Articles | Volume 21, issue 1
https://doi.org/10.5194/nhess-21-87-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-21-87-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Debris flows recorded in the Moscardo catchment (Italian Alps) between 1990 and 2019
Research Institute for Geo-Hydrological Protection (CNR IRPI),
National Research Council of Italy, Corso Stati Uniti 4, 35127 Padua, Italy
Federico Cazorzi
Department of Agricultural, Food, Environmental and Animal
Sciences, University of Udine, Via delle Scienze 206, 33100 Udine, Italy
Massimo Arattano
Research Institute for Geo-Hydrological Protection (CNR IRPI),
National Research Council of Italy, Strada delle Cacce, 73, 10135 Turin, Italy
Sara Cucchiaro
Department of Agricultural, Food, Environmental and Animal
Sciences, University of Udine, Via delle Scienze 206, 33100 Udine, Italy
Marco Cavalli
Research Institute for Geo-Hydrological Protection (CNR IRPI),
National Research Council of Italy, Corso Stati Uniti 4, 35127 Padua, Italy
Stefano Crema
Research Institute for Geo-Hydrological Protection (CNR IRPI),
National Research Council of Italy, Corso Stati Uniti 4, 35127 Padua, Italy
Related authors
No articles found.
Tiziana Lazzarina Zendrini, Luca Carturan, Michael Lehning, Mathias Bavay, Federico Cazorzi, Paolo Gabrielli, Nander Wever, and Giancarlo Dalla Fontana
EGUsphere, https://doi.org/10.5194/egusphere-2025-5186, https://doi.org/10.5194/egusphere-2025-5186, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
By combining in situ mass balance data with a physics‐based snow model at Mt. Ortles, in the Italian Alps, we investigate snow accumulation, erosion and melt processes, and their sensitivity to air temperature. We found that wind erosion is currently the major ablation process at this high-elevation site, whereas melt plays a minor role. Quickly rising air temperature is affecting this partitioning and suggests a future shift from an erosion-dominated to a melt-dominated mass balance regime.
Luca Carturan, Alexander C. Ihle, Federico Cazorzi, Tiziana Lazzarina Zendrini, Fabrizio De Blasi, Giancarlo Dalla Fontana, Giuliano Dreossi, Daniela Festi, Bryan Mark, Klaus Dieter Oeggl, Roberto Seppi, Barbara Stenni, and Paolo Gabrielli
The Cryosphere, 19, 3443–3458, https://doi.org/10.5194/tc-19-3443-2025, https://doi.org/10.5194/tc-19-3443-2025, 2025
Short summary
Short summary
Paleoclimatic glacial archives in low-latitude mountains are increasingly affected by melt, causing heavy percolation and removing snow and firn accumulated across months, seasons, or even years. Here we present a proxy system model that explicitly accounts for melt in ice and firn cores. Compared to traditional annual layer counting, the model significantly improved the interpretation and annual dating of the Mt Ortles firn core, in the Italian Alps, which includes the very warm summer of 2003.
Pengzhi Zhao, Daniel Joseph Fallu, Sara Cucchiaro, Paolo Tarolli, Clive Waddington, David Cockcroft, Lisa Snape, Andreas Lang, Sebastian Doetterl, Antony G. Brown, and Kristof Van Oost
Biogeosciences, 18, 6301–6312, https://doi.org/10.5194/bg-18-6301-2021, https://doi.org/10.5194/bg-18-6301-2021, 2021
Short summary
Short summary
We investigate the factors controlling the soil organic carbon (SOC) stability and temperature sensitivity of abandoned prehistoric agricultural terrace soils. Results suggest that the burial of former topsoil due to terracing provided an SOC stabilization mechanism. Both the soil C : N ratio and SOC mineral protection regulate soil SOC temperature sensitivity. However, which mechanism predominantly controls SOC temperature sensitivity depends on the age of the buried terrace soils.
