nissen, Tobias Sieg, and Annegret H. Thieken
Nat. Hazards Earth Syst. Sci., 22, 1845–1856, https://doi.org/10.5194/nhess-22-1845-2022, https://doi.org/10.5194/nhess-22-1845-2022, 2022
Short summary
Short summary
The flood that hit Europe in July 2021, specifically the Eifel, Germany, was more than a lot of fast-flowing water. The heavy rain that fell during the 3 d before also caused the slope to fail, recruited tree trunks that clogged bridges, and routed debris across the landscape. Especially in the upper parts of the catchments the flood was able to gain momentum. Here, we discuss how different landscape elements interacted and highlight the challenges of holistic future flood anticipation.
Alexander Pasternack, Jens Grieger, Henning W. Rust, and Uwe Ulbrich
Geosci. Model Dev., 14, 4335–4355, https://doi.org/10.5194/gmd-14-4335-2021, https://doi.org/10.5194/gmd-14-4335-2021, 2021
Short summary
Short summary
Decadal climate ensemble forecasts are increasingly being used to guide adaptation measures. To ensure the applicability of these probabilistic predictions, inherent systematic errors of the prediction system must be adjusted. Since it is not clear which statistical model is optimal for this purpose, we propose a recalibration strategy with a systematic model selection based on non-homogeneous boosting for identifying the most relevant features for both ensemble mean and ensemble spread.
Lieke Anna Melsen and Björn Guse
Hydrol. Earth Syst. Sci., 25, 1307–1332, https://doi.org/10.5194/hess-25-1307-2021, https://doi.org/10.5194/hess-25-1307-2021, 2021
Short summary
Short summary
Certain hydrological processes become more or less relevant when the climate changes. This should also be visible in the models that are used for long-term predictions of river flow as a consequence of climate change. We investigated this using three different models. The change in relevance should be reflected in how the parameters of the models are determined. In the different models, different processes become more relevant in the future: they disagree with each other.
Nico Becker, Henning W. Rust, and Uwe Ulbrich
Nat. Hazards Earth Syst. Sci., 20, 2857–2871, https://doi.org/10.5194/nhess-20-2857-2020, https://doi.org/10.5194/nhess-20-2857-2020, 2020
Short summary
Short summary
A set of models is developed to forecast hourly probabilities of weather-related road accidents in Germany at the spatial scale of administrative districts. Model verification shows that using precipitation and temperature data leads to the best accident forecasts. Based on weather forecast data we show that skilful predictions of accident probabilities of up to 21 h ahead are possible. The models can be used to issue impact-based warnings, which are relevant for road users and authorities.
Cited articles
Akaike, H.: A new look at the statistical model identification, IEEE T. Automat. Contr., 19, 716–723,
https://doi.org/10.1109/TAC.1974.1100705, 1974. a
Bajni, G., Camera, C. A. S., and Apuani, T.: Deciphering meteorological
influencing factors for Alpine rockfalls: a case study in Aosta Valley,
Landslides, 18, 3279–3298, https://doi.org/10.1007/s10346-021-01697-3, 2021. a, b, c
Benedetti, R.: Scoring Rules for Forecast Verification, Mon. Weather Rev., 138,
203–2011, https://doi.org/10.1175/2009MWR2945.1, 2010. a, b
Copernicus Land Monitoring Service: EU-DEM v1.1, Copernicus Programme [data set], https://land.copernicus.eu/imagery-in-situ/eu-dem/eu-dem-v1.1 (last access: 13 August 2021), 2016. a
Cornes, R., van der Schrier, G., van den Besselaar, E. J. M., and Jones, P. D.:
Ensemble Version of the E-OBS Temperature and Precipitation Datasets, J.
