Articles | Volume 22, issue 3
Nat. Hazards Earth Syst. Sci., 22, 1129–1149, 2022
https://doi.org/10.5194/nhess-22-1129-2022
Nat. Hazards Earth Syst. Sci., 22, 1129–1149, 2022
https://doi.org/10.5194/nhess-22-1129-2022
Research article
01 Apr 2022
Research article | 01 Apr 2022

Insights from the topographic characteristics of a large global catalog of rainfall-induced landslide event inventories

Robert Emberson et al.

Related authors

New global characterisation of landslide exposure
Robert Emberson, Dalia Kirschbaum, and Thomas Stanley
Nat. Hazards Earth Syst. Sci., 20, 3413–3424, https://doi.org/10.5194/nhess-20-3413-2020,https://doi.org/10.5194/nhess-20-3413-2020, 2020
Short summary
Review article: Natural hazard risk assessments at the global scale
Philip J. Ward, Veit Blauhut, Nadia Bloemendaal, James E. Daniell, Marleen C. de Ruiter, Melanie J. Duncan, Robert Emberson, Susanna F. Jenkins, Dalia Kirschbaum, Michael Kunz, Susanna Mohr, Sanne Muis, Graeme A. Riddell, Andreas Schäfer, Thomas Stanley, Ted I. E. Veldkamp, and Hessel C. Winsemius
Nat. Hazards Earth Syst. Sci., 20, 1069–1096, https://doi.org/10.5194/nhess-20-1069-2020,https://doi.org/10.5194/nhess-20-1069-2020, 2020
Short summary

Related subject area

Landslides and Debris Flows Hazards
Landslide susceptibility assessment in the rocky coast subsystem of Essaouira, Morocco
Abdellah Khouz, Jorge Trindade, Sérgio C. Oliveira, Fatima El Bchari, Blaid Bougadir, Ricardo A. C. Garcia, and Mourad Jadoud
Nat. Hazards Earth Syst. Sci., 22, 3793–3814, https://doi.org/10.5194/nhess-22-3793-2022,https://doi.org/10.5194/nhess-22-3793-2022, 2022
Short summary
Landsifier v1.0: a Python library to estimate likely triggers of mapped landslides
Kamal Rana, Nishant Malik, and Ugur Ozturk
Nat. Hazards Earth Syst. Sci., 22, 3751–3764, https://doi.org/10.5194/nhess-22-3751-2022,https://doi.org/10.5194/nhess-22-3751-2022, 2022
Short summary
Timing landslide and flash flood events from SAR satellite: a regionally applicable methodology illustrated in African cloud-covered tropical environments
Axel A. J. Deijns, Olivier Dewitte, Wim Thiery, Nicolas d'Oreye, Jean-Philippe Malet, and François Kervyn
Nat. Hazards Earth Syst. Sci., 22, 3679–3700, https://doi.org/10.5194/nhess-22-3679-2022,https://doi.org/10.5194/nhess-22-3679-2022, 2022
Short summary
Potential of satellite-derived hydro-meteorological information for landslide initiation thresholds in Rwanda
Judith Uwihirwe, Alessia Riveros, Hellen Wanjala, Jaap Schellekens, Frederiek Sperna Weiland, Markus Hrachowitz, and Thom A. Bogaard
Nat. Hazards Earth Syst. Sci., 22, 3641–3661, https://doi.org/10.5194/nhess-22-3641-2022,https://doi.org/10.5194/nhess-22-3641-2022, 2022
Short summary
Earthquake-induced landslides in Haiti: analysis of seismotectonic and possible climatic influences
Hans-Balder Havenith, Kelly Guerrier, Romy Schlögel, Anika Braun, Sophia Ulysse, Anne-Sophie Mreyen, Karl-Henry Victor, Newdeskarl Saint-Fleur, Léna Cauchie, Dominique Boisson, and Claude Prépetit
Nat. Hazards Earth Syst. Sci., 22, 3361–3384, https://doi.org/10.5194/nhess-22-3361-2022,https://doi.org/10.5194/nhess-22-3361-2022, 2022
Short summary

Cited articles

Adriano, B., Yokoya, N., Miura, H., Matsuoka, M., and Koshimura, S.: A semiautomatic pixel-object method for detecting landslides using multitemporal ALOS-2 intensity images, Remote Sens., 12, 561, https://doi.org/10.3390/rs12030561, 2020. 
Amatya, P., Kirschbaum, D., and Stanley, T.: Use of very high-resolution optical data for landslide mapping and susceptibility analysis along the Karnali highway, Nepal, Remote Sens., 11, 2284, https://doi.org/10.3390/rs11192284, 2019. 
Amatya, P., Kirschbaum, D., Stanley, T., and Tanyas, H.: Landslide mapping using object-based image analysis and open source tools, Eng. Geol., 282, 106000, https://doi.org/10.1016/j.enggeo.2021.106000, 2021. 
Badoux, A., Andres, N., and Turowski, J. M.: Damage costs due to bedload transport processes in Switzerland, Nat. Hazards Earth Syst. Sci., 14, 279–294, https://doi.org/10.5194/nhess-14-279-2014, 2014. 
Behling, R., Roessner, S., Segl, K., Kleinschmit, B., and Kaufmann, H.: Robust automated image co-registration of optical multi-sensor time series data: Database generation for multi-temporal landslide detection, Remote Sens., 6, 2572–2600, https://doi.org/10.3390/rs6032572, 2014. 
Download
Short summary
Understanding where landslides occur in mountainous areas is critical to support hazard analysis as well as understand landscape evolution. In this study, we present a large compilation of inventories of landslides triggered by rainfall, including several that are described here for the first time. We analyze the topographic characteristics of the landslides, finding consistent relationships for landslide source and deposition areas, despite differences in the inventories' locations.
Altmetrics
Final-revised paper
Preprint