E. Maset, S. Cucchiaro, F. Cazorzi, F. Crosilla, A. Fusiello, and A. Beinat
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B1-2021, 103–109, https://doi.org/10.5194/isprs-archives-XLIII-B1-2021-103-2021, https://doi.org/10.5194/isprs-archives-XLIII-B1-2021-103-2021, 2021
A. Masiero, P. Dabove, V. Di Pietra, M. Piragnolo, A. Vettore, S. Cucchiaro, A. Guarnieri, P. Tarolli, C. Toth, V. Gikas, H. Perakis, K.-W. Chiang, L. M. Ruotsalainen, S. Goel, and J. Gabela
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B1-2021, 111–116, https://doi.org/10.5194/isprs-archives-XLIII-B1-2021-111-2021, https://doi.org/10.5194/isprs-archives-XLIII-B1-2021-111-2021, 2021
Cited articles
Arattano, M.: On the use of seismic detectors as monitoring and warning
systems for debris flows, Nat. Hazards, 20, 197–213, 1999.
Arattano, M. and Grattoni, P.: Using a fixed camera to measure debris-flow
surface velocity, in: Debris-flow hazards mitigation – Mechanics, Prediction, and Assessment, edited by: Wieczorek, G. F. and Naeser, N. D., Balkema,
Rotterdam, 273–281, 2000.
Arattano, M. and Marchi, L.: Video-derived velocity distribution along a
debris flow surge, Phys. Chem. Earth Pt. B, 25, 781–784, 2000.
Arattano, M. and Marchi, L.: Measurements of debris flow velocity through cross-correlation of instrumentation data, Nat. Hazards Earth Syst. Sci., 5, 137–142, https://doi.org/10.5194/nhess-5-137-2005, 2005.
Arattano, M., Marchi, L., and Cavalli, M.: Analysis of debris-flow recordings in an instrumented basin: confirmations and new findings, Nat. Hazards Earth Syst. Sci., 12, 679–686, https://doi.org/10.5194/nhess-12-679-2012, 2012.
Arattano, M., Bertoldi, G., Cavalli, M., Comiti, F., D'Agostino, V., and Theule, J.: Comparison of methods and procedures for debris-flow volume estimation, in: Engineering Geology for Society and Territory, Volume 3, edited by: Lollino, G., Arattano, M., Rinaldi, M., Giustolisi, O., Marechal, J.-C., and Grant, G. E., Springer International Publishing, Cham, Switzerland, https://doi.org/10.1007/978-3-319-09054-2_22, 115–119, 2015.
Blasone, G., Cavalli, M., Marchi, L., and Cazorzi, F.: Monitoring sediment
source areas in a debris-flow catchment using terrestrial laser scanning,
Catena, 123, 23–36, https://doi.org/10.1016/j.catena.2014.07.001, 2014.
Comiti, F., Marchi, L., Macconi, P., Arattano, M., Bertoldi, G., Borga, M.,
Brardinoni, F., Cavalli, M., D'Agostino, V., Penna, D., and Theule, J.: A
new monitoring station for debris flows in the European Alps: first
observations in the Gadria basin, Nat. Hazards, 73, 1175–1198,
https://doi.org/10.1007/s11069-014-1088-5, 2014.
Coviello, V., Theule, J., Crema, S., Arattano, M., Comiti, F., Cavalli, M.,
Lucía, A., Macconi, P., and Marchi, L.: Combining instrumental
monitoring and high-resolution topography for estimating sediment yield in a
debris-flow catchment, Environ. Eng. Geosci., https://doi.org/10.1111/EEG-D-20-00025, published online first, 2020.
Cucchiaro, S., Cavalli, M., Vericat, D., Crema, S., Llena, M., Beinat, A.,
Marchi, L., and Cazorzi, F.: Monitoring topographic changes through
4D-structure-from-motion photogrammetry: application to a debris-flow
channel, Environ. Earth Sci., 77, 632, https://doi.org/10.1007/s12665-018-7817-4, 2018.
Cucchiaro, S., Cavalli, M., Vericat, D., Crema, S., Llena, M., Beinat, A.,
Marchi, L., and Cazorzi, F.: Geomorphic effectiveness of check dams in a
debris-flow catchment using multi-temporal topographic surveys, Catena, 174,
73–83, https://doi.org/10.1016/j.catena.2018.11.004, 2019a.
Cucchiaro, S., Cazorzi, F., Marchi, L., Crema, S., Beinat, A., and Cavalli,
M.: Multi-temporal analysis of the role of check dams in a debris-flow
channel: Linking structural and functional connectivity, Geomorphology, 345,
1–12, https://doi.org/10.1016/j.geomorph.2019.106844, 2019b.
