Articles | Volume 21, issue 2
https://doi.org/10.5194/nhess-21-703-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-21-703-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Timescales of emergence of chronic flooding in the major economic center of Guadeloupe
DRP/R3C, BRGM, Orléans, 45000, France
Déborah Idier
DRP/R3C, BRGM, Orléans, 45000, France
Marcello de Michele
DRP/R3C, BRGM, Orléans, 45000, France
Yoann Legendre
DAT/GUA, BRGM, Petit-Bourg, 97170, France
Manuel Moisan
DAT/GUA, BRGM, Petit-Bourg, 97170, France
Rodrigo Pedreros
DRP/R3C, BRGM, Orléans, 45000, France
Rémi Thiéblemont
DRP/R3C, BRGM, Orléans, 45000, France
Giorgio Spada
Dipartimento di Scienze Pure e Applicate (DiSPeA), Università di Urbino “Carlo Bo”, Urbino, Italy
Daniel Raucoules
DRP/R3C, BRGM, Orléans, 45000, France
Ywenn de la Torre
DAT/GUA, BRGM, Petit-Bourg, 97170, France
Related authors
Alexander Bisaro, Giulia Galluccio, Elisa Fiorini Beckhauser, Fulvio Biddau, Ruben David, Floortje d'Hont, Antonio Góngora Zurro, Gonéri Le Cozannet, Sadie McEvoy, Begoña Pérez Gómez, Claudia Romagnoli, Eugenio Sini, and Jill Slinger
State Planet, 3-slre1, 7, https://doi.org/10.5194/sp-3-slre1-7-2024, https://doi.org/10.5194/sp-3-slre1-7-2024, 2024
Short summary
Short summary
This paper assesses coastal adaptation governance by examining socio-economic and political contexts, reviewing policy frameworks, and identifying challenges. Results show that regional and basin-scale frameworks lack sea level rise provisions, but significant national progress is observed. The main governance challenges are time horizons and uncertainty, coordination, and social vulnerability. These, however, can be addressed if flexible planning and nature-based solutions are implemented.
Jeremy Rohmer, Remi Thieblemont, Goneri Le Cozannet, Heiko Goelzer, and Gael Durand
The Cryosphere, 16, 4637–4657, https://doi.org/10.5194/tc-16-4637-2022, https://doi.org/10.5194/tc-16-4637-2022, 2022
Short summary
Short summary
To improve the interpretability of process-based projections of the sea-level contribution from land ice components, we apply the machine-learning-based
SHapley Additive exPlanationsapproach to a subset of a multi-model ensemble study for the Greenland ice sheet. This allows us to quantify the influence of particular modelling decisions (related to numerical implementation, initial conditions, or parametrisation of ice-sheet processes) directly in terms of sea-level change contribution.
Jeremy Rohmer, Deborah Idier, Remi Thieblemont, Goneri Le Cozannet, and François Bachoc
Nat. Hazards Earth Syst. Sci., 22, 3167–3182, https://doi.org/10.5194/nhess-22-3167-2022, https://doi.org/10.5194/nhess-22-3167-2022, 2022
Short summary
Short summary
We quantify the influence of wave–wind characteristics, offshore water level and sea level rise (projected up to 2200) on the occurrence of flooding events at Gâvres, French Atlantic coast. Our results outline the overwhelming influence of sea level rise over time compared to the others. By showing the robustness of our conclusions to the errors in the estimation procedure, our approach proves to be valuable for exploring and characterizing uncertainties in assessments of future flooding.
Rémi Thiéblemont, Gonéri Le Cozannet, Jérémy Rohmer, Alexandra Toimil, Moisés Álvarez-Cuesta, and Iñigo J. Losada
Nat. Hazards Earth Syst. Sci., 21, 2257–2276, https://doi.org/10.5194/nhess-21-2257-2021, https://doi.org/10.5194/nhess-21-2257-2021, 2021
Short summary
Short summary
Sea level rise and its acceleration are projected to aggravate coastal erosion over the 21st century. Resulting shoreline projections are deeply uncertain, however, which constitutes a major challenge for coastal planning and management. Our work presents a new extra-probabilistic framework to develop future shoreline projections and shows that deep uncertainties could be drastically reduced by better constraining sea level projections and improving coastal impact models.
G. Le Cozannet, M. Bagni, P. Thierry, C. Aragno, and E. Kouokam
Nat. Hazards Earth Syst. Sci., 14, 1591–1598, https://doi.org/10.5194/nhess-14-1591-2014, https://doi.org/10.5194/nhess-14-1591-2014, 2014
P. Gehl, C. Quinet, G. Le Cozannet, E. Kouokam, and P. Thierry
Nat. Hazards Earth Syst. Sci., 13, 2409–2424, https://doi.org/10.5194/nhess-13-2409-2013, https://doi.org/10.5194/nhess-13-2409-2013, 2013
M. Neri, G. Le Cozannet, P. Thierry, C. Bignami, and J. Ruch
Nat. Hazards Earth Syst. Sci., 13, 1929–1943, https://doi.org/10.5194/nhess-13-1929-2013, https://doi.org/10.5194/nhess-13-1929-2013, 2013
G. Le Cozannet, M. Garcin, T. Bulteau, C. Mirgon, M. L. Yates, M. Méndez, A. Baills, D. Idier, and C. Oliveros
Nat. Hazards Earth Syst. Sci., 13, 1209–1227, https://doi.org/10.5194/nhess-13-1209-2013, https://doi.org/10.5194/nhess-13-1209-2013, 2013
Alexander Bisaro, Giulia Galluccio, Elisa Fiorini Beckhauser, Fulvio Biddau, Ruben David, Floortje d'Hont, Antonio Góngora Zurro, Gonéri Le Cozannet, Sadie McEvoy, Begoña Pérez Gómez, Claudia Romagnoli, Eugenio Sini, and Jill Slinger
State Planet, 3-slre1, 7, https://doi.org/10.5194/sp-3-slre1-7-2024, https://doi.org/10.5194/sp-3-slre1-7-2024, 2024
Short summary
Short summary
This paper assesses coastal adaptation governance by examining socio-economic and political contexts, reviewing policy frameworks, and identifying challenges. Results show that regional and basin-scale frameworks lack sea level rise provisions, but significant national progress is observed. The main governance challenges are time horizons and uncertainty, coordination, and social vulnerability. These, however, can be addressed if flexible planning and nature-based solutions are implemented.
Nicolaj Hansen, Louise Sandberg Sørensen, Giorgio Spada, Daniele Melini, Rene Forsberg, Ruth Mottram, and Sebastian B. Simonsen
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-104, https://doi.org/10.5194/tc-2023-104, 2023
Preprint withdrawn
Short summary
Short summary
We use ICESat-2 to estimate the surface elevation change over Greenland and Antarctica in the period of 2018 to 2021. Numerical models have been used the compute the firn compaction and the vertical bedrock movement so non-mass-related elevation changes can be taken into account. We have made a parameterization of the surface density so we can convert the volume change to mass change. We find that Antarctica has lost 135.7±27.3 Gt per year, and the Greenland ice sheet 237.5±14.0 Gt per year.
Marcello de Michele, Daniel Raucoules, Claire Rault, Bertrand Aunay, and Michael Foumelis
Earth Surf. Dynam., 11, 451–460, https://doi.org/10.5194/esurf-11-451-2023, https://doi.org/10.5194/esurf-11-451-2023, 2023
Short summary
Short summary
Landslide processes are causes of major concern to population and infrastructures on Réunion. In this study, we used data from the Copernicus Sentinel-1 satellite to map ground motion in Cirque de Salazie. We concentrate on the cyclonic season 2017–2018. Our results show ground motion in the Hell-Bourg, Ilet à Vidot,
Grand-Ilet, Camp Pierrot, and Le Bélier landslides. Moreover, we show an unknown pattern of ground motion situated in a non-instrumented, uninhabited area on the ground.
Inès N. Otosaka, Andrew Shepherd, Erik R. Ivins, Nicole-Jeanne Schlegel, Charles Amory, Michiel R. van den Broeke, Martin Horwath, Ian Joughin, Michalea D. King, Gerhard Krinner, Sophie Nowicki, Anthony J. Payne, Eric Rignot, Ted Scambos, Karen M. Simon, Benjamin E. Smith, Louise S. Sørensen, Isabella Velicogna, Pippa L. Whitehouse, Geruo A, Cécile Agosta, Andreas P. Ahlstrøm, Alejandro Blazquez, William Colgan, Marcus E. Engdahl, Xavier Fettweis, Rene Forsberg, Hubert Gallée, Alex Gardner, Lin Gilbert, Noel Gourmelen, Andreas Groh, Brian C. Gunter, Christopher Harig, Veit Helm, Shfaqat Abbas Khan, Christoph Kittel, Hannes Konrad, Peter L. Langen, Benoit S. Lecavalier, Chia-Chun Liang, Bryant D. Loomis, Malcolm McMillan, Daniele Melini, Sebastian H. Mernild, Ruth Mottram, Jeremie Mouginot, Johan Nilsson, Brice Noël, Mark E. Pattle, William R. Peltier, Nadege Pie, Mònica Roca, Ingo Sasgen, Himanshu V. Save, Ki-Weon Seo, Bernd Scheuchl, Ernst J. O. Schrama, Ludwig Schröder, Sebastian B. Simonsen, Thomas Slater, Giorgio Spada, Tyler C. Sutterley, Bramha Dutt Vishwakarma, Jan Melchior van Wessem, David Wiese, Wouter van der Wal, and Bert Wouters
Earth Syst. Sci. Data, 15, 1597–1616, https://doi.org/10.5194/essd-15-1597-2023, https://doi.org/10.5194/essd-15-1597-2023, 2023
Short summary
Short summary
By measuring changes in the volume, gravitational attraction, and ice flow of Greenland and Antarctica from space, we can monitor their mass gain and loss over time. Here, we present a new record of the Earth’s polar ice sheet mass balance produced by aggregating 50 satellite-based estimates of ice sheet mass change. This new assessment shows that the ice sheets have lost (7.5 x 1012) t of ice between 1992 and 2020, contributing 21 mm to sea level rise.
