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Abstract. A rockfall dataset for Germany is analysed with
the objective of identifying the meteorological and hydro-
logical (pre-)conditions that change the probability for such
events in central Europe. The factors investigated in the anal-
ysis are precipitation amount and intensity, freeze–thaw cy-
cles, and subsurface moisture. As there is no suitable ob-
servational dataset for all relevant subsurface moisture types
(e.g. water in rock pores and cleft water) available, simulated
soil moisture and a proxy for pore water are tested as substi-
tutes. The potential triggering factors were analysed both for
the day of the event and for the days leading up to it.

A logistic regression model was built, which considers in-
dividual potential triggering factors and their interactions. It
is found that the most important factor influencing rockfall
probability in the research area is the precipitation amount
at the day of the event, but the water content of the ground
on that day and freeze–thaw cycles in the days prior to the
event also influence the hazard probability. Comparing sim-
ulated soil moisture and the pore-water proxy as predictors
for rockfall reveals that the proxy, calculated as accumulated
precipitation minus potential evaporation, performs slightly
better in the statistical model.

Using the statistical model, the effects of meteorological
conditions on rockfall probability in German low mountain
ranges can be quantified. The model suggests that precipi-
tation is most efficient when the pore-water content of the
ground is high. An increase in daily precipitation from its lo-
cal 50th percentile to its 90th percentile approximately dou-
bles the probability for a rockfall event under median pore-
water conditions. When the pore-water proxy is at its 95th

percentile, the same increase in precipitation leads to a 4-fold
increase in rockfall probability. The occurrence of a freeze–
thaw cycle in the preceding days increases the rockfall hazard
by about 50 %. The most critical combination can therefore
be expected in winter and at the beginning of spring after a
freeze–thaw transition, which is followed by a day with high
precipitation amounts and takes place in a region precondi-
tioned by a high level of subsurface moisture.

1 Introduction

Landslides are geomorphological hazards associated with
damage and fatalities to people and their connected struc-
tures (Froude and Petley, 2018). There is scientific consen-
sus that specific weather conditions can strongly influence
landslide occurrences (McColl, 2015). Thus, as the effects of
climate change become more and more visible, the scientific
community tries to understand and predict the consequences
for landslides (e.g. Gariano and Guzzetti, 2016; Macciotta
et al., 2017; Haque et al., 2019; Bajni et al., 2021). However,
specific weather conditions must meet specific ground con-
ditions for landslides to occur. Consequently, meteorological
parameters and thresholds are spatially heterogeneous, and
results from previous studies on this issue are site-specific
(Spadari et al., 2012; Siddique et al., 2019). Furthermore,
the term “landslides” encompasses multiple mass-wasting
processes on slopes (e.g. mud flow and rockfall) that each
depend on different preconditions and trigger mechanisms
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(Varnes, 1978; Hungr et al., 2014). It is therefore sensible to
study these different types of processes separately.

Against this background, the present study focuses on
multiple rockfall clusters spanning all of Germany. Rock-
fall is the removal of superficial and individual rocks from
a rock cut slope (Robbins et al., 2021). In solid rock, the
density and size of fissures and cracks are preconditions that
promote rockfall; i.e. they represent weak points vulnerable
to weathering that may eventually dislodge individual rocks
(Erismann and Abele, 2001). Thus, all weathering mecha-
nisms that promote rockfall can also be trigger mechanisms
that cause the start of a rockfall event. Weathering mecha-
nisms driven by meteorological events can be the wetting and
drying of matrix pores in sand- and siltstones from precipita-
tion and evaporation (e.g. by means of swelling clays), car-
bonate dissolution in carbonatic rocks from rainfall, and frost
shattering due to water-filled rock discontinuities at low tem-
peratures (Souleymane et al., 2008; Krautblatter et al., 2012;
Viles, 2013). In the case of frost shattering, weathering and
triggering mechanisms may differ, since rockfalls may oc-
cur during thawing rather than during cooling periods; this is
because the cohesion of the ice–rock interface can be suffi-
cient to hold the rock in place (D’Amato et al., 2016). The
direct effect of temperature on the frequency of rock-slope
failures in permafrost locations is based on the same mech-
anism (e.g. Paranunzio et al., 2019; Savi et al., 2021), but
does not play a role in our study region. Moreover, there are
weathering mechanisms not directly linked to meteorological
events that may promote or trigger rockfalls. Tectonic activ-
ity may weather rock through earthquakes, phases of folding,
thrusting, strike-slip, and normal faulting (Di Luzio et al.,
2020). Tree root growth may expand rock fractures and joints
(Dorren et al., 2007). Lastly, anthropogenically induced vi-
brations and tremors (e.g. from explosions or machine use)
or direct constructional interventions may lead to weathering
of rock (Gill and Malamud, 2017).