Geophys. Res.-Atmos, 123, 9391–9409, https://doi.org/10.1029/2017JD028200, 2018. a
Crozier, M.: Deciphering the effect of climate change on landslide activity: A
review, Geomorphology, 124, 260–267, https://doi.org/10.1016/j.geomorph.2010.04.009,
2010. a
D'Amato, J., Hantz, D., Guerin, A., Jaboyedoff, M., Baillet, L., and Mariscal, A.: Influence of meteorological factors on rockfall occurrence in a middle mountain limestone cliff, Nat. Hazards Earth Syst. Sci., 16, 719–735, https://doi.org/10.5194/nhess-16-719-2016, 2016. a, b, c, d
Damm, B. and Klose, M.: The landslide database for Germany: Closing the gap at
national level, Geomorphology, 249, 82–93,
https://doi.org/10.1016/j.geomorph.2015.03.021, 2015. a
Damm, B., Becht, M., Varga, K., and Heckmann, T.: Relevance of tectonic and
structural parameters in Triassic bedrock formations to landslide
susceptibility in Quaternary hillslope sediments, Quatern. Int., 222, 143–153,
https://doi.org/10.1016/j.quaint.2010.02.022, 2010. a
Damm, B., Terhorst, B., and Ottner, F.: Geotechnical properties of periglacial cover beds, in: Mid-latitude slope deposits (cover
beds), Elsevier, Amsterdam, p. 153, ISBN 9780444531186, 2013. a
Di Luzio, E., Mazzanti, P., Brunetti, A., and Baleani, M.: Assessment of
tectonic-controlled rock fall processes threatening the ancient Appia route
at the Aurunci Mountain pass (central Italy), Nat. Hazards, 102,
909–937, https://doi.org/10.1007/s11069-020-03939-4, 2020. a
Dorren, L., Berger, F., Jonsson, M., Krautblatter, M., Mölk, M., Stoffel,
M., and Wehrli, A.: State of the art in rockfall – forest interactions,
Schweizerische Zeitschrift fur Forstwesen, 158, 128–141,
https://doi.org/10.3188/szf.2007.0128, 2007. a
Droogers, P. and Allen, R. G.: Estimating Reference Evapotranspiration Under
Inaccurate Data Conditions, Irrigation and Drainage Systems, 16, 33–45, https://doi.org/10.1023/A:1015508322413,
2002. a
DWD Climate Data Center (CDC): REGNIE grids of daily precipitation, https://opendata.dwd.de/climate_environment/CDC/grids_germany/daily/regnie/, last access: 13 August 2021. a
European Climate Assessment and Dataset (ECA&D): E-OBS gridded dataset, https://www.ecad.eu/download/ensembles/ensembles.php, last access: 13 August 2021. a
Erismann, T. H. and Abele, G.: Dynamics of Rockslides and Rockfalls,
Springer, Berlin, Heidelberg, 316 pp., https://doi.org/10.1007/978-3-662-04639-5, 2001. a
Evans, S. G. and Hungr, O.: The assessment of rockfall hazard at the base of
talus slopes, Can. Geotech. J., 30, 620–636,
https://doi.org/10.1139/t93-054, 1993. a
Flageollet, J. C. and Weber, D.: Fall, in: Landslide recognition: identification, movement and causes, Wiley, Chichester, 13–28, ISBN 978-0-471-96477-3, 1996. a
Froude, M. J. and Petley, D. N.: Global fatal landslide occurrence from 2004 to 2016, Nat. Hazards Earth Syst. Sci., 18, 2161–2181, https://doi.org/10.5194/nhess-18-2161-2018, 2018. a
Gariano, S. L. and Guzzetti, F.: Landslides in a changing climate,
Earth-Sci. Rev., 162, 227–252, https://doi.org/10.1016/j.earscirev.2016.08.011,
2016. a
Gill, J. C. and Malamud, B. D.: Anthropogenic processes, natural hazards, and
interactions in a multi-hazard framework, Earth-Sci. Rev., 166,
246–269, https://doi.org/10.1016/j.earscirev.2017.01.002, 2017. a
Good, I. J.: Weight of evidence: A brief survey, in: Bayesian Statistics 2, 249–270, North Holland, Amsterdam, ISBN 978-0444877468, 1985. a
Haque, U., da Silva, P. F., Devoli, G., Pilz, J., Zhao, B., Khaloua, A.,
Wilopo, W., Andersen, P., Lu, P., Lee, J., Yamamoto, T., Keellings, D., Wu,