Marc Peruzzetto, Yoann Legendre, Aude Nachbaur, Thomas J. B. Dewez, Yannick Thiery, Clara Levy, and Benoit Vittecoq
Nat. Hazards Earth Syst. Sci., 22, 3973–3992, https://doi.org/10.5194/nhess-22-3973-2022, https://doi.org/10.5194/nhess-22-3973-2022, 2022
Short summary
Short summary
Volcanic edifices result from successive construction and dismantling phases. Thus, the geological units forming volcanoes display complex geometries. We show that such geometries can be reconstructed thanks to aerial views, topographic surveys and photogrammetric models. In our case study of the Samperre cliff (Martinique, Lesser Antilles), it allows us to link destabilizations from a rocky cliff to the existence of a filled paleo-valley and estimate a potentially unstable volume.
Jeremy Rohmer, Remi Thieblemont, Goneri Le Cozannet, Heiko Goelzer, and Gael Durand
The Cryosphere, 16, 4637–4657, https://doi.org/10.5194/tc-16-4637-2022, https://doi.org/10.5194/tc-16-4637-2022, 2022
Short summary
Short summary
To improve the interpretability of process-based projections of the sea-level contribution from land ice components, we apply the machine-learning-based
SHapley Additive exPlanationsapproach to a subset of a multi-model ensemble study for the Greenland ice sheet. This allows us to quantify the influence of particular modelling decisions (related to numerical implementation, initial conditions, or parametrisation of ice-sheet processes) directly in terms of sea-level change contribution.
Jeremy Rohmer, Deborah Idier, Remi Thieblemont, Goneri Le Cozannet, and François Bachoc
Nat. Hazards Earth Syst. Sci., 22, 3167–3182, https://doi.org/10.5194/nhess-22-3167-2022, https://doi.org/10.5194/nhess-22-3167-2022, 2022
Short summary
Short summary
We quantify the influence of wave–wind characteristics, offshore water level and sea level rise (projected up to 2200) on the occurrence of flooding events at Gâvres, French Atlantic coast. Our results outline the overwhelming influence of sea level rise over time compared to the others. By showing the robustness of our conclusions to the errors in the estimation procedure, our approach proves to be valuable for exploring and characterizing uncertainties in assessments of future flooding.
Ioannis A. Daglis, Loren C. Chang, Sergio Dasso, Nat Gopalswamy, Olga V. Khabarova, Emilia Kilpua, Ramon Lopez, Daniel Marsh, Katja Matthes, Dibyendu Nandy, Annika Seppälä, Kazuo Shiokawa, Rémi Thiéblemont, and Qiugang Zong
Ann. Geophys., 39, 1013–1035, https://doi.org/10.5194/angeo-39-1013-2021, https://doi.org/10.5194/angeo-39-1013-2021, 2021
Short summary
Short summary
We present a detailed account of the science programme PRESTO (PREdictability of the variable Solar–Terrestrial cOupling), covering the period 2020 to 2024. PRESTO was defined by a dedicated committee established by SCOSTEP (Scientific Committee on Solar-Terrestrial Physics). We review the current state of the art and discuss future studies required for the most effective development of solar–terrestrial physics.
Davide Zanchettin, Sara Bruni, Fabio Raicich, Piero Lionello, Fanny Adloff, Alexey Androsov, Fabrizio Antonioli, Vincenzo Artale, Eugenio Carminati, Christian Ferrarin, Vera Fofonova, Robert J. Nicholls, Sara Rubinetti, Angelo Rubino, Gianmaria Sannino, Giorgio Spada, Rémi Thiéblemont, Michael Tsimplis, Georg Umgiesser, Stefano Vignudelli, Guy Wöppelmann, and Susanna Zerbini
Nat. Hazards Earth Syst. Sci., 21, 2643–2678, https://doi.org/10.5194/nhess-21-2643-2021, https://doi.org/10.5194/nhess-21-2643-2021, 2021
Short summary
Short summary
Relative sea level in Venice rose by about 2.5 mm/year in the past 150 years due to the combined effect of subsidence and mean sea-level rise. We estimate the likely range of mean sea-level rise in Venice by 2100 due to climate changes to be between about 10 and 110 cm, with an improbable yet possible high-end scenario of about 170 cm. Projections of subsidence are not available, but historical evidence demonstrates that they can increase the hazard posed by climatically induced sea-level rise.
Rémi Thiéblemont, Gonéri Le Cozannet, Jérémy Rohmer, Alexandra Toimil, Moisés Álvarez-Cuesta, and Iñigo J. Losada
Nat. Hazards Earth Syst. Sci., 21, 2257–2276, https://doi.org/10.5194/nhess-21-2257-2021, https://doi.org/10.5194/nhess-21-2257-2021, 2021
Short summary
Short summary
Sea level rise and its acceleration are projected to aggravate coastal erosion over the 21st century. Resulting shoreline projections are deeply uncertain, however, which constitutes a major challenge for coastal planning and management. Our work presents a new extra-probabilistic framework to develop future shoreline projections and shows that deep uncertainties could be drastically reduced by better constraining sea level projections and improving coastal impact models.
Stéphane Abadie, Alexandre Paris, Riadh Ata, Sylvestre Le Roy, Gael Arnaud, Adrien Poupardin, Lucie Clous, Philippe Heinrich, Jeffrey Harris, Rodrigo Pedreros, and Yann Krien
Nat. Hazards Earth Syst. Sci., 20, 3019–3038, https://doi.org/10.5194/nhess-20-3019-2020, https://doi.org/10.5194/nhess-20-3019-2020, 2020
Short summary
Short summary
The tsunami which could be generated by a potential flank collapse of the Cumbre Vieja volcano in La Palma, Canary Islands, is evaluated through a numerical simulation based on an advanced and finely calibrated model. Then the consequences of such an event for Europe, France and Guadeloupe island are investigated using different numerical models for propagation. The impacts vary from negligible to very significant depending on the location considered.
Letizia Anderlini, Enrico Serpelloni, Cristiano Tolomei, Paolo Marco De Martini, Giuseppe Pezzo, Adriano Gualandi, and Giorgio Spada
Solid Earth, 11, 1681–1698, https://doi.org/10.5194/se-11-1681-2020, https://doi.org/10.5194/se-11-1681-2020, 2020
Short summary
Short summary
The Venetian Southern Alps (Italy) are located in a slowly deforming plate-boundary region where strong earthquakes occurred in the past even if seismological and geomorphological evidence is not conclusive about the specific thrust faults involved. In this study, we integrate and model different geodetic datasets of ground velocity to constrain the seismogenic potential of the studied faults, giving an example of the importance of using vertical geodetic data for seismic hazard estimates.
Fu Wang, Yongqiang Zong, Barbara Mauz, Jianfen Li, Jing Fang, Lizhu Tian, Yongsheng Chen, Zhiwen Shang, Xingyu Jiang, Giorgio Spada, and Daniele Melini
Earth Surf. Dynam., 8, 679–693, https://doi.org/10.5194/esurf-8-679-2020, https://doi.org/10.5194/esurf-8-679-2020, 2020
Short summary
Short summary
Our new Holocene sea level curve is not only different to previously published data but also different to global glacio-isostatic adjustment (GIA) models. We see that as soon as ice melting has ceased, local processes control shoreline migration and coast evolution. This indicates that more emphasis should be placed on regional coast and sea-level change modelling under a global future of rising sea level as local government needs more specific and effective advice to deal with coastal flooding.
Long Jiang, Theo Gerkema, Déborah Idier, Aimée B. A. Slangen, and Karline Soetaert
Ocean Sci., 16, 307–321, https://doi.org/10.5194/os-16-307-2020, https://doi.org/10.5194/os-16-307-2020, 2020
Short summary
Short summary
A model downscaling approach is used to investigate the effects of sea-level rise (SLR) on local tides. Results indicate that SLR induces larger increases in tidal amplitude and stronger nonlinear tidal distortion in the bay compared to the adjacent shelf sea. SLR can also change shallow-water tidal asymmetry and influence the direction and magnitude of bed-load sediment transport. The model downscaling approach is widely applicable for local SLR projections in estuaries and coastal bays.
Giorgio Spada and Daniele Melini
Geosci. Model Dev., 12, 5055–5075, https://doi.org/10.5194/gmd-12-5055-2019, https://doi.org/10.5194/gmd-12-5055-2019, 2019
Short summary
Short summary
Accurate modeling of the complex physical interactions between solid Earth, oceans, and ice masses in response to deglaciation processes is of paramount importance in climate change and geodesy, since ongoing effects of the melting of Late Pleistocene ice sheets still affect present-day observations of sea-level change, uplift rates, and gravity field. In this paper, we present SELEN4, an open-source code that can compute a broad range of physical predictions for a given deglaciation model.
Michaël Ablain, Benoît Meyssignac, Lionel Zawadzki, Rémi Jugier, Aurélien Ribes, Giorgio Spada, Jerôme Benveniste, Anny Cazenave, and Nicolas Picot
Earth Syst. Sci. Data, 11, 1189–1202, https://doi.org/10.5194/essd-11-1189-2019, https://doi.org/10.5194/essd-11-1189-2019, 2019
Short summary
Short summary
A description of the uncertainties in the Global Mean Sea Level (GMSL) record has been performed; 25 years of satellite altimetry data were used to estimate the error variance–covariance matrix for the GMSL record to derive its confidence envelope. Then a least square approach was used to estimate the GMSL trend and acceleration uncertainties over any time periods. A GMSL trend of 3.35 ± 0.4 mm/yr and a GMSL acceleration of 0.12 ± 0.07 mm/yr² have been found within a 90 % confidence level.
Alexandre Nicolae Lerma, Thomas Bulteau, Sylvain Elineau, François Paris, Paul Durand, Brice Anselme, and Rodrigo Pedreros
Nat. Hazards Earth Syst. Sci., 18, 207–229, https://doi.org/10.5194/nhess-18-207-2018, https://doi.org/10.5194/nhess-18-207-2018, 2018
Short summary
Short summary
In a context of rising sea levels linked to global warming, the issue of marine flood risk is becoming central to the management of low-lying coasts in the decades to come. The CRISSIS research program aims to propose a multidisciplinary, integrated and operational approach of marine flood risk, involving geographers, modellers, geomaticians and specialists in risk and crisis management. This work is dedicated to understand and simulate the hazard through historical and statistic approaches.