In this context, the question arises as to whether a statis-
tical model focused on meteorological parameters can accu-
rately predict rockfall occurrence. A first investigation con-
ducted on a monthly basis by Rupp and Damm (2020) al-
ready suggests that a relationship between rockfall events,
temperature and precipitation is likely to exist in the selected
study areas. The present analysis focuses on the quantifica-
tion of these effects for a later application in climate change
studies. For this type of application, it is essential to consider
all climatic factors that promote or suppress rockfall together,
as they can reinforce or cancel each other out (Crozier, 2010).
For example, climate projections suggest that heavy pre-
cipitation – a well-known rockfall promoter and trigger –
may increase in magnitude and frequency due to the higher
moisture-holding capacity of warmer air (IPCC, 2014). At
the same time, increases in evaporation due to higher tem-
peratures decrease water availability, which may slow down
weathering mechanisms in some cases. To account for this, a
statistical model that includes the interaction between the rel-

evant local daily variables was developed. The evaluation of
simulated soil moisture and a pore-water proxy that accounts
for evaporation as parameters for water availability distin-
guishes our approach from similar studies (e.g. Bajni et al.,
2021; D’Amato et al., 2016; Macciotta et al., 2017; Sass and
Oberlechner, 2012).

2 Data

2.1 Rockfall

The present study uses historical rockfall data that are ex-
tracted from the landslide database of Germany (see Damm
and Klose, 2015; Rupp and Damm, 2020). Scientific pub-
lications, governmental reports, police reports, civil protec-
tion reports, newspapers, field data collections, and GIS and
web analyses were the information sources for the landslide
database, which currently contains about 6000 mass move-
ment events of different types. The database mainly covers
the last 200 years, with the oldest event dated to 1137. Infor-
mation on 670 rockfall events (Fig. 1) is included in the rock-
fall dataset. The focus of the present study is on a number of
geomorphological processes (e.g. rockfall, rock topple, de-
bris fall, debris topple) that are characterised by the rapid
gravitational downslope fall of debris or rocks (Whalley,
1974; Varnes, 1978; Flageollet and Weber, 1996; Sass and
Oberlechner, 2012). Due to the different particle sizes and
volumes of the detached masses, the mentioned processes
are subsumed under the generic term rockfall in this study
(Evans and Hungr, 1993; Selby, 1993). In addition to an iden-
tification number, the location (i.e. coordinates) and the date
of occurrence for each rockfall event are stored in the dataset.
For a total of 343 (642) rockfalls the day (year) of occurrence
is known, while the remaining are undated. The time span of
rockfall occurrences ranges between 1480 and 2018, with the
majority of them (n= 621) recorded from 1873 onwards. It
is important to note that the rockfall database is not compre-
hensive. The increase in the number of recorded events with
time (Fig. 2) is not due to climatic conditions but reflects the
fact that data on rockfall events were more readily available
in recent years.

The dense spatial clustering of rockfall events and high
temporal data homogeneity guide the selection of three study
areas (Fig. 1; ES is the German part of the Elbe Sandstone
mountains, HL is northern Hesse and southern Lower Sax-
ony, and HR is western Hesse and Rhineland-Palatinate).

2.1.1 Elbe Sandstone cluster

The ES cluster mainly includes the German parts of the Elbe
Sandstone Mountains, which are located on both sides of the
upper reach of the river Elbe between the Czech city Děčín
and the Saxon city Pirna. Geologically, the area is dominated
by compact Cretaceous sandstones. Fracturing and formation
of cracks and fissures came about by extensive uplift pro-
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cesses and long-term tectonic stresses. Fluvial incision ac-
counted for a heavily dissected relief with numerous hor-
izontal cracks, vertical joints and clefts, and small gorges
(Pälchen and Walter, 2008). The climatic conditions are char-
acterised as continental, with warm summers and cold win-
ters. The mean monthly temperature is between −0.8 ◦C in
January and 17.8 ◦C in July. Between 1946 and 2017, an-
nual precipitation ranged between 398 and 1153 mm with an
annual average of 758 mm.

2.1.2 Hesse and Lower Saxony cluster

The HL cluster embeds large parts of the northern German
Central Uplands, i.e. the Hesse Highlands and Lower Saxon
Hills. Predominantly, the geological conditions are charac-
terised by Middle Lower Triassic Bunter Sandstone. Pro-
nounced dissections were caused by tectonic stresses (Damm
et al., 2010). Quaternary sediments, for example periglacial
cover beds and loess covers, cover the bedrock in large parts
of the area (Wagner, 2011; Damm et al., 2013). The climate
can be described as temperate with warm summers and mild
winters. The mean monthly temperature is between 0.5 ◦C in
January and 17.3 ◦C in July. From 1902 to 2017, annual pre-
cipitation ranged between 357 and 1099 mm with an annual
average of 660 mm.

2.1.3 Hesse and Rhineland-Palatinate cluster

The HR cluster comprises large parts of the Hunsrück Hills
in Rhineland-Palatinate and a small part of the Taunus Hills
in Hesse. Geologically, Devonian bedrock, namely slate and
quartzite, is predominantly present in this area. Distinct
plateaus alternate with ridges and incised valleys (LGB,
2005). The climate can be described as temperate, with mild
winters and warm summers. The mean monthly temperature
is between 1.4 ◦C in January and 18.4 ◦C in July. Between
1915 and 2017, annual precipitation ranged between 324 and
853 mm with an annual average of 641 mm.