Deganutti, M. A., Marchi, L., and Arattano, M.: Rainfall and debris-flow
occurrence in the Moscardo basin (Italian Alps), in: Debris-flow hazards mitigation - Mechanics, Prediction, and
Assessment, edited by: Wieczorek, G. F. and Naeser, N. D., Balkema, Rotterdam, 67–72, 2000.
Hürlimann, M., Coviello, V., Bel, C., Guo, X., Berti, M., Graf, C.,
Hübl, J., Miyata S, Smith, J. B., and Yin, H.-Y.: Debris-flow monitoring
and warning: review and examples, Earth-Sci. Rev., 199, 102981,
https://doi.org/10.1016/j.earscirev.2019.102981, 2019.
Macconi, P., Zischg, A., Mazzorana, B., Sperling, M., Marangoni, N.,
Pollinger, R.: A standardized procedure for the compilation and
documentation of historical flood and debris flow events in south Tyrol
within the framework of the event documentation system ED30, Proceedings,
11th Congress INTERPRAEVENT,Dornbirn, Voralberg, Austria, 26–30 May
2008, 266–267, 2008.
Marcato, G., Mantovani, M., Pasuto, A., Zabuski, L., and Borgatti, L.:
Monitoring, numerical modelling and hazard mitigation of the Moscardo
landslide (Eastern Italian Alps), Eng. Geol., 128, 95–107, 2012.
Marchi, L., Arattano, M., and Deganutti, A. M.: Ten years of debris-flow
monitoring in the Moscardo Torrent (Italian Alps), Geomorphology, 46,
1–17, 2002.
Marchi, L., Brunetti, M. T., Cavalli, M., and Crema, S.: Debris-flow volumes
in northeastern Italy: relationship with drainage area and size probability,
Earth Surf. Proc. Land., 44, 933–943, https://doi.org/10.1002/esp.4546, 2019.
Marchi, L., Cazorzi, F., Arattano, M., Cucchiaro, S., Cavalli, M., and Crema, S.: Debris-flow data recorded in the Moscardo catchment (Italy), PANGAEA, https://doi.org/10.1594/PANGAEA.919707, 2020.
Marra, F.: Rainfall thresholds for landslide occurrence: systematic
underestimation using coarse temporal resolution data, Nat. Hazards,
95, 883–890, https://doi.org/10.1007/s11069-018-3508-4, 2019.
Okuda, S., Suwa, H., Okunishi, K., Yokoyama, K., and Nakano, M.: Observations on the motion of a debris flow and its geomorphological effects, Z.
Geomorphol. Supp., 35, 142–163, 1980.
Palladino, M. R., Viero, A., Turconi, L., Brunetti, M. T., Peruccacci, S.,
Melillo, M., Luino, F., Deganutti, A. M., and Guzzetti, F.: Rainfall thresholds for the activation of shallow landslides in the Italian Alps: the role of environmental conditioning factors, Geomorphology, 303, 53–67, https://doi.org/10.1016/j.geomorph.2017.11.009, 2018.
Pastorello, R., Hürlimann, M., and D'Agostino, V.: Correlation between the rainfall, sediment recharge and triggering of torrential flows in the Rebaixader catchment (Pyrenees, Spain), Landslides, 15, 1921–1934, https://doi.org/10.1007/s10346-018-1000-6, 2018.
Venturini, C.: Carta geologica delle Alpi Carniche – Geological map of the Carnic Alps, scale 1:25.000, 2 sheets, S.EL.CA Firenze, 2002.
Zhang, S.: A comprehensive approach to the observation and prevention of
debris flows in China, Nat. Hazards, 7, 1–23, 1993.
Short summary
Debris-flow research requires experimental data that are difficult to collect because of the intrinsic characteristics of these hazardous processes. This paper presents debris-flow data recorded in the Moscardo Torrent (Italian Alps) between 1990 and 2019. In this time interval, 30 debris flows were observed. The paper presents data on triggering rainfall, flow velocity, peak discharge, and volume for the monitored hydrographs.
Debris-flow research requires experimental data that are difficult to collect because of the...
Altmetrics
Final-revised paper
Preprint