Luisa Perini, Lorenzo Calabrese, Paolo Luciani, Marco Olivieri, Gaia Galassi, and Giorgio Spada
Nat. Hazards Earth Syst. Sci., 17, 2271–2287, https://doi.org/10.5194/nhess-17-2271-2017, https://doi.org/10.5194/nhess-17-2271-2017, 2017
Short summary
Short summary
The Emilia-Romagna coastal plain is a low-land, highly urbanised area that will be significantly impacted by climate change. To plan adequate mitigation measures, reliable sea-level scenarios are needed. Here we suggests a method for evaluating the combined effects of sea-level rise and land subsidence in the year 2100, in terms of the increase in floodable areas during sea storms. The results allow for a regional assessment and indicate a significant local variability in the factors involved.
J. P. Naulin, D. Moncoulon, S. Le Roy, R. Pedreros, D. Idier, and C. Oliveros
Nat. Hazards Earth Syst. Sci., 16, 195–207, https://doi.org/10.5194/nhess-16-195-2016, https://doi.org/10.5194/nhess-16-195-2016, 2016
Short summary
Short summary
A model has been developed in order to estimate insurance-related losses caused by coastal flooding in France. It aims to identify the potential flood-impacted sectors and the subsequent insured losses a few days after the occurrence of a storm surge event on any part of the French coast. This system shows satisfactory results in the estimation of the losses related to Xynthia storm surge, which was used for the model's calibration.
S. Le Roy, R. Pedreros, C. André, F. Paris, S. Lecacheux, F. Marche, and C. Vinchon
Nat. Hazards Earth Syst. Sci., 15, 2497–2510, https://doi.org/10.5194/nhess-15-2497-2015, https://doi.org/10.5194/nhess-15-2497-2015, 2015
Short summary
Short summary
The proposed methodology aims to simultaneously simulate wave overtopping and the resulting flood in an urban area, with respect to chronology and buildings effect. Based on a downscaling approach, this method uses a time-dependent phase-resolving model to simulate dynamically the flows on a DEM including buildings. Applied to the Johanna storm in Gâvres (France), this method allowed for obtaining very realistic results in terms of water depths and flow velocities at a very high resolution.
T. Bulteau, D. Idier, J. Lambert, and M. Garcin
Nat. Hazards Earth Syst. Sci., 15, 1135–1147, https://doi.org/10.5194/nhess-15-1135-2015, https://doi.org/10.5194/nhess-15-1135-2015, 2015
Short summary
Short summary
Extreme value analyses of sea-level using tide-gauge measurements usually suffer from limited effective duration of observation which can result in large uncertainties, especially when outliers are present. To tackle this issue, a Bayesian MCMC method is developed integrating historical data in extreme sea-level analyses. A real case study shows a significant improvement in return values estimation and the usefulness of the Bayesian framework to predict future annual exceedance probabilities.
G. Le Cozannet, M. Bagni, P. Thierry, C. Aragno, and E. Kouokam
Nat. Hazards Earth Syst. Sci., 14, 1591–1598, https://doi.org/10.5194/nhess-14-1591-2014, https://doi.org/10.5194/nhess-14-1591-2014, 2014
T. Howard, A. K. Pardaens, J. L. Bamber, J. Ridley, G. Spada, R. T. W. L. Hurkmans, J. A. Lowe, and D. Vaughan
Ocean Sci., 10, 473–483, https://doi.org/10.5194/os-10-473-2014, https://doi.org/10.5194/os-10-473-2014, 2014
D. Idier and A. Falqués
Adv. Geosci., 39, 55–60, https://doi.org/10.5194/adgeo-39-55-2014, https://doi.org/10.5194/adgeo-39-55-2014, 2014
S. Lecacheux, T. Bulteau, and R. Pedreros
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhessd-2-725-2014, https://doi.org/10.5194/nhessd-2-725-2014, 2014
Preprint withdrawn
P. Gehl, C. Quinet, G. Le Cozannet, E. Kouokam, and P. Thierry
Nat. Hazards Earth Syst. Sci., 13, 2409–2424, https://doi.org/10.5194/nhess-13-2409-2013, https://doi.org/10.5194/nhess-13-2409-2013, 2013
M. Neri, G. Le Cozannet, P. Thierry, C. Bignami, and J. Ruch
Nat. Hazards Earth Syst. Sci., 13, 1929–1943, https://doi.org/10.5194/nhess-13-1929-2013, https://doi.org/10.5194/nhess-13-1929-2013, 2013
G. Le Cozannet, M. Garcin, T. Bulteau, C. Mirgon, M. L. Yates, M. Méndez, A. Baills, D. Idier, and C. Oliveros
Nat. Hazards Earth Syst. Sci., 13, 1209–1227, https://doi.org/10.5194/nhess-13-1209-2013, https://doi.org/10.5194/nhess-13-1209-2013, 2013
Related subject area
Sea, Ocean and Coastal Hazards
Rapid simulation of wave runup on morphologically diverse, reef-lined coasts with the BEWARE-2 (Broad-range Estimator of Wave Attack in Reef Environments) meta-process model
A brief history of tsunamis in the Vanuatu Arc
Tsunami inundation and vulnerability analysis on the Makran coast, Pakistan
Influence of data source and copula statistics on estimates of compound flood extremes in a river mouth environment
Volcano tsunamis and their effects on moored vessel safety: the 2022 Tonga event
Modelling tsunami initial conditions due to rapid coseismic seafloor displacement: efficient numerical integration and a tool to build unit source databases
Estuarine hurricane wind can intensify surge-dominated extreme water level in shallow and converging coastal systems
Revisiting regression methods for estimating long-term trends in sea surface temperature
Global application of a regional frequency analysis to extreme sea levels
Tsunami hazard assessment in the South China Sea based on geodetic locking of the Manila subduction zone
The impact of long-term changes in ocean waves and storm surge on coastal shoreline change: a case study of Bass Strait and south-east Australia
Brief communication: Implications of outstanding solitons for the occurrence of rogue waves at two additional sites in the North Sea
A systemic and comprehensive assessment of coastal hazard changes: method and application to France and its overseas territories
Regional modelling of extreme sea levels induced by hurricanes
Simulating sea level extremes from synthetic low-pressure systems
Nonlinear processes in tsunami simulations for the Peruvian coast with focus on Lima and Callao
Brief Communication: From modeling to reality – Insights from a recent severe storm surge event along the German Baltic Sea coast
Dynamic Projections of Extreme Sea Levels for western Europe based on Ocean and Wind-wave Modelling
The potential of global coastal flood risk reduction using various DRR measures
Thresholds for estuarine compound flooding using a combined hydrodynamic–statistical modelling approach
New insights into combined surfzone and estuarine bathing hazards
Nearshore tsunami amplitudes across the Maldives archipelago due to worst-case seismic scenarios in the Indian Ocean
Evidence of Middle Holocene landslide-generated tsunamis recorded in lake sediments from Saqqaq, West Greenland
Investigation of historical severe storms and storm tides in the German Bight with century reanalysis data
Inundation and evacuation of shoreline populations during landslide-triggered tsunami: An integrated numerical and statistical hazard assessment
Proposal for a new meteotsunami intensity index
Total water levels along the South Atlantic Bight during three along-shelf propagating tropical cyclones: relative contributions of storm surge and wave runup
Validated probabilistic approach to estimate flood direct impacts on the population and assets on European coastlines
Hurricane Irma: an unprecedented event over the last 3700 years? Geomorphological changes and sedimentological record in Codrington Lagoon, Barbuda
Bayesian extreme value analysis of extreme sea levels along the German Baltic coast using historical information
Storm characteristics influence nitrogen removal in an urban estuarine environment
A new European coastal flood database for low–medium intensity events
Boulder transport and wave height of a seventeenth-century South China Sea tsunami on Penghu Islands, Taiwan
A wave-resolving modeling study of rip current variability, rip hazard, and swimmer escape strategies on an embayed beach
Human displacements from Tropical Cyclone Idai attributable to climate change
Changing Sea Level, Changing Shorelines: Comparison of Remote Sensing Observations at the Terschelling Barrier Island
Three decades of coastal subsidence in the slow-moving Nice Côte d'Azur Airport area (France) revealed by InSAR (interferometric synthetic-aperture radar): insights into the deformation mechanism
Modelling extreme water levels using intertidal topography and bathymetry derived from multispectral satellite images
Regional assessment of extreme sea levels and associated coastal flooding along the German Baltic Sea coast
Joint probability analysis of storm surges and waves caused by tropical cyclones for the estimation of protection standard: a case study on the eastern coast of the Leizhou Peninsula and the island of Hainan in China
Meteotsunami in the United Kingdom: the hidden hazard
Climate-induced storminess forces major increases in future storm surge hazard in the South China Sea region
Assessing Typhoon Soulik-induced morphodynamics over the Mokpo coastal region in South Korea based on a geospatial approach
Bayesian hierarchical modelling of sea-level extremes in the Finnish coastal region
Assessing the coastal hazard of Medicane Ianos through ensemble modelling
A predictive equation for wave setup using genetic programming
Contribution of solitons to enhanced rogue wave occurrence in shallow depths: a case study in the southern North Sea
Compound flood events: analysing the joint occurrence of extreme river discharge events and storm surges in northern and central Europe
Improvements to the detection and analysis of external surges in the North Sea
Optimal probabilistic placement of facilities using a surrogate model for 3D tsunami simulations
Robert McCall, Curt Storlazzi, Floortje Roelvink, Stuart G. Pearson, Roel de Goede, and José A. Á. Antolínez
Nat. Hazards Earth Syst. Sci., 24, 3597–3625, https://doi.org/10.5194/nhess-24-3597-2024, https://doi.org/10.5194/nhess-24-3597-2024, 2024
Short summary
Short summary
Accurate predictions of wave-driven flooding are essential to manage risk on low-lying, reef-lined coasts. Models to provide this information are, however, computationally expensive. We present and validate a modeling system that simulates flood drivers on diverse and complex reef-lined coasts as competently as a full-physics model but at a fraction of the computational cost to run. This development paves the way for application in large-scale early-warning systems and flood risk assessments.