2.2 Meteorological and hydrological variables

For this study, datasets with a long record and high horizontal
resolution were used in order to identify meteorological and
hydrological conditions for as many rockfall events as possi-
ble with sufficient accuracy. It was therefore decided to use
the gridded REGNIE dataset (Rauthe et al., 2013) for daily
precipitation amounts. The dataset is compiled from spatially
interpolated gauge measurements of the quality-controlled
German weather service (Deutscher Wetterdienst, DWD) sta-
tions. REGNIE is available since 1931 for western Germany.
For the new (post-reunification) federal states, the time series
starts in 1951. The grid boxes have a size of 1 km2.

In order to study precipitation intensities, the gridded
radar-based climatology RADKLIM (Winterrath et al., 2018)
was used. The dataset includes hourly precipitation from
radar measurements adjusted to station observations and has

a horizontal resolution of 1 km× 1 km. For the present study,
the daily maxima were extracted. The time series is compar-
atively short, as it only starts in 2001.

For temperature, it was decided to use the gridded E-OBS
dataset (Cornes et al., 2018) as it goes back to the year
1950. The horizontal resolution of the grid is 0.1◦× 0.1◦,
which corresponds to approximately 7 km× 11 km in Ger-
many. For the analysis of freeze–thaw cycles, the ensemble
mean of near-surface atmospheric daily minimum and daily
maximum temperatures provided in the v21.0e version of the
E-OBS dataset was used. A freeze–thaw cycle was defined
as the transition from a daily minimum temperature below
− 1 ◦C to a daily maximum temperature higher than 0 ◦C.

The subsurface water content (e.g. soil moisture, cleft wa-
ter, water in matrix pores) is measured generally only at
very few sites. Spatially consistent soil moisture monitoring
in Germany, for example, relies on modelled soil moisture
(Zink et al., 2016). In this study we attempt to utilise mod-
elled soil moisture as a representative for all types of sub-
surface water. We analyse the results of a simulation with
the state-of-the-art, grid-based hydrological model mHM
(Samaniego et al., 2010), which was calibrated at hydrolog-
ical stations using daily time series of observed discharge.
The model has a daily time step, a horizontal resolution of
5 km× 5 km and six vertical levels from the surface to a
depth of approximately 1.8 m. The hydrological model mHM
considers different soil types. Each soil type has different soil
layers and thus site-specific soil characteristics such as sub-
strate distribution and hydraulic conductivity. The infiltration
from the surface into the ground depends on these soil char-
acteristics. The set-up is based on European datasets as de-
scribed in Rakovec et al. (2016) and Samaniego et al. (2019).
We analysed the relative moisture content (i.e. degree of sat-
uration) for the entire column from the surface to a depth of
approximately 1.8 m. It is common practice for this model to
further normalise these values using percentiles (Zink et al.,
2016) as the variability of the modelled values is too low.

With respect to our aim to develop a statistical model that
can be used to analyse the rockfall probability under climate
change conditions, a challenging point of using simulated
soil moisture is that it is stored only for some climate sce-
nario simulations. Additionally, the moisture variables and
the depth levels they represent differ between climate mod-
els. Therefore, the usage of a pore-water proxy (D) as an al-
ternative to simulated soil moisture was tested as a predictor
for the logistic regression model. D is defined as the differ-
ence between precipitation accumulated over a period of time
(Precacc) and the potential evapotranspiration (PET) during
this period:

D = Precacc−PET. (1)

The term D is also the basis for the calculation of the
standardised precipitation evapotranspiration index (SPEI;
Vicente-Serrano et al., 2010), which includes a standardis-
ation of D in order to allow comparisons between different
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Figure 1. Location of rockfall events analysed in this study. Three distinct clusters – ES (Elbe Sandstone), HL (Hesse and Lower Saxony)
and HR (Hesse and Rhineland-Palatinate) – are marked in red, blue and orange, respectively. All other events are coloured in light blue.

climatic regions, which is not necessary here. Different em-
pirical methods exist to determine potential evaporation. In
this study, the method first proposed by Hargreaves (1994)
in the version modified by Droogers and Allen (2002) was
applied. As input parameters it needs extraterrestrial radi-
ation (which depends on latitude and day of the year), the
period mean of maximum and minimum daily temperatures,
and mean precipitation over the period of interest (which is
used as a proxy for cloudiness). D does not depend on the
material of the ground and is an indicator of general water
availability, thus accounting for water in rock discontinuities
as well as in matrix pores. Therefore, further mentions of

pore water include water in discontinuities if not specified
otherwise.

A relationship between the triggers and events can only be
established for the sites and periods for which both elements
are known. Thus, the analyses carried out in this paper in-
clude only data from grid boxes that contain the site (es) of
at least one rockfall event occurring within the observational
period of the respective record. Percentiles for soil moisture
and D are determined using the observations at these sites
rather than all grid points within Germany. We refer to them
as “across-site” percentiles.
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Figure 2. Time series of the number of rockfall events per year included in the database. The years at which the meteorological and hydro-
logical observations start are indicated.

