Articles | Volume 22, issue 1
https://doi.org/10.5194/nhess-22-1-2022
https://doi.org/10.5194/nhess-22-1-2022
Research article
 | 
04 Jan 2022
Research article |  | 04 Jan 2022

The influence of infragravity waves on the safety of coastal defences: a case study of the Dutch Wadden Sea

Christopher H. Lashley, Sebastiaan N. Jonkman, Jentsje van der Meer, Jeremy D. Bricker, and Vincent Vuik

Related authors

The effect of operational discharge capacity of pumps and sluices on flood hazards – A case study on discharging the Rhine and Meuse under sea level rise
Laurie van Gijzen, Alexander M. Bakker, and Sebastiaan N. Jonkman
EGUsphere, https://doi.org/10.5194/egusphere-2025-5801,https://doi.org/10.5194/egusphere-2025-5801, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Probabilistic flood hazard mapping for dike-breach floods via graph neural networks
Roberto Bentivoglio, Sebastiaan Nicolas Jonkman, Elvin Isufi, and Riccardo Taormina
EGUsphere, https://doi.org/10.5194/egusphere-2025-5582,https://doi.org/10.5194/egusphere-2025-5582, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Multi-scale hydraulic graph neural networks for flood modelling
Roberto Bentivoglio, Elvin Isufi, Sebastiaan Nicolas Jonkman, and Riccardo Taormina
Nat. Hazards Earth Syst. Sci., 25, 335–351, https://doi.org/10.5194/nhess-25-335-2025,https://doi.org/10.5194/nhess-25-335-2025, 2025
Short summary
Combining statistical and hydrodynamic models to assess compound flood hazards from rainfall and storm surge: a case study of Shanghai
Hanqing Xu, Elisa Ragno, Sebastiaan N. Jonkman, Jun Wang, Jeremy D. Bricker, Zhan Tian, and Laixiang Sun
Hydrol. Earth Syst. Sci., 28, 3919–3930, https://doi.org/10.5194/hess-28-3919-2024,https://doi.org/10.5194/hess-28-3919-2024, 2024
Short summary
Rapid spatio-temporal flood modelling via hydraulics-based graph neural networks
Roberto Bentivoglio, Elvin Isufi, Sebastiaan Nicolas Jonkman, and Riccardo Taormina
Hydrol. Earth Syst. Sci., 27, 4227–4246, https://doi.org/10.5194/hess-27-4227-2023,https://doi.org/10.5194/hess-27-4227-2023, 2023
Short summary

Cited articles

Altomare, C., Suzuki, T., Chen, X., Verwaest, T., and Kortenhaus, A.: Wave overtopping of sea dikes with very shallow foreshores, Coast. Eng., 116, 236–257, https://doi.org/10.1016/j.coastaleng.2016.07.002, 2016. 
Ascencio, J.: Spectral Wave Dissipation by Vegetation: A new frequency distributed dissipation model in SWAN, MS thesis, Department of Civil Engineering and Geosciences, Delft University of Technology, Delft, available at: http://resolver.tudelft.nl/uuid:de72b692-fbd8-410d-97a7-f18d62d3a8b0 (last access: 21 December 2021), 2020. 
Baron-Hyppolite, C., Lashley, C. H., Garzon, J., Miesse, T., Ferreira, C., and Bricker, J. D.: Comparison of Implicit and Explicit Vegetation Representations in SWAN Hindcasting Wave Dissipation by Coastal Wetlands in Chesapeake Bay, Geosciences, 9, 8, https://doi.org/10.3390/geosciences9010008, 2018. 
Battjes, J. and Stive, M.: Calibration and verification of a dissipation model for random breaking waves, J. Geophys. Res.-Oceans, 90, 9159–9167, 1985. 
Battjes, J. A.: Shoaling of subharmonic gravity waves, J. Geophys. Res., 109, C02009, https://doi.org/10.1029/2003jc001863, 2004. 
Download
Short summary
Many coastlines around the world have shallow foreshores (e.g. salt marshes and mudflats) that reduce storm waves and the risk of coastal flooding. However, most of the studies that tried to quantify this effect have excluded the influence of very long waves, which often dominate in shallow water. Our newly developed framework addresses this oversight and suggests that safety along these coastlines may be overestimated, since these very long waves are largely neglected in flood risk assessments.
Share
Altmetrics
Final-revised paper
Preprint