Jean H. M. Roger and Bernard Pelletier
Nat. Hazards Earth Syst. Sci., 24, 3461–3478, https://doi.org/10.5194/nhess-24-3461-2024, https://doi.org/10.5194/nhess-24-3461-2024, 2024
Short summary
Short summary
We present a catalogue of tsunamis that occurred in the Vanuatu Arc. It has been built based on the analysis of existing catalogues, historical documents, and sea-level data from five coastal tide gauges. Since 1863, 100 tsunamis of local, regional, or far-field origins have been listed; 15 of them show maximum wave amplitudes and/or run-up heights of above 1 m, and 8 are between 0.3 and 1 m. Details are provided for particular events, including debated events or events with no known origin(s).
Rashid Haider, Sajid Ali, Gösta Hoffmann, and Klaus Reicherter
Nat. Hazards Earth Syst. Sci., 24, 3279–3290, https://doi.org/10.5194/nhess-24-3279-2024, https://doi.org/10.5194/nhess-24-3279-2024, 2024
Short summary
Short summary
The coastlines bordering the Arabian Sea have yielded various tsunamites reflecting its high hazard potential and recurrences. My PhD project aims at the estimation and zonation of the hazards and risks associated with. This publication is a continuation of the previous publication (Haider et al., 2023), which focused on hazard estimation through a multi-proxy approach. This part of the study estimates the risk potential through integrated tsunami inundation analysis.
Kévin Dubois, Morten Andreas Dahl Larsen, Martin Drews, Erik Nilsson, and Anna Rutgersson
Nat. Hazards Earth Syst. Sci., 24, 3245–3265, https://doi.org/10.5194/nhess-24-3245-2024, https://doi.org/10.5194/nhess-24-3245-2024, 2024
Short summary
Short summary
Both extreme river discharge and storm surges can interact at the coast and lead to flooding. However, it is difficult to predict flood levels during such compound events because they are rare and complex. Here, we focus on the quantification of uncertainties and investigate the sources of limitations while carrying out such analyses at Halmstad, Sweden. Based on a sensitivity analysis, we emphasize that both the choice of data source and statistical methodology influence the results.
Sergio Padilla, Íñigo Aniel-Quiroga, Rachid Omira, Mauricio González, Jihwan Kim, and Maria A. Baptista
Nat. Hazards Earth Syst. Sci., 24, 3095–3113, https://doi.org/10.5194/nhess-24-3095-2024, https://doi.org/10.5194/nhess-24-3095-2024, 2024
Short summary
Short summary
The eruption of the Hunga Tonga–Hunga Ha'apai volcano in January 2022 triggered a global phenomenon, including an atmospheric wave and a volcano-meteorological tsunami (VMT). The tsunami, reaching as far as Callao, Peru, 10 000 km away, caused significant coastal impacts. This study delves into understanding these effects, particularly on vessel mooring safety. The findings underscore the importance of enhancing early warning systems and preparing port authorities for managing such rare events.
Alice Abbate, José M. González Vida, Manuel J. Castro Díaz, Fabrizio Romano, Hafize Başak Bayraktar, Andrey Babeyko, and Stefano Lorito
Nat. Hazards Earth Syst. Sci., 24, 2773–2791, https://doi.org/10.5194/nhess-24-2773-2024, https://doi.org/10.5194/nhess-24-2773-2024, 2024
Short summary
Short summary
Modelling tsunami generation due to a rapid submarine earthquake is a complex problem. Under a variety of realistic conditions in a subduction zone, we propose and test an efficient solution to this problem: a tool that can compute the generation of any potential tsunami in any ocean in the world. In the future, we will explore solutions that would also allow us to model tsunami generation by slower (time-dependent) seafloor displacement.
Mithun Deb, James J. Benedict, Ning Sun, Zhaoqing Yang, Robert D. Hetland, David Judi, and Taiping Wang
Nat. Hazards Earth Syst. Sci., 24, 2461–2479, https://doi.org/10.5194/nhess-24-2461-2024, https://doi.org/10.5194/nhess-24-2461-2024, 2024
Short summary
Short summary
We coupled earth system, hydrology, and hydrodynamic models to generate plausible and physically consistent ensembles of hurricane events and their associated water levels from the open coast to tidal rivers of Delaware Bay and River. Our results show that the hurricane landfall locations and the estuarine wind can significantly amplify the extreme surge in a shallow and converging system, especially when the wind direction aligns with the surge propagation direction.
Ming-Huei Chang, Yen-Chen Huang, Yu-Hsin Cheng, Chuen-Teyr Terng, Jinyi Chen, and Jyh Cherng Jan
Nat. Hazards Earth Syst. Sci., 24, 2481–2494, https://doi.org/10.5194/nhess-24-2481-2024, https://doi.org/10.5194/nhess-24-2481-2024, 2024
Short summary
Short summary
Monitoring the long-term trends in sea surface warming is crucial for informed decision-making and adaptation. This study offers a comprehensive examination of prevalent trend extraction methods. We identify the least-squares regression as suitable for general tasks yet highlight the need to address seasonal signal-induced bias, i.e., the phase–distance imbalance. Our developed method, evaluated using simulated and real data, is unbiased and better than the conventional SST anomaly method.
Thomas P. Collings, Niall D. Quinn, Ivan D. Haigh, Joshua Green, Izzy Probyn, Hamish Wilkinson, Sanne Muis, William V. Sweet, and Paul D. Bates
Nat. Hazards Earth Syst. Sci., 24, 2403–2423, https://doi.org/10.5194/nhess-24-2403-2024, https://doi.org/10.5194/nhess-24-2403-2024, 2024
Short summary
Short summary
Coastal areas are at risk of flooding from rising sea levels and extreme weather events. This study applies a new approach to estimating the likelihood of coastal flooding around the world. The method uses data from observations and computer models to create a detailed map of where these coastal floods might occur. The approach can predict flooding in areas for which there are few or no data available. The results can be used to help prepare for and prevent this type of flooding.
Guangsheng Zhao and Xiaojing Niu
Nat. Hazards Earth Syst. Sci., 24, 2303–2313, https://doi.org/10.5194/nhess-24-2303-2024, https://doi.org/10.5194/nhess-24-2303-2024, 2024
Short summary
Short summary
The purpose of this study is to estimate the spatial distribution of the tsunami hazard in the South China Sea from the Manila subduction zone. The plate motion data are used to invert the degree of locking on the fault plane. The degree of locking is used to estimate the maximum possible magnitude of earthquakes and describe the slip distribution. A spatial distribution map of the 1000-year return period tsunami wave height in the South China Sea was obtained by tsunami hazard assessment.
Mandana Ghanavati, Ian R. Young, Ebru Kirezci, and Jin Liu
Nat. Hazards Earth Syst. Sci., 24, 2175–2190, https://doi.org/10.5194/nhess-24-2175-2024, https://doi.org/10.5194/nhess-24-2175-2024, 2024
Short summary
Short summary
The paper examines the changes in shoreline position of the coast of south-east Australia over a 26-year period to determine whether changes are consistent with observed changes in ocean wave and storm surge climate. The results show that in regions where there have been significant changes in wave energy flux or wave direction, there have also been changes in shoreline position consistent with non-equilibrium longshore drift.
Ina Teutsch, Ralf Weisse, and Sander Wahls
Nat. Hazards Earth Syst. Sci., 24, 2065–2069, https://doi.org/10.5194/nhess-24-2065-2024, https://doi.org/10.5194/nhess-24-2065-2024, 2024
Short summary
Short summary
We investigate buoy and radar measurement data from shallow depths in the southern North Sea. We analyze the role of solitons for the occurrence of rogue waves. This is done by computing the nonlinear soliton spectrum of each time series. In a previous study that considered a single measurement site, we found a connection between the shape of the soliton spectrum and the occurrence of rogue waves. In this study, results for two additional sites are reported.
Marc Igigabel, Marissa Yates, Michalis Vousdoukas, and Youssef Diab
Nat. Hazards Earth Syst. Sci., 24, 1951–1974, https://doi.org/10.5194/nhess-24-1951-2024, https://doi.org/10.5194/nhess-24-1951-2024, 2024
Short summary
Short summary
Changes in sea levels alone do not determine the evolution of coastal hazards. Coastal hazard changes should be assessed using additional factors describing geomorphological configurations, metocean event types (storms, cyclones, long swells, and tsunamis), and the marine environment (e.g., coral reef state and sea ice extent). The assessment completed here, at regional scale including the coasts of mainland and overseas France, highlights significant differences in hazard changes.
Alisée A. Chaigneau, Melisa Menéndez, Marta Ramírez-Pérez, and Alexandra Toimil
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-100, https://doi.org/10.5194/nhess-2024-100, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
Tropical cyclones drive extreme sea levels, causing large storm surges due to low atmospheric pressure and strong winds. This study explores factors affecting the numerical modelling of storm surges induced by hurricanes in the tropical Atlantic. Two ocean models are compared and used for sensitivity experiments. ERA5 atmospheric reanalysis forcing generally improves storm surge estimates compared to parametric wind models. Including ocean circulations reduces errors in storm surge estimates.
Jani Särkkä, Jani Räihä, Mika Rantanen, and Matti Kämäräinen
Nat. Hazards Earth Syst. Sci., 24, 1835–1842, https://doi.org/10.5194/nhess-24-1835-2024, https://doi.org/10.5194/nhess-24-1835-2024, 2024
Short summary
Short summary
We study the relationship between tracks of low-pressure systems and related sea level extremes. We perform the studies by introducing a method to simulate sea levels using synthetic low-pressure systems. We test the method using sites located along the Baltic Sea coast. We find high extremes, where the sea level extreme reaches up to 3.5 m. In addition, we add the maximal value of the mean level of the Baltic Sea (1 m), leading to a sea level of 4.5 m.