3 Methods

3.1 Weight of evidence

Weight of evidence (WOE) can be used to describe the rela-
tionship between an independent and a dependent variable
and to rank the predictive power of different independent
variables (e.g. Neuhäuser and Terhorst, 2007). It is defined
as the logarithm of the Bayes factor (Good, 1985):

WOE= ln
f (XȲ = 1)
f (XȲ = 0)

, (2)

whereX is the independent variable and Y is the binary infor-
mation of whether the event occurred or not. f (XȲ ) denotes
the conditional probability density function for X if Y is true
(= 1) or false (= 0).

In practice, a continuous independent variable (e.g. precip-
itation amount) is split into bins containing an equal number
of observations. The WOE for each bin (b) is then calcu-
lated separately. It depends on the fraction of days with an
event (here rockfall) to that of uneventful days. For categori-
cal variables the WOE is determined for each category.

WOEb = ln
(

%NoRockfallb
%Rockfallb

)
(3)

An integral measure for the strength of the relationship be-
tween the dependent and independent variable is the informa-
tion value (IV; Siddiqi, 2006). It is calculated as

IV=
nbins∑
b=1

(%NoRockfallb−%Rockfallb)×WOEb, (4)

with nbins being the number of bins. According to Siddiqi
(2006), a predictor is not useful for statistical modelling if
the IV value is less than 0.02. The IV is also used to rank the
variables according to their influence.

3.2 Logistic regression

Logistic regression is used to model the relationship between
predictor variables and the probability of a binary response
variable. For logistic regression, a generalised linear model
with a logit link function is fitted (Wilks, 2011). The proba-
bility p of the binary event (e.g. rockfall yes/no) can be ex-
pressed as

p =
1

1+ exp(−b0− b1x1− . . .− bixi)
, (5)

where x1, . . .,xi are the predictors (i.e. meteorological and
hydrological variables) and b0,b1. . .,bi are the regression
coefficients. The regression coefficients are determined by
maximising the log likelihood. For this study, the glm func-
tion of the statistical software R (R Core Team, 2018) was
used for this task.

3.3 Model validation

The classical score to compare logistic regression models of
different complexity is the Brier skill score, which, however,
becomes unstable for rare events such as ours (Benedetti,
2010). We therefore use the logarithmic skill score (LSS) in-
stead, which behaves similarly to the Brier skill score but
performs better for extreme probabilities (Benedetti, 2010;
Wilks, 2011). The logarithmic skill score quantifies the per-
centage gain of using the statistical model over just predict-
ing the climatological probability and is calculated as fol-
lows:

LSS= 1−
LS

LSclim
· 100%, (6)

where LS= 1
n

n∑
k=1

LSk is the logarithmic score, with n being

the number of forecasts and k indicating an individual fore-
cast.
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The value of LSk is determined using the forecasted prob-
ability pk calculated by the logistic regression model.

LSk =
{
− ln(pk), if rockfall event occurs
− ln(1−pk), if rockfall event does not occur

LSclim is calculated analogously using the climatological
probabilities events

n
(number of events per number of fore-

casts).
When comparing two statistical models predicting the

same n situations, a higher logarithmic skill score indicates
better predictions.

Another option for comparing statistical models that were
fitted based on the same observations is the Akaike infor-
mation criterion (AIC; Akaike, 1974), which estimates the
prediction error:

AIC= 2i− 2ln(L), (7)

where L is the likelihood and i is the number of predic-
tors. Here, a lower AIC value is associated with the better
model. The risk of overfitting is considered by penalising a
high number of predictors.

Ensuring that no overfitting takes place can also be
achieved by cross validation, which tests the statistical model
on a sample of independent data. For this study, the full event
catalogue was divided into five approximately equally sized
groups, with events from the different clusters equally dis-
tributed between the groups. The statistical model was then
trained using only four of the groups and afterwards ap-
plied to predict event probabilities in the remaining group.
The logarithmic skill score for that group was calculated.
The process was repeated for all groups, and a mean cross-
validated logarithmic skill score was determined (LSScv).

4 Results

4.1 Selection of potential predictors

The weight of evidence analysis is used to analyse the poten-
tial of different predictors to influence rockfall probability.
All variables were screened individually. Figure 3 shows the
most robust estimate possible for each variable. It is based on
all rockfall events that occurred during the observation period
of the respective dataset and all unique observational time se-
ries at the location of these events. A graphical inspection of
the result already reveals that a relationship between the in-
dependent variable and the probability of rockfall exists for
all variables. Moreover, the IV value is higher than 0.02 for
all variables.

For a consistent comparison of the IV values, the analy-
sis was repeated with the number of grid boxes, time steps
and events reduced to the subset covered by all datasets (see
the Supplement). This slightly increases the IV values for
daily precipitation and soil moisture. The highest IV in the

short common period (2001–2013) is obtained for daily pre-
cipitation (IV= 0.85). Soil moisture and precipitation inten-
sity have similar IV values of 0.25 and 0.23, respectively,
followed by freeze–thaw cycles (IV= 0.05). To take into ac-
count that the thawing process might take several days, a time
span preceding the event was evaluated. Comparing different
time spans, it turned out that the IV value associated with a
freeze–thaw cycle immediately before the rockfall event (i.e.
the preceding 2 d) was too low to be considered useful for
statistical modelling (see Fig. S2a in the Supplement). Ex-
tending the analysis period backward in time increased the
IV value, with a peak reached after 9 d (Fig. 4). The WOE
analysis also confirmed that, in accordance with the findings
of D’Amato et al. (2016), thawing increases rockfall proba-
bility while freezing decreases it (see Fig. S2).