J.-H., and Glass, G. E.: The human cost of global warming: Deadly
landslides and their triggers (1995–2014), Sci. Total Environ., 682, 673–684, https://doi.org/10.1016/j.scitotenv.2019.03.415, 2019. a
Hargreaves, G. H.: Defining and using reference evapotranspiration, Irrigation and Drainage Engineering, 120, 1132–1139,
https://doi.org/10.1061/(ASCE)0733-9437(1994)120:6(1132), 1994. a
Horn, B. K. P.: Hill shading and the reflectance map, Proceedings of the IEEE, 69, 14–47, https://doi.org/10.1109/PROC.1981.11918, 1981. a
Hungr, O., Leroueil, S., and Picarelli, L.: The Varnes classification of
landslide types, an update, Landslides, 11, 167–194,
https://doi.org/10.1007/s10346-013-0436-y, 2014. a
IPCC (Intergovernmental Panel on Climate Change): Climate Change 2013 – The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. Camebridge, https://doi.org/10.1017/CBO9781107415324, 2014. a, b, c
Krautblatter, M., Moser, M., Schrott, L., Wolf, J., and Morche, D.:
Significance of rockfall magnitude and carbonate dissolution for rock slope
erosion and geomorphic work on Alpine limestone cliffs (Reintal, German Alps), Geomorphology, 167-168, 21–34,
https://doi.org/10.1016/j.geomorph.2012.04.007, 2012. a
LGB (Landesamt für Geologie und Bergbau Rheinland-Pfalz): Geologie von
Rheinland-Pfalz, Schweizerbart, Stuttgart, ISBN 978-3-510-65215-0, 2005. a
Macciotta, R., Hendry, M., Cruden, D. M., Blais-Stevens, A., and Edwards, T.:
Quantifying rock fall probabilities and their temporal distribution
associated with weather seasonality, Landslides, 14, 2025–2039,
https://doi.org/10.1007/s10346-017-0834-7, 2017. a, b, c
McColl, S. T.: Landslide Causes and Triggers, in: Landslide Hazards,
Risks and Disasters, edited by: Shroder, J. F. and Davies, T.,
Academic Press, 17–42, https://doi.org/10.1016/B978-0-12-396452-6.00002-1, 2015. a
Neuhäuser, B. and Terhorst, B.: Landslide susceptibility assessment using
“weights-of-evidence” applied to a study area at the Jurassic escarpment
(SW-Germany), Geomorphology, 86, 12–24,
https://doi.org/10.1016/j.geomorph.2006.08.002, 2007. a
Pälchen, W. and Walter, H., (Eds.): Geologie von Sachsen I: Geologischer
Bau und Entwicklungsgeschichte, Schweizerbart, Stuttgart, ISBN 978-3-510-65270-9, 2008. a
Paranunzio, R., Chiarle, M., Laio, F., Nigrell, G., Turconi, L., and Luino, F.:
New insights in the relation between climate and slope failures at
high-elevation sites, Theor. Appl. Climatol., 137, 1765–1784,
https://doi.org/10.1007/s00704-018-2673-4, 2019. a
Rakovec, O., Kumar, R., Mai, J., Cuntz, M., Thober, S., Zink, M., Attinger, S.,
Schäfer, D., Schrön, M., and Samaniego, L.: Multiscale and
multivariate evaluation of water fluxes and states over European river
basins, Hydrometeor., 17, 287–307, https://doi.org/10.1175/JHM-D-15-0054.1, 2016. a
Rauthe, M., Steiner, H., Riediger, U., Mazurkiewicz, A., and Gratzki, A.: A
Central European precipitation climatology – Part I: Generation and
validation of a high-resolution gridded daily data set (HYRAS), Meteorol.
Z., 22, 235–256, https://doi.org/10.1127/0941-2948/2013/0436, 2013. a
Robbins, B. A., Stephens, I. J., and Marcuson, W. F.: Geotechnical
Engineering, in: Encyclopedia of Geology, edited by: Alderton, D. and Elias,
S. A., second edn., Academic Press, 377–392,
https://doi.org/10.1016/B978-0-12-409548-9.12508-4, 2021. a
Rupp, S. and Damm, B.: A national rockfall dataset as a tool for analysing the
spatial and temporal rockfall occurrence in Germany, Earth Surf. Process.