Alexey Androsov, Sven Harig, Natalia Zamora, Kim Knauer, and Natalja Rakowsky
Nat. Hazards Earth Syst. Sci., 24, 1635–1656, https://doi.org/10.5194/nhess-24-1635-2024, https://doi.org/10.5194/nhess-24-1635-2024, 2024
Short summary
Short summary
Two numerical codes are used in a comparative analysis of the calculation of the tsunami wave due to an earthquake along the Peruvian coast. The comparison primarily evaluates the flow velocity fields in flooded areas. The relative importance of the various parts of the equations is determined, focusing on the nonlinear terms. The influence of the nonlinearity on the degree and volume of flooding, flow velocity, and small-scale fluctuations is determined.
Joshua Kiesel, Claudia Wolff, and Marvin Lorenz
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-71, https://doi.org/10.5194/nhess-2024-71, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
In October 2023, one of the strongest storm surges on record hit the southwestern Baltic Sea coast, causing severe impacts in the German federal state of Schleswig-Holstein including dike failures. Recent studies on coastal flooding from the same region align well with the October 23 surge, with differences in peak water levels of less than 30 cm. Here we use this rare coincidence to assess current capabilities and limitations of coastal flood modeling and derive key areas for future research.
Alisée A. Chaigneau, Angélique Melet, Aurore Voldoire, Guillaume Reffray, Stéphane Law-Chune, and Lotfi Aouf
EGUsphere, https://doi.org/10.5194/egusphere-2024-1061, https://doi.org/10.5194/egusphere-2024-1061, 2024
Short summary
Short summary
Climate change induced sea level rise increases the frequency of extreme sea levels. This paper presents regional projections of extreme sea levels for western Europe produced with high-resolution models (~6 km). Unlike commonly used coarse-scale global climate models, this approach allows to simulate key processes driving coastal sea level variations such as long-term sea level rise, tides, storm surges induced by low atmospheric surface pressure and winds, waves, and their interactions.
Eric Mortensen, Timothy Tiggeloven, Toon Haer, Bas van Bemmel, Dewi Le Bars, Sanne Muis, Dirk Eilander, Frederiek Sperna Weiland, Arno Bouwman, Willem Ligtvoet, and Philip J. Ward
Nat. Hazards Earth Syst. Sci., 24, 1381–1400, https://doi.org/10.5194/nhess-24-1381-2024, https://doi.org/10.5194/nhess-24-1381-2024, 2024
Short summary
Short summary
Current levels of coastal flood risk are projected to increase in coming decades due to various reasons, e.g. sea-level rise, land subsidence, and coastal urbanization: action is needed to minimize this future risk. We evaluate dykes and coastal levees, foreshore vegetation, zoning restrictions, and dry-proofing on a global scale to estimate what levels of risk reductions are possible. We demonstrate that there are several potential adaptation pathways forward for certain areas of the world.
Charlotte Lyddon, Nguyen Chien, Grigorios Vasilopoulos, Michael Ridgill, Sogol Moradian, Agnieszka Olbert, Thomas Coulthard, Andrew Barkwith, and Peter Robins
Nat. Hazards Earth Syst. Sci., 24, 973–997, https://doi.org/10.5194/nhess-24-973-2024, https://doi.org/10.5194/nhess-24-973-2024, 2024
Short summary
Short summary
Recent storms in the UK, like Storm Ciara in 2020, show how vulnerable estuaries are to the combined effect of sea level and river discharge. We show the combinations of sea levels and river discharges that cause flooding in the Conwy estuary, N Wales. The results showed flooding was amplified under moderate conditions in the middle estuary and elsewhere sea state or river flow dominated the hazard. Combined sea and river thresholds can improve prediction and early warning of compound flooding.
Christopher Stokes, Timothy Poate, Gerd Masselink, Tim Scott, and Steve Instance
EGUsphere, https://doi.org/10.5194/egusphere-2024-482, https://doi.org/10.5194/egusphere-2024-482, 2024
Short summary
Short summary
Currents at beaches with an estuary mouth have rarely been studied before. Using field measurements and computer modelling, we show that surfzone currents can be driven by both estuary flow and rip currents. We show that an estuary mouth beach can have flows reaching 1.5 m/s and have a high likelihood of taking bathers out of the surfzone. The river channels on the beach direct the flows and even though they change position over time, it was possible to predict when peak hazards would occur.
Shuaib Rasheed, Simon C. Warder, Yves Plancherel, and Matthew D. Piggott
Nat. Hazards Earth Syst. Sci., 24, 737–755, https://doi.org/10.5194/nhess-24-737-2024, https://doi.org/10.5194/nhess-24-737-2024, 2024
Short summary
Short summary
Here we use a high-resolution bathymetry dataset of the Maldives archipelago, as well as corresponding high numerical model resolution, to carry out a scenario-based tsunami hazard assessment for the entire Maldives archipelago to investigate the potential impact of plausible far-field tsunamis across the Indian Ocean at the island scale. The results indicate that several factors contribute to mitigating and amplifying tsunami waves at the island scale.
Niels J. Korsgaard, Kristian Svennevig, Anne S. Søndergaard, Gregor Luetzenburg, Mimmi Oksman, and Nicolaj K. Larsen
Nat. Hazards Earth Syst. Sci., 24, 757–772, https://doi.org/10.5194/nhess-24-757-2024, https://doi.org/10.5194/nhess-24-757-2024, 2024
Short summary
Short summary
A tsunami wave will leave evidence of erosion and deposition in coastal lakes, making it possible to determine the runup height and when it occurred. Here, we use four lakes now located at elevations of 19–91 m a.s.l. close to the settlement of Saqqaq, West Greenland, to show that at least two giant tsunamis occurred 7300–7600 years ago with runup heights larger than 40 m. We infer that any tsunamis from at least nine giga-scale landslides must have happened 8500–10 000 years ago.
Elke Magda Inge Meyer and Lidia Gaslikova
Nat. Hazards Earth Syst. Sci., 24, 481–499, https://doi.org/10.5194/nhess-24-481-2024, https://doi.org/10.5194/nhess-24-481-2024, 2024
Short summary
Short summary
Storm tides for eight extreme historical storms in the German Bight are modelled using sets of slightly varying atmospheric conditions from the century reanalyses. Comparisons with the water level observations from the gauges Norderney, Cuxhaven and Husum show that single members of the reanalyses are suitable for the reconstruction of extreme storms. Storms with more northerly tracks show less variability within a set and have more potential for accurate reconstruction of extreme water levels.
Emmie M. Bonilauri, Catherine Aaron, Matteo Cerminara, Raphaël Paris, Tomaso Esposti Ongaro, Benedetta Calusi, Domenico Mangione, and Andrew J. L. Harris
EGUsphere, https://doi.org/10.5194/egusphere-2024-221, https://doi.org/10.5194/egusphere-2024-221, 2024
Short summary
Short summary
Currently at Stromboli, for a locally generated tsunami, only 4 minutes of warning are available. We combined tsunami simulations and human exposure to complete a risk analysis. We linked the predicted inundation area and the tsunami warning signals to assess the hazard posed by future tsunamis, and to design escape routes to reach safe areas and to optimise evacuation times. Such products can be used by Civil Protection agencies on Stromboli Island.
Clare Lewis, Tim Smyth, Jess Neumann, and Hannah Cloke
Nat. Hazards Earth Syst. Sci., 24, 121–131, https://doi.org/10.5194/nhess-24-121-2024, https://doi.org/10.5194/nhess-24-121-2024, 2024
Short summary
Short summary
Meteotsunami are the result of atmospheric disturbances and can impact coastlines causing injury, loss of life, and damage to assets. This paper introduces a novel intensity index to allow for the quantification of these events at the shoreline. This has the potential to assist in the field of natural hazard assessment. It was trialled in the UK but designed for global applicability and to become a widely accepted standard in coastal planning, meteotsunami forecasting, and early warning systems.
Chu-En Hsu, Katherine A. Serafin, Xiao Yu, Christie A. Hegermiller, John C. Warner, and Maitane Olabarrieta
Nat. Hazards Earth Syst. Sci., 23, 3895–3912, https://doi.org/10.5194/nhess-23-3895-2023, https://doi.org/10.5194/nhess-23-3895-2023, 2023
Short summary
Short summary
Total water levels (TWLs) induced by tropical cyclones (TCs) are among the leading hazards faced by coastal communities. Using numerical models, we examined how TWL components (surge and wave runup) along the South Atlantic Bight varied during hurricanes Matthew (2016), Dorian (2019), and Isaias (2020). Peak surge and peak wave runup were dominated by wind speeds and relative positions to TCs. The exceedance time of TWLs was controlled by normalized distances to TC and TC translation speeds.
Enrico Duo, Juan Montes, Marine Le Gal, Tomás Fernández-Montblanc, Paolo Ciavola, and Clara Armaroli
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-197, https://doi.org/10.5194/nhess-2023-197, 2023
Revised manuscript accepted for NHESS
Short summary
Short summary
The present work, developed within the EU H2020 European Coastal Flood Awareness System ECFAS project, presents an approach used to estimate coastal flood direct impacts on population, buildings, and roads along the European coasts. The findings demonstrate that the ECFAS Impact approach offers valuable estimates for affected populations, reliable damage assessments for buildings and roads, and improved accuracy compared to traditional grid-based approaches.
Maude Biguenet, Eric Chaumillon, Pierre Sabatier, Antoine Bastien, Emeline Geba, Fabien Arnaud, Thibault Coulombier, and Nathalie Feuillet
Nat. Hazards Earth Syst. Sci., 23, 3761–3788, https://doi.org/10.5194/nhess-23-3761-2023, https://doi.org/10.5194/nhess-23-3761-2023, 2023
Short summary
Short summary
This work documents the impact of Hurricane Irma (2017) on the Codrington barrier and lagoon on Barbuda Island. Irma caused two wide breaches in the sandy barrier, which remained unopened for 250 years. The thick and extensive sand sheet at the top of the lagoon fill was attributed to Irma. This unique deposit in a 3700-year record confirms Irma's exceptional character. This case study illustrates the consequences of high-intensity hurricanes in low-lying islands in a global warming context.