4.2 Construction of a statistical model

Logistic regression is a well-established statistical method
to determine probabilities for a binary event (e.g. rockfall
vs. no rockfall) based on the conditions of independent vari-
ables. Here, a logistic regression model using precipitation,
soil moisture or the pore-water proxy D, and freeze–thaw
cycles as independent meteorological and hydrological vari-
ables is fitted. The consideration of individual rockfall clus-
ters (Sect. 2.1) provides information on possible regional dif-
ferences of the results.

The logistic regression models were fitted using n= es · ts
data points, with ts being the number of days for which mete-
orological and hydrological data are jointly available among
all variables used as independent parameters in the model.
The number of event sites (es) at which a rockfall event was
recorded within the period covered by the meteorological and
hydrological observations depends on ts. Other than for the
WOE analysis, we neglected the fact that some grid boxes
enclose the site of more than one event and did not merge
these sites (thus, es is events). The background is that the
logarithmic skill score and the Akaike information criterion
can only be used to compare statistical model alternatives if
they are based on the same data points n. Due to the different
spatial resolutions of the individual meteorological datasets,
merging would change n for each new combination of input
variables. n is only reduced for evaluations involving precip-
itation intensity that are carried out based on a much shorter
period and a lower number of sites than all other evaluations.
This will be considered when comparing the results.

To find the best performing statistical model, numerous
combinations of the potential predictors were compared. Ta-
ble 1 lists the results for a selection of these tests. Evaluated
predictors include daily precipitation (precip_1day), the lo-
cal percentile of daily precipitation calculated using wet days
(precip_1day_lperc), across-site percentile of simulated total
column soil moisture (sm_perc), across-site percentile of pa-
rameterised pore water (D_perc), hourly precipitation (pre-
cip_1hr), the local percentile of hourly precipitation calcu-
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Figure 3. Weight of evidence (WOE) for (a) daily precipitation, (b) hourly precipitation, (c) percentile of relative simulated soil moisture
content over all layers and (d) occurrence of a freeze–thaw cycle in the previous 9 d.

Figure 4. Dependence of the IV for freeze–thaw cycles on the pe-
riod used for the analysis.

lated using wet hours (precip_1hr_lperc), a categorical pre-
dictor denoting to which cluster an event belongs (cluster)
and a binary predictor indicating if a freeze–thaw cycle oc-
curred at the site during the previous 9 d (ftc). As the full
notation of the model equations is space consuming, we use

the compact symbolic form used in the R programming lan-
guage (R Core Team, 2018). The operator + denotes adding
another predictor term, : marks the product between two pre-
dictors and ∗ indicates that all possible combinations of in-
teractions between the predictors are considered. Thus, the
term (precip_1day_lperc∗D_perc)+ ftc in row 16 of Table 1
translates to

pk= 1/[1+ exp(−β0−β1precip_1day_lperck −β2D_perck

− β3ftck︸ ︷︷ ︸
if ftck=TRUE

−β4precip_1day_lperckD_perck)] . (8)

The performance of the statistical models listed in Ta-
ble 1 is compared with the help of the cross-validated log-
arithmic skill score (LSScv) and the Akaike information cri-
terion (AIC). A scientifically sound comparison is possible
between models with identical es. Comparing models 1–3
shows that daily precipitation is more important than soil
moisture and performs best if included in the form of its lo-
cal percentile (denoted by the suffix “_lperc”). For hourly
precipitation, LSScv and AIC indicate that absolute values
lead to better results than local percentiles (models 4 and 5).

https://doi.org/10.5194/nhess-22-2117-2022 Nat. Hazards Earth Syst. Sci., 22, 2117–2130, 2022
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Table 1. Symbolic formulae for a list of logistic regression models tested in this study and main characteristics associated with these models.
The characteristics include the number of coefficients that needed to be determined, the number of event sites (es) that were used for fitting,
the logarithmic skill score (LSS), the logarithmic skill score determined by cross validation (LSScv) and the Akaike information criterion
(AIC). See text for explanation of symbolic equation notation.