Landforms, 45, 1528–1538, https://doi.org/10.1002/esp.4827, 2020. a, b, c, d
Samaniego, L., Kumar, R., and Attinger, S.: Multiscale parameter
regionalization of a grid‐based hydrologic model at the mesoscale, Water
Resour. Res., 46, W05523, https://doi.org/10.1029/2008WR007327, 2010. a
Samaniego, L., Thober, S., Kumar, R., Wanders, N., Rakovec, O., Pan, M., Zink,
M., Sheffield, J., Wood, E. F., and Marx, A.: Anthropogenic warming
exacerbates European soil moisture droughts, Nature Clim. Change, 8,
421–426, https://doi.org/10.1038/s41558-018-0138-5, 2018. a
Samaniego, L., Thober, S., Wanders, N., Pan, M., Rakovec, O., Sheffield, J.,
Wood, E. F., Prudhomme, C., Rees, G., Houghton-Carr, H., Fry, M., Smith, K.,
Watts, G., Hisdal, H., Estrela, T., Buontempo, C., Marx, A., and Kumar, R.:
Hydrological forecasts and projections for improved decision-making in the
water sector in Europe, B. Am. Meteorol. Soc., 100, 2451–2471, https://doi.org/10.1175/BAMS-D-17-0274.1, 2019. a
Sass, O. and Oberlechner, M.: Is climate change causing increased rockfall frequency in Austria?, Nat. Hazards Earth Syst. Sci., 12, 3209–3216, https://doi.org/10.5194/nhess-12-3209-2012, 2012. a, b, c
Savi, S., Comiti, F., and Strecker, M. R.: Pronounced increase in slope
instability linked to global warming: A case study from the eastern European
Alps, Earth Surf. Process. Landforms., 46, 1328–1347,
https://doi.org/10.1002/esp.5100, 2021. a
Selby, M. J., (Ed.): Hillslope materials and processes, Oxford University Press, New York, ISBN 978-0198741831, 1993. a
Siddiqi, N.: Credit Risk Scorecards: Developing and Implementing Intelligent
Credit Scoring, Wiley, Hoboken, New Jersey, https://doi.org/10.1002/9781119201731,
2006. a, b
Siddique, T., Pradhan, S. P., and Vishal, V.: Rockfall: A Specific Case
of Landslide, Advances in Natural and Technological Hazards
Research, Springer International Publishing, Cham, 61–81,
https://doi.org/10.1007/978-3-319-77377-3_4, 2019. a
Souleymane, D., Ogawa, Y., and Zhang, M.: Effects of Cyclic Wetting and
Drying on Physical and Mechanical Properties of Neogene
Sandstones and Siltstones from Boso Peninsula, Japan, Journal of the Japan Society of Engineering Geology, 49, 150–163,
https://doi.org/10.5110/jjseg.49.150, 2008. a
Spadari, M., Giacomini, A., Buzzi, O., Fityus, S., and Giani, G. P.: In situ
rockfall testing in New South Wales, Australia, Int. J. Rock Mech. Min., 49, 84–93,
https://doi.org/10.1016/j.ijrmms.2011.11.013, 2012. a
Vicente-Serrano, S. M., Beguería, S., and López-Moreno, J. I.: A
multi-scalar drought index sensitive to global warming: the standardized
precipitation evapotranspiration index – SPEI, J. Clim., 23, 1696–1718,
https://doi.org/10.1175/2009JCLI2909.1, 2010. a
Viles, H. A.: Linking weathering and rock slope instability: non-linear
perspectives, Earth Surf. Process. Landforms, 38, 62–70,
https://doi.org/10.1002/esp.3294, 2013. a
Wagner, B.: Spatial analysis of loess and loess-like sediments in the
Weser-Aller catchment (Lower Saxony and Northern Hesse, NW Germany),
Quaternary Science Journal, 60, 27–46, https://doi.org/10.3285/eg.60.1.02,
2011.
a
Whalley, W. B.: The mechanics of high magnitude-low frequency rock failure and its importance in mountainous areas, Reading Geographical Papers, 27, 48 pp., https://www.researchgate.net/publication/44734787_The_mechanics_of_high-magnitude_low-frequency_rock_failure_and_its_importance_in_a_mountainous_area_W_Brian_Whalley
(last access: 13 August 2022), 1974. a
Winterrath, T., Brendel, C., Hafer, M., Junghänel, T., Klameth, A., Lengfeld,
K., Walawender, E., Weigl, E., and Becker, A.: Reprocessed gauge-adjusted
radar-data, one-hour precipitation sums (RW), DWD Climate Data Center [data set],
https://doi.org/10.5676/DWD/RADKLIM_RW_V2017.002, 2018. a, b
Zink, M., Samaniego, L., Kumar, R., Thober, S., Mai, J., Schäfer, D., and
Marx, A.: The German drought monitor, Environ. Res. Lett., 11, 074002, https://doi.org/10.1088/1748-9326/11/7/074002,
2016. a, b
Short summary
A statistical model is introduced which quantifies the influence of individual potential triggering factors and their interactions on rockfall probability in central Europe. The most important factor is daily precipitation, which is most effective if sub-surface moisture levels are high. Freeze–thaw cycles in the preceding days can further increase the rockfall hazard. The model can be applied to climate simulations in order to investigate the effect of climate change on rockfall probability.
A statistical model is introduced which quantifies the influence of individual potential...
Altmetrics
Final-revised paper
Preprint