Leigh Richard MacPherson, Arne Arns, Svenja Fischer, Fernando Javier Méndez, and Jürgen Jensen
Nat. Hazards Earth Syst. Sci., 23, 3685–3701, https://doi.org/10.5194/nhess-23-3685-2023, https://doi.org/10.5194/nhess-23-3685-2023, 2023
Short summary
Short summary
Efficient adaptation planning for coastal flooding caused by extreme sea levels requires accurate assessments of the underlying hazard. Tide-gauge data alone are often insufficient for providing the desired accuracy but may be supplemented with historical information. We estimate extreme sea levels along the German Baltic coast and show that relying solely on tide-gauge data leads to underestimations. Incorporating historical information leads to improved estimates with reduced uncertainties.
Anne Margaret H. Smiley, Suzanne P. Thompson, Nathan S. Hall, and Michael F. Piehler
Nat. Hazards Earth Syst. Sci., 23, 3635–3649, https://doi.org/10.5194/nhess-23-3635-2023, https://doi.org/10.5194/nhess-23-3635-2023, 2023
Short summary
Short summary
Floodwaters can deliver reactive nitrogen to sensitive aquatic systems and diminish water quality. We assessed the nitrogen removal capabilities of flooded habitats and urban landscapes. Differences in processing rates across land cover treatments and between nutrient treatments suggest that abundance and spatial distributions of habitats, as well as storm characteristics, influence landscape-scale nitrogen removal. Results have important implications for coastal development and climate change.
Marine Le Gal, Tomás Fernández-Montblanc, Enrico Duo, Juan Montes Perez, Paulo Cabrita, Paola Souto Ceccon, Véra Gastal, Paolo Ciavola, and Clara Armaroli
Nat. Hazards Earth Syst. Sci., 23, 3585–3602, https://doi.org/10.5194/nhess-23-3585-2023, https://doi.org/10.5194/nhess-23-3585-2023, 2023
Short summary
Short summary
Assessing coastal hazards is crucial to mitigate flooding disasters. In this regard, coastal flood databases are valuable tools. This paper describes a new coastal flood map catalogue covering the entire European coastline, as well as the methodology to build it and its accuracy. The catalogue focuses on frequent extreme events and relies on synthetic scenarios estimated from local storm conditions. Flood-prone areas and regions sensitive to storm duration and water level peak were identified.
Neng-Ti Yu, Cheng-Hao Lu, I-Chin Yen, Jia-Hong Chen, Jiun-Yee Yen, and Shyh-Jeng Chyi
Nat. Hazards Earth Syst. Sci., 23, 3525–3542, https://doi.org/10.5194/nhess-23-3525-2023, https://doi.org/10.5194/nhess-23-3525-2023, 2023
Short summary
Short summary
A paleotsunami deposit of cliff-top basalt debris was identified on the Penghu Islands in the southern Taiwan Strait and related to the 1661 earthquake in southwest Taiwan. A minimum wave height of 3.2 m is estimated to have rotated the biggest boulder for over 30 m landwards onto the cliff top at 2.5 m a.s.l. The event must have been huge compared to the 1994 M 6.4 earthquake with the ensuing 0.4 m high tsunami in the same area, validating the intimidating tsunami risks in the South China Sea.
Ye Yuan, Huaiwei Yang, Fujiang Yu, Yi Gao, Benxia Li, and Chuang Xing
Nat. Hazards Earth Syst. Sci., 23, 3487–3507, https://doi.org/10.5194/nhess-23-3487-2023, https://doi.org/10.5194/nhess-23-3487-2023, 2023
Short summary
Short summary
Rip currents are narrow jets of offshore-directed flow that originated in the surf zone, which can take swimmers of all ability levels into deeper water unawares. In this study, a 1 m fine-resolution wave-resolving model was configured to study rip current variability and the optimal swimmer escape strategies. Multiple factors contribute to the survival of swimmers. However, for weak-to-moderate rip and longshore currents, swimming onshore consistently seems to be the most successful strategy.
Benedikt Mester, Thomas Vogt, Seth Bryant, Christian Otto, Katja Frieler, and Jacob Schewe
Nat. Hazards Earth Syst. Sci., 23, 3467–3485, https://doi.org/10.5194/nhess-23-3467-2023, https://doi.org/10.5194/nhess-23-3467-2023, 2023
Short summary
Short summary
In 2019, Cyclone Idai displaced more than 478 000 people in Mozambique. In our study, we use coastal flood modeling and satellite imagery to construct a counterfactual cyclone event without the effects of climate change. We show that 12 600–14 900 displacements can be attributed to sea level rise and the intensification of storm wind speeds due to global warming. Our impact attribution study is the first one on human displacement and one of very few for a low-income country.
Bene Aschenneller, Roelof Rietbroek, and Daphne van der Wal
EGUsphere, https://doi.org/10.5194/egusphere-2023-2320, https://doi.org/10.5194/egusphere-2023-2320, 2023
Short summary
Short summary
Shorelines retreat or advanve in response to sea level changes, subsidence or uplift of the ground, and morphological processes (sedimentation and erosion). We show that the geometrical influence of each of these drivers on shoreline movements can be quantified by combining different remote sensing observations, including radar altimetry, LiDAR and optical satellite images. The focus here is to illustrate the uncertainties of these observations by comparing datasets that cover similar processes.
Olivier Cavalié, Frédéric Cappa, and Béatrice Pinel-Puysségur
Nat. Hazards Earth Syst. Sci., 23, 3235–3246, https://doi.org/10.5194/nhess-23-3235-2023, https://doi.org/10.5194/nhess-23-3235-2023, 2023
Short summary
Short summary
Coastal areas are fragile ecosystems that face multiple hazards. In this study, we measured the downward motion of the Nice Côte d'Azur Airport (France) that was built on reclaimed area and found that it has subsided from 16 mm yr-1 in the 1990s to 8 mm yr-1 today. A continuous remote monitoring of the platform will provide key data for a detailed investigation of future subsidence maps, and this contribution will help to evaluate the potential failure of part of the airport platform.
Wagner L. L. Costa, Karin R. Bryan, and Giovanni Coco
Nat. Hazards Earth Syst. Sci., 23, 3125–3146, https://doi.org/10.5194/nhess-23-3125-2023, https://doi.org/10.5194/nhess-23-3125-2023, 2023
Short summary
Short summary
For predicting flooding events at the coast, topo-bathymetric data are essential. However, elevation data can be unavailable. To tackle this issue, recent efforts have centred on the use of satellite-derived topography (SDT) and bathymetry (SDB). This work is aimed at evaluating their accuracy and use for flooding prediction in enclosed estuaries. Results show that the use of SDT and SDB in numerical modelling can produce similar predictions when compared to the surveyed elevation data.
Joshua Kiesel, Marvin Lorenz, Marcel König, Ulf Gräwe, and Athanasios T. Vafeidis
Nat. Hazards Earth Syst. Sci., 23, 2961–2985, https://doi.org/10.5194/nhess-23-2961-2023, https://doi.org/10.5194/nhess-23-2961-2023, 2023
Short summary
Short summary
Among the Baltic Sea littoral states, Germany is anticipated to experience considerable damage as a result of increased coastal flooding due to sea-level rise (SLR). Here we apply a new modelling framework to simulate how flooding along the German Baltic Sea coast may change until 2100 if dikes are not upgraded. We find that the study region is highly exposed to flooding, and we emphasise the importance of current plans to update coastal protection in the future.
Zhang Haixia, Cheng Meng, and Fang Weihua
Nat. Hazards Earth Syst. Sci., 23, 2697–2717, https://doi.org/10.5194/nhess-23-2697-2023, https://doi.org/10.5194/nhess-23-2697-2023, 2023
Short summary
Short summary
Simultaneous storm surge and waves can cause great damage due to cascading effects. Quantitative joint probability analysis is critical to determine their optimal protection design values. The joint probability of the surge and wave for the eastern coasts of Leizhou Peninsula and Hainan are estimated with a Gumbel copula based on 62 years of numerically simulated data, and the optimal design values under various joint return periods are derived using the non-linear programming method.
Clare Lewis, Tim Smyth, David Williams, Jess Neumann, and Hannah Cloke
Nat. Hazards Earth Syst. Sci., 23, 2531–2546, https://doi.org/10.5194/nhess-23-2531-2023, https://doi.org/10.5194/nhess-23-2531-2023, 2023
Short summary
Short summary
Meteotsunami are globally occurring water waves initiated by atmospheric disturbances. Previous research has suggested that in the UK, meteotsunami are a rare phenomenon and tend to occur in the summer months. This article presents a revised and updated catalogue of 98 meteotsunami that occurred between 1750 and 2022. Results also demonstrate a larger percentage of winter events and a geographical pattern highlighting the
hotspotregions that experience these events.
Melissa Wood, Ivan D. Haigh, Quan Quan Le, Hung Nghia Nguyen, Hoang Ba Tran, Stephen E. Darby, Robert Marsh, Nikolaos Skliris, Joël J.-M. Hirschi, Robert J. Nicholls, and Nadia Bloemendaal
Nat. Hazards Earth Syst. Sci., 23, 2475–2504, https://doi.org/10.5194/nhess-23-2475-2023, https://doi.org/10.5194/nhess-23-2475-2023, 2023
Short summary
Short summary
We used a novel database of simulated tropical cyclone tracks to explore whether typhoon-induced storm surges present a future flood risk to low-lying coastal communities around the South China Sea. We found that future climate change is likely to change tropical cyclone behaviour to an extent that this increases the severity and frequency of storm surges to Vietnam, southern China, and Thailand. Consequently, coastal flood defences need to be reviewed for resilience against this future hazard.
Sang-Guk Yum, Moon-Soo Song, and Manik Das Adhikari
Nat. Hazards Earth Syst. Sci., 23, 2449–2474, https://doi.org/10.5194/nhess-23-2449-2023, https://doi.org/10.5194/nhess-23-2449-2023, 2023
Short summary
Short summary
This study performed analysis on typhoon-induced coastal morphodynamics for the Mokpo coast. Wetland vegetation was severely impacted by Typhoon Soulik, with 87.35 % of shoreline transects experiencing seaward migration. This result highlights the fact that sediment resuspension controls the land alteration process over the typhoon period. The land accretion process dominated during the pre- to post-typhoon periods.