Symbolic equation Coefficients es LSS LSScv AIC

1 precip_1day 2 237 2.20 2.13 5101.1
2 precip_1day_lp 2 237 3.19 3.17 5049.1
3 sm_perc 2 237 0.86 0.84 5170.7
4 precip_1hr 2 167 0.99 0.89 3256.6
5 precip_1hr_lperc 2 167 0.87 0.69 3260.7
6 precip_1day_lperc+sm_perc 3 237 3.83 3.78 5018.1
7 precip_1day_lperc:sm_perc 2 237 3.72 3.70 5021.6
8 precip_1day_lperc∗sm_perc 4 237 3.94 3.89 5014.1
9 (precip_1day_lperc:cluster)+(sm_perc:cluster) 9 237 3.98 3.83 5022.1
10 precip_1day_lperc∗sm_perc∗cluster 16 237 4.25 3.52 5021.9
11 (precip_1day_lperc∗sm_perc)+ftc 5 237 3.97 3.91 5014.7
12 (precip_1day_lperc∗sm_perc)+(ftc:cluster) 12 237 4.09 3.91 5020.2
13 precip_1day_lperc∗sm_perc∗ftc 8 237 4.03 3.79 5017.5
14 (precip_1day_lperc∗sm_perc)+ftc+precip_1hr 6 139 5.59 5.11 2494.1
15 (precip_1day_lperc∗sm_perc)+ftc 5 139 5.59 5.24 2492.2
16 (precip_1day_lperc∗D_perc)+ftc 5 237 4.16 4.06 5004.8

The ranking between all three predictors suggested by mod-
els 1–5 is confirmed if the analysis is repeated using only
the 139 events that took place during the period covered by
all predictor datasets. The cross-validated logarithmic skill
score for this short period is 4.38, 1.33 and 0.76 for pre-
cip_1day_lp, sm_perc and precip_1hr, respectively (not in-
cluded in the table). Models 6–8 reveal that considering soil
moisture in addition to the local percentile of daily precipi-
tation improves the statistical model, with the best result ob-
tained by using both variables individually as well as their
interaction term (model 8). LSScv can be further increased by
adding the binary information of the occurrence of a freeze–
thaw cycle in the previous 9 d to the set of predictors (model
11). Adding the binary cluster information (models 9, 10, 12)
has the effect of fitting individual bi coefficients (Eq. 5) for
each cluster. One would expect a better model performance
if the different geological regions represented by the clusters
would respond differently to the meteorological or hydrolog-
ical triggers. Comparing the LSScv for models 9 and 10 to
that for model 8 and the LSScv of model 12 to that of model
11 shows that this is not the case here. Model 10 demon-
strates the importance of cross validation. This model ex-
hibits the highest number of regression coefficients resulting
in an LSS higher than for model 8. The LSScv is, however,
lower than for model 8, indicating that the LSS improvement
is achieved by overfitting. At first sight it seems that includ-
ing hourly precipitation considerably improves the statistical
model as the LSScv in model 14 is higher and the AIC lower
than in model 11. It must be kept in mind, though, that the
radar climatology is still comparatively short, and fits includ-
ing hourly precipitation are based on a small subset of rock-

fall events, making a direct comparison of LSScv and AIC
with model 11 impossible. Therefore, the result of model 11
applied to the data subset used to fit model 14 is summarised
in line 15 of Table 1. It shows that the increase in LSScv and
decrease in AIC seen for model 14 has to be attributed to the
shorter time series, and the inclusion of hourly precipitation
does not improve the statistical model.

An encouraging result, with respect to facilitating the anal-
ysis of climate scenario simulations, was obtained when
substituting the across-site percentiles of modelled relative
soil moisture used in the logistic regression model 11 with
across-site percentiles of D (D_perc, Eq. 1). In order to use
D as a proxy for pore water, it was accumulated over a period
of time. The optimal number of days for the accumulation
period was determined by successively reducing the length
of the period starting at 2 weeks. The logarithmic skill score
of the logistic regression model increased with decreasing
duration and reached a plateau at 5 d (Fig. 5). With this ac-
cumulation period, we obtained the results shown on line 16
of Table 1. The cross-validated logarithmic skill score of that
model is 4.06; thus model 16 outperforms model 11.

In addition to the combinations shown in Table 1, it was
also investigated whether the regression coefficients depend
on the slope angle at the event site. For this we down-
loaded the Copernicus digital elevation model (DEM) at
25 m horizontal resolution and calculated the slope angle at
the rockfall locations using the methodology proposed by
Horn (1981). The slopes at the event sites calculated using
the DEM data appear plausible at many of the sites. There
are, however, also locations for which we determined a slope
angle of only a few degrees, which is inconsistent with the
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occurrence of rockfall events. Possible explanations could be
an insufficient spatial resolution of the DEM or the possibil-
ity that the slope was altered by the event and is therefore no
longer captured in the DEM dataset representative of the year
2011. In addition to this, for large-scale rockfall events it is
difficult to determine the exact location at which the slope
needs to be estimated. Overall, including the slope angle cal-
culated using the DEM as an additional parameter in the lo-
gistic regression model did not improve the results.

In summary, Table 1 shows that the best results are ob-
tained from the logistic regression model 16, which is ex-
pressed in Eq. (8). The corresponding regression coefficients
are β0 =−10.48, β1 =−2.969×10−3, β2 =−1.413×10−2,
β3 = 0.435 and β4 = 4.053× 10−4.