Olle Räty, Marko Laine, Ulpu Leijala, Jani Särkkä, and Milla M. Johansson
Nat. Hazards Earth Syst. Sci., 23, 2403–2418, https://doi.org/10.5194/nhess-23-2403-2023, https://doi.org/10.5194/nhess-23-2403-2023, 2023
Short summary
Short summary
We studied annual maximum sea levels in the Finnish coastal region. Our aim was to better quantify the uncertainty in them compared to previous studies. Using four statistical models, we found out that hierarchical models, which shared information on sea-level extremes across Finnish tide gauges, had lower uncertainty in their results in comparison with tide-gauge-specific fits. These models also suggested that the shape of the distribution for extreme sea levels is similar on the Finnish coast.
Christian Ferrarin, Florian Pantillon, Silvio Davolio, Marco Bajo, Mario Marcello Miglietta, Elenio Avolio, Diego S. Carrió, Ioannis Pytharoulis, Claudio Sanchez, Platon Patlakas, Juan Jesús González-Alemán, and Emmanouil Flaounas
Nat. Hazards Earth Syst. Sci., 23, 2273–2287, https://doi.org/10.5194/nhess-23-2273-2023, https://doi.org/10.5194/nhess-23-2273-2023, 2023
Short summary
Short summary
The combined use of meteorological and ocean models enabled the analysis of extreme sea conditions driven by Medicane Ianos, which hit the western coast of Greece on 18 September 2020, flooding and damaging the coast. The large spread associated with the ensemble highlighted the high model uncertainty in simulating such an extreme weather event. The different simulations have been used for outlining hazard scenarios that represent a fundamental component of the coastal risk assessment.
Charline Dalinghaus, Giovanni Coco, and Pablo Higuera
Nat. Hazards Earth Syst. Sci., 23, 2157–2169, https://doi.org/10.5194/nhess-23-2157-2023, https://doi.org/10.5194/nhess-23-2157-2023, 2023
Short summary
Short summary
Wave setup is a critical component of coastal flooding. Consequently, understanding and being able to predict wave setup is vital to protect coastal resources and the population living near the shore. Here, we applied machine learning to improve the accuracy of present predictors of wave setup. The results show that the new predictors outperform existing formulas demonstrating the capability of machine learning models to provide a physically sound description of wave setup.
Ina Teutsch, Markus Brühl, Ralf Weisse, and Sander Wahls
Nat. Hazards Earth Syst. Sci., 23, 2053–2073, https://doi.org/10.5194/nhess-23-2053-2023, https://doi.org/10.5194/nhess-23-2053-2023, 2023
Short summary
Short summary
Rogue waves exceed twice the significant wave height. They occur more often than expected in the shallow waters off Norderney. When applying a nonlinear Fourier transform for the Korteweg–de Vries equation to wave data from Norderney, we found differences in the soliton spectra of time series with and without rogue waves. A strongly outstanding soliton in the spectrum indicated an enhanced probability for rogue waves. We could attribute spectral solitons to the measured rogue waves.
Philipp Heinrich, Stefan Hagemann, Ralf Weisse, Corinna Schrum, Ute Daewel, and Lidia Gaslikova
Nat. Hazards Earth Syst. Sci., 23, 1967–1985, https://doi.org/10.5194/nhess-23-1967-2023, https://doi.org/10.5194/nhess-23-1967-2023, 2023
Short summary
Short summary
High seawater levels co-occurring with high river discharges have the potential to cause destructive flooding. For the past decades, the number of such compound events was larger than expected by pure chance for most of the west-facing coasts in Europe. Additionally rivers with smaller catchments showed higher numbers. In most cases, such events were associated with a large-scale weather pattern characterized by westerly winds and strong rainfall.
Alexander Böhme, Birgit Gerkensmeier, Benedikt Bratz, Clemens Krautwald, Olaf Müller, Nils Goseberg, and Gabriele Gönnert
Nat. Hazards Earth Syst. Sci., 23, 1947–1966, https://doi.org/10.5194/nhess-23-1947-2023, https://doi.org/10.5194/nhess-23-1947-2023, 2023
Short summary
Short summary
External surges in the North Sea are caused by low-pressure cells travelling over the northeast Atlantic. They influence extreme water levels on the German coast and have to be considered in the design process of coastal defence structures. This study collects data about external surges from 1995–2020 and analyses their causes, behaviours and potential trends. External surges often occur less than 72 h apart, enabling a single storm surge to be influenced by more than one external surge.
Kenta Tozato, Shuji Moriguchi, Shinsuke Takase, Yu Otake, Michael R. Motley, Anawat Suppasri, and Kenjiro Terada
Nat. Hazards Earth Syst. Sci., 23, 1891–1909, https://doi.org/10.5194/nhess-23-1891-2023, https://doi.org/10.5194/nhess-23-1891-2023, 2023
Short summary
Short summary
This study presents a framework that efficiently investigates the optimal placement of facilities probabilistically based on advanced numerical simulation. Surrogate models for the numerical simulation are constructed using a mode decomposition technique. Monte Carlo simulations using the surrogate models are performed to evaluate failure probabilities. Using the results of the Monte Carlo simulations and the genetic algorithm, optimal placements can be investigated probabilistically.
Cited articles
Ablain, M., Cazenave, A., Larnicol, G., Balmaseda, M., Cipollini, P., Faugère, Y., Fernandes, M. J., Henry, O., Johannessen, J. A., Knudsen, P., Andersen, O., Legeais, J., Meyssignac, B., Picot, N., Roca, M., Rudenko, S., Scharffenberg, M. G., Stammer, D., Timms, G., and Benveniste, J.: Improved sea level record over the satellite altimetry era (1993–2010) from the Climate Change Initiative project, Ocean Sci., 11, 67–82, https://doi.org/10.5194/os-11-67-2015, 2015.
Ballu, V., Bouin, M. N., Siméoni, P., Crawford, W. C., Calmant, S.,
Boré, J. M., Kanas, T., and Pelletier, B.: Comparing the role of absolute
sea-level rise and vertical tectonic motions in coastal flooding, Torres
Islands (Vanuatu), P. Natl. Acad. Sci. USA, 108, 13019–13022, https://doi.org/10.1073/pnas.1102842108, 2011.
Berardino, P., Fornaro, G., Lanari, R., and Sansosti, E.: A new algorithm
for surface deformation monitoring based on small baseline differential SAR
interferograms, IEEE T. Geosci. Remote, 40, 2375–2383, https://doi.org/10.1109/tgrs.2002.803792, 2002.
Bertin, X., Li, K., Roland, A., and Bidlot, J. R.: The contribution of
short-waves in storm surges: Two case studies in the Bay of Biscay,
Cont. Shelf Res., 96, 1–15, https://doi.org/10.1016/j.csr.2015.01.005, 2015.
Blewitt, G., Hammond, W. C., and Kreemer, C.: Harnessing the GPS data
explosion for interdisciplinary science, EOS T. Am. Geophys. Un., 99, https://doi.org/10.1029/2018EO104623, 2018.
BRGM: Regional Sea Level Change web client demonstrator, BRGM, Orléans, France, available at: https://sealevelrise.brgm.fr/, last access: 11 February 2021.
Bourdon, E. and Chiozzotto, C.: impacts géotechniques et hydrauliques
de l'élévation du niveau de la mer due au changement climatique dans
le contexte urbain côtier de la zone pointoise (Guadeloupe),
[geotechnical and hydraulic impacts of sea-level rise caused by climate
change in the urban coastal area surrounding Pointe-à-Pitre
(Guadeloupe)], available at: http://infoterre.brgm.fr/rapports/RP-60857-FR.pdf (last access: 11 November 2020), 135 pp., 2012 (in French).
Camus, P., Tomás, A., Díaz-Hernández, G., Rodríguez, B.,
Izaguirre, C., and Losada, I. J.: Probabilistic assessment of port operation
downtimes under climate change, Coast. Eng., 147, 12–24,
https://doi.org/10.1016/j.coastaleng.2019.01.007, 2019.
Carson, M., Kohl, A., Stammer, D., Slangen, A. B. A., Katsman, C. A., van de
Wal, R. S. W., Church, J., and White, N.: Coastal sea level changes,
observed and projected during the 20th and 21st century, Clim. Change,
134, 269–281, https://doi.org/10.1007/s10584-015-1520-1, 2016.
Carson, M., Kohl, A., Stammer, D., Meyssignac, B., Church, J., Schroter, J.,
Wenzel, M., and Hamlington, B.: Regional Sea Level Variability and Trends,
1960–2007: A Comparison of Sea Level Reconstructions and Ocean Syntheses,
J. Geophys. Res.-Oceans, 122, 9068–9091,
https://doi.org/10.1002/2017jc012992, 2017.
Cazenave, A., Dominh, K., Ponchaut, F., Soudarin, L., Cretaux, J. F., and Le
Provost, C.: Sea level changes from Topex-Poseidon altimetry and tide
gauges, and vertical crustal motions from DORIS, Geophys. Res.
Lett., 26, 2077–2080, https://doi.org/10.1029/1999gl900472, 1999.
Cesca, S., Letort, J., Razafindrakoto, H. N. T., Heimann, S., Rivalta, E.,
Isken, M. P., Nikkhoo, M., Passarelli, L., Petersen, G. M., Cotton, F., and
Dahm, T.: Drainage of a deep magma reservoir near Mayotte inferred from
seismicity and deformation, Nat. Geosci., 13, 87–93,
https://doi.org/10.1038/s41561-019-0505-5, 2020.
Chauvin, F., Pilon, R., Palany, P., and Belmadani, A.: Future changes in
Atlantic hurricanes with the rotated-stretched ARPEGE-Climat at very high
resolution, Clim. Dynam., 54, 947–972, https://doi.org/10.1007/s00382-019-05040-4, 2020.
Chen, X. Y., Zhang, X. B., Church, J. A., Watson, C. S., King, M. A.,
Monselesan, D., Legresy, B., and Harig, C.: The increasing rate of global
mean sea-level rise during 1993–2014, Nat. Clim. Change, 7, 492–495,
https://doi.org/10.1038/nclimate3325, 2017.
Church, J. A., Clark, P. U., Cazenave, A., Gregory, J. M., Jevrejeva, S.,
Levermann, A., Merrifield, M. A., Milne, G. A., Nerem, R. S., Nunn, P. D.,
Payne, A. J., Pfeffer, W. T., Stammer, D., and Unnikrishnan, A. S.: Sea
Level Change, in: Climate Change 2013: The Physical Science Basis.