Model 16 (Eq. 8) can now be used to predict changes in
rockfall probability valid on average for specified changes of
the meteorological conditions and the pore-water precondi-
tions. The response of the rockfall probability to variations in
the local daily percentile of precipitation and the percentile of
the pore-water proxyD is depicted in Fig. 6. The probability
es
n

used as a reference to calculate the logarithmic skill score
is marked with a horizontal line. As the rockfall database is
not comprehensive, this value should not be interpreted in
absolute terms. With D and local daily precipitation set to
median values (Fig. 6a), rockfall events can be expected to
appear with approximately climatological probability. Less
(more) precipitation leads to a probability below (above) cli-
matological average. Increasing the local precipitation from
the median to its 90th percentile approximately doubles the
probability of a rockfall event. The amount of precipitation
associated with the 50th percentile varies between 1.2 and
6.8 mm and between 6.5 and 31.2 mm for the 90th percentile,
depending on the site. The occurrence of a freeze–thaw cy-
cle in the previous days increases the probability of an event
by about 50 %. Precipitation becomes more effective when
the pore-water amount is high (Fig. 6b). When D is at the
95th percentile, increasing precipitation from its median to
its 90th percentile makes rockfall events almost 4 times more
likely. This dependence of the slope of the probability density
function for precipitation on D (and for D on precipitation)
is made possible by the inclusion of the interaction term be-
tween precip_1day_lperc andD_perc in Eq. (8). The logistic
regression model suggests that the influence of pore water on
rockfall probability is on average less pronounced than the
influence of daily precipitation. At most sites an increase in
pore-water amount in the absence of strong precipitation has
hardly any effect (Fig. 6c).

In terms of event numbers, the combination of
D_perc≤ 50 and precip_1day_lperc≤ 50 includes 42 % of
all days but only 25 % of all events, while the combination
D_perc≥ 90 and precip_1day_lperc≥ 90 includes only 2 %
of all days but 19 % of all events (Table 2). Combinations
of high (low) precipitation percentiles with low (high) D
percentiles rarely occur. The climatological frequency of
rockfalls in the Elbe Sandstone cluster ES for the combina-

Figure 5. Dependence of the cross-validated logarithmic skill score
on the accumulation period of D_perc.

tion D_perc≤ 50 and precip_1day_lperc≤ 50 indicates that
this cluster includes a higher number of events not associated
with a meteorological trigger than the other clusters.

5 Discussion

In this study, a statistical model was developed that is able
to describe changes in the probability of rockfall events in
Germany that can be expected under different meteorolog-
ical and hydrological conditions. It is important to keep in
mind that a statistical relationship is not proof of a cause-
and-effect relationship. As rockfall occurrence in Germany
exhibits a seasonal cycle with a maximum in January (Rupp
and Damm, 2020), it is easy to establish a statistically sig-
nificant but physically incoherent relationship to any unre-
lated variable with a similar seasonal cycle. To account for
this problem, we only included variables for which a phys-
ical relationship to rockfall events has already been estab-
lished in previous studies for other sites (see introduction
for details). Additionally, there is no guarantee that the sam-
pling locations are representative for Germany as a whole.
In order to investigate to what extent the model depends on
the region that is investigated, we defined three study areas
characterised by dense spatial clustering and high temporal
data homogeneity and evaluated if the statistical model im-
proves when the regression coefficients are allowed to differ
between the clusters (models 9, 10 and 12). It was found that
including the cluster information did not improve the model.
This provides some reassurance that our approach to develop
a single statistical model for all German low mountain ranges
is reasonable. It can be assumed that the model can also be
applied to neighbouring low mountain regions in central Eu-
rope with similar climatological and geological conditions.

The logarithmic skill score used to evaluate the fit of the
statistical model describes the percentage improvement over
a model that always predicts a climatological probability for
rockfall events. The skill score of our model is just over 4 %
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Figure 6. Probability for rockfall predicted by the logistic regression model. A dashed (solid) curve denotes the result for situations with
(without) the occurrence of a freezing episode in the previous 3 weeks. The horizontal line marks the climatological probability. (a) Prob-
ability as a function of the local percentile of daily precipitation. Constant median (i.e. 50th percentile) of the pore-water proxy D (i.e.
precipitation minus potential evaporation for the previous 1-week period). (b) Probability as a function of the local percentile of daily pre-
cipitation. Constant 95th percentile of D. (c) Probability as a function of the percentile of D. Constant median (i.e. 50th percentile) daily
precipitation. (d) Probability as a function of the percentile of D. Constant 95th percentile daily precipitation.

Table 2. Percentage of days with combinations of precip_1day_lperc and D_perc percentiles below 50 or above 90 (days). Percentage of
rockfall events occurring for these percentile combinations is specified for all events (events) and separately for the events belonging to the
clusters ES, HN and HR.

precip_1day_lperc≤ 50 precip_1day_lperc≥ 90

D_perc≤ 50 D_perc≥ 90 D_perc≤ 50 D_perc≥ 90

% days 42 4.1 1 2
% events 25 2.5 0 19
% ES 42 0 0 12
% HN 23 3.2 0 19
% HR 17 0 0 25

and improves to more than 5 % if only the last 20 years are
used for model fitting. A value of 4 % appears to be not much,
but it has to be interpreted keeping the physics of rockfall
events in mind. A rockfall event can only be triggered if the
slope is predisposed, after many years of weathering. Be-
cause of this, most of the time strong rainfall in an area with

high soil moisture or pore-water preconditions remains with-
out consequences (i.e. false alarms). Prediction errors (i.e.
missed alarms) may also stem from events triggered by non-
meteorological mechanisms or processes not captured by the
chosen predictors. This seems to be the case for some events
in the Elbe Sandstone cluster ES. The model skill obtained
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using the selected meteorological–hydrological parameters
as predictors, however, suggests that non-meteorological in-
fluence and missing predictors seem to be subordinate factors
in the rockfall process for the selected study regions.

As this model was developed for the purpose of detecting
changes in rockfall probability in climate scenario simula-
tions, the low skill score on account of the overall low proba-
bility for rockfall does not pose any problems. For a warning
system, the number of false alarms would be too high. This
limitation could only be overcome by including information
on the predisposition in the statistical model. Unfortunately,
this is not feasible as it would be far too expensive to monitor
every slope operationally. Nevertheless, the concept of using
a logistic regression model instead of fixed thresholds would
also have advantages for warning systems. The probability
for rockfall relative to a baseline climatology could be deter-
mined with Eq. (8) from the output of an operational weather
forecasting model. Which values should be regarded as a low,
medium or high risk could be defined by the operator us-
ing the model. With a predefined matrix constructed from
combining meteorological observations with event numbers
(such as in Table 2), this flexibility does not exist.

We found that daily precipitation is the most important fac-
tor to trigger rockfall events in Germany. The best fit for the
statistical model was obtained when using local percentiles
rather than across-site percentiles (not shown) or absolute
values. A possible interpretation could be that most rock
slopes are balanced under normal climate conditions but can
become unstable in the presence of above-normal precipita-
tion amounts. The presence of freeze–thaw cycles increases
the probability by approximately 50 %. Pore water on its own
is unlikely to trigger a rockfall event. It can weaken porous
material, making it more susceptible to a trigger like precip-
itation. The fact that both simulated soil moisture and D im-
proved the statistical model confirms that these variables can
be used as a first-order substitute for all relevant types of sub-
surface moisture, such as cleft water and water in rock pores.

Quantitatively, our findings are in contrast to those of
D’Amato et al. (2016) and Bajni et al. (2021), who reported
the most important rockfall trigger to be the freeze–thaw cy-
cle for middle mountain ranges in France and for the Ital-
ian Alps, respectively. Macciotta et al. (2017) named precip-
itation and freeze–thaw cycles as the most likely dominant
factors but refrained from ranking their importance. The dif-
ferences between the studies are site-specific and stress the
fact that meteorological parameters and thresholds are spa-
tially heterogeneous and need to be determined for each re-
gion individually. Unlike Sass and Oberlechner (2012), we
were able to establish a robust relationship between precip-
itation, a temperature-related predictor (freeze–thaw cycles)
and rockfall, suggesting that daily observations with a spa-
tial resolution of a few kilometres are sufficiently accurate to
capture the micro-climatic conditions.

6 Conclusions

Using a rockfall dataset for Germany, it was possible to build
a statistical model that is able to quantify changes in rockfall
probability in response to changes in pore water and mete-
orological factors identified in geophysical studies as poten-
tial triggers for rockfall events. The model can be regarded
as representative for the low mountain ranges in Germany.
It can also be used in other central European low mountain
regions with similar climatological, hydrological, geological
and topographical characteristics for which no customised
modelling approach exists.

The model was developed in order to be applied to cli-
mate change simulations, with the aim of determining if the
probability of rockfall events can be expected to change in
response to global warming. Applying the statistical model
to climate simulation output is facilitated by the fact that the
model works with percentiles for most predictors. Thus, only
temperature for the evaluation of freeze–thaw cycles needs to
be bias corrected. In addition, the complex simulation of soil
moisture can be substituted by a pore-water proxy (i.e. ac-
cumulated precipitation minus potential evaporation), which
can be easily calculated from climate model output.

For application in climate change studies, it is important
that the statistical model considers the interaction between
the triggering factors as these are expected to show opposing
trends. While heavy precipitation is likely to increase in the
future (IPCC, 2014), a decrease in the number of frost days
dependent on altitude can be expected with the projected in-
creasing global temperatures (IPCC, 2014). Climate projec-
tions for aridity in central Europe depend on location and
season (Samaniego et al., 2018). Thus, studies considering
only single factors might over- or underestimate the response
of rockfall to climate change as the interaction of the factors
can amplify or diminish the signal.

Data availability. The meteorological data used in this study
are freely available. After registration the E-OBS dataset
can be downloaded from https://www.ecad.eu/download/
ensembles/ensembles.php (European Climate Assessment and
Dataset, 2022). REGNIE is available from https://opendata.
dwd.de/climate_environment/CDC/grids_germany/daily/regnie/
(DWD Climate Data Center, 2021) and RADKLIM from
https://doi.org/10.5676/DWD/RADKLIM_RW_V2017.002 (Win-
terrath et al., 2018). Information on the rockfall events can be
found in the supporting material of Rupp and Damm (2020).
The Copernicus digital elevation model is freely available from
https://land.copernicus.eu/imagery-in-situ/eu-dem/eu-dem-v1.1
(Copernicus Land Monitoring Service, 2016).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/nhess-22-2117-2022-supplement.
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