Contribution of Working Group I to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change, Cambridge University Press,
Cambridge, United Kingdom and New York, NY, USA, 2013a.
Church, J. A., Clark, P. U., Cazenave, A., Gregory, J. M., Jevrejeva, S.,
Levermann, A., Merrifield, M. A., Milne, G. A., Nerem, R. S., Nunn, P. D.,
Payne, A. J., Pfeffer, W. T., Stammer, D., and Unnikrishnan, A. S.:
Sea-Level Rise by 2100, Science, 342, 1445–1445,
https://doi.org/10.1126/science.342.6165.1445-a, 2013b.
Dahl, K. A., Fitzpatrick, M. F., and Spanger-Siegfried, E.: Sea level rise
drives increased tidal flooding frequency at tide gauges along the US East
and Gulf Coasts: Projections for 2030 and 2045, Plos One, 12, e0170949,
https://doi.org/10.1371/journal.pone.0170949, 2017.
Dangendorf, S., Marcos, M., Woppelmann, G., Conrad, C. P., Frederikse, T.,
and Riva, R.: Reassessment of 20th century global mean sea level rise,
P. Natl. Acad. Sci. USA, 114, 5946–5951, https://doi.org/10.1073/pnas.1616007114, 2017.
DEAL: Cartographie du territoire à risque d'inondation important
(TRI) – Centre Guadeloupe. Rapport de présentation, [Mapping territories
at risk of important innundation – Guadeloupe Center – presentation
report], available at:
http://www.guadeloupe.developpement-durable.gouv.fr/IMG/pdf/20150400_tricentre_i.pdf (last access: 11 February 2021), 2015 (in French).
de Michele, M.: Interférométrie radar sur la Guadeloupe 2003–2010
(champ géothermique de Bouillante), [Radar interferometry in Guadeloupe 2003–2010 (geothermal field of Bouillante)], BRGM, 23 pp., BRGM/RP-59247-FR, available at: http://infoterre.brgm.fr/rapports/RP-59247-FR.pdf (last access: 11 February 2021), 2010.
DeConto, R. M. and Pollard, D.: Contribution of Antarctica to past and
future sea-level rise, Nature, 531, 591–597, https://doi.org/10.1038/nature17145, 2016.
Dieng, H. B., Cazenave, A., Meyssignac, B., and Ablain, M.: New estimate of
the current rate of sea level rise from a sea level budget approach,
Geophys. Res. Lett., 44, 3744–3751, https://doi.org/10.1002/2017gl073308, 2017.
Edwards, T. L., Brandon, M. A., Durand, G., Edwards, N. R., Golledge, N. R.,
Holden, P. B., Nias, I. J., Payne, A. J., Ritz, C., and Wernecke, A.:
Revisiting Antarctic ice loss due to marine ice-cliff instability, Nature,
566, 58–64, https://doi.org/10.1038/s41586-019-0901-4, 2019.
Ezer, T. and Atkinson, L. P.: Accelerated flooding along the US East Coast:
On the impact of sea-level rise, tides, storms, the Gulf Stream, and the
North Atlantic Oscillations, Earths Future, 2, 362–382,
https://doi.org/10.1002/2014ef000252, 2014.
Fürst, J. J., Goelzer, H., and Huybrechts, P.: Ice-dynamic projections of the Greenland ice sheet in response to atmospheric and oceanic warming, The Cryosphere, 9, 1039–1062, https://doi.org/10.5194/tc-9-1039-2015, 2015.
Gabriel, A. K., Goldstein, R. M., and Zebker, H. A.: MAPPING SMALL ELEVATION
CHANGES OVER LARGE AREAS – DIFFERENTIAL RADAR INTERFEROMETRY, J.
Geophys. Res.-Solid, 94, 9183–9191,
https://doi.org/10.1029/JB094iB07p09183, 1989.
Garner, A. J., Weiss, J. L., Parris, A., Kopp, R. E., Horton, R. M.,
Overpeck, J. T., and Horton, B. P.: Evolution of 21st Century Sea Level Rise
Projections, Earths Future, 6, 1603–1615, https://doi.org/10.1029/2018ef000991, 2018.
Gregory, J. M., Griffies, S. M., Hughes, C. W., Lowe, J. A., Church, J. A.,
Fukimori, I., Gomez, N., Kopp, R. E., Landerer, F., Le Cozannet, G., Ponte,
R. M., Stammer, D., Tamisiea, M. E., and van de Wal, R. S. W.: Concepts and
Terminology for Sea Level: Mean, Variability and Change, Both Local and
Global, Surv. Geophys., 40, 1251–1289, https://doi.org/10.1007/s10712-019-09525-z, 2019.
Haasnoot, M., Kwadijk, J., Van Alphen, J., Le Bars, D., Van Den Hurk, B., Diermanse, F., Van Der Spek, A., Oude Essink, G., Delsman, J., and Mens, M.: Adaptation to
uncertain sea-level rise; how uncertainty in Antarctic mass-loss impacts the
coastal adaptation strategy of the Netherlands, Environ. Res. Lett., 15, 034007, https://doi.org/10.1088/1748-9326/ab666c, 2020.
Hanna, E., Fettweis, X., and Hall, R. J.: Brief communication: Recent changes in summer Greenland blocking captured by none of the CMIP5 models, The Cryosphere, 12, 3287–3292, https://doi.org/10.5194/tc-12-3287-2018, 2018.
Hinkel, J., Jaeger, C., Nicholls, R. J., Lowe, J., Renn, O., and Shi, P. J.:
Sea-level rise scenarios and coastal risk management, Nat. Clim. Change,
5, 188–190, https://doi.org/10.1038/nclimate2505, 2015.
Hinkel, J., Church, J. A., Gregory, J. M., Lambert, E., Le Cozannet, G.,
Lowe, J., McInnes, K. L., Nicholls, R. J., van der Pol, T. D., and van de
Wal, R.: Meeting User Needs for Sea Level Rise Information: A Decision
Analysis Perspective, Earths Future, 7, 320–337, https://doi.org/10.1029/2018ef001071, 2019.
Jackson, L. P. and Jevrejeva, S.: A probabilistic approach to 21st century
regional sea-level projections using RCP and High-end scenarios, Global
Planet. Change, 146, 179–189, https://doi.org/10.1016/j.gloplacha.2016.10.006, 2016.
Jacobs, J. M., Cattaneo, L. R., Sweet, W., and Mansfield, T.: Recent and
Future Outlooks for Nuisance Flooding Impacts on Roadways on the US East
Coast, Transp. Res. Record, 2672, 1–10, https://doi.org/10.1177/0361198118756366,
2018.
Jamero, M. L., Onuki, M., Esteban, M., Billones-Sensano, X. K., Tan, N.,
Nellas, A., Takagi, H., Thao, N. D., and Valenzuela, V. P.: Small-island
communities in the Philippines prefer local measures to relocation in
response to sea-level rise, Nat. Clim. Change, 7, 581–586, https://doi.org/10.1038/nclimate3344, 2017.
Jevrejeva, S., Moore, J. C., Grinsted, A., Matthews, A. P., and Spada, G.:
Trends and acceleration in global and regional sea levels since 1807, Global Planet. Change, 113, 11–22, https://doi.org/10.1016/j.gloplacha.2013.12.004, 2014.
Jevrejeva, S., Bricheno, L., Brown, J., Byrne, D., De Dominicis, M., Matthews, A., Rynders, S., Palanisamy, H., and Wolf, J.: Quantifying processes contributing to marine hazards to inform coastal climate resilience assessments, demonstrated for the Caribbean Sea, Nat. Hazards Earth Syst. Sci., 20, 2609–2626, https://doi.org/10.5194/nhess-20-2609-2020, 2020.
Knapp, K. R., Kruk, M. C., Levinson, D. H., Diamond, H. J., and Neumann, C.
J.: The International Best track Archive for Climate Stewardship (IBTrACS)
Unifying Tropical Cyclone Data, B. Am. Meteorol.
Soc., 91, 363–376, https://doi.org/10.1175/2009bams2755.1, 2010.
Kopp, R. E.: Does the mid-Atlantic United States sea level acceleration hot
spot reflect ocean dynamic variability?, Geophys. Res. Lett., 40,
3981–3985, https://doi.org/10.1002/grl.50781, 2013.
Kopp, R. E., Horton, R. M., Little, C. M., Mitrovica, J. X., Oppenheimer,
M., Rasmussen, D. J., Strauss, B. H., and Tebaldi, C.: Probabilistic 21st
and 22nd century sea-level projections at a global network of tide-gauge
sites, Earths Future, 2, 383–406, https://doi.org/10.1002/2014ef000239, 2014.
Kopp, R. E., DeConto, R. M., Bader, D. A., Hay, C. C., Horton, R. M., Kulp,
S., Oppenheimer, M., Pollard, D., and Strauss, B. H.: Evolving Understanding
of Antarctic Ice-Sheet Physics and Ambiguity in Probabilistic Sea-Level
Projections, Earths Future, 5, 1217–1233, https://doi.org/10.1002/2017ef000663, 2017.
Krien, Y., Dudon, B., Roger, J., and Zahibo, N.: Probabilistic hurricane-induced storm surge hazard assessment in Guadeloupe, Lesser Antilles, Nat. Hazards Earth Syst. Sci., 15, 1711–1720, https://doi.org/10.5194/nhess-15-1711-2015, 2015.
Kumar, L., and Taylor, S.: Exposure of coastal built assets in the South
Pacific to climate risks, Nat. Clim. Change, 5, 992–996,
https://doi.org/10.1038/nclimate2702, 2015.
Le Bars, D., Drijfhout, S., and de Vries, H.: A high-end sea level rise
probabilistic projection including rapid Antarctic ice sheet mass loss,
Environ. Res. Lett., 12, 044013, https://doi.org/10.1088/1748-9326/aa6512, 2017.
Le Bars, D.: Uncertainty in Sea Level Rise Projections Due to the Dependence
Between Contributors, Earths Future, 6, 1275–1291, https://doi.org/10.1029/2018ef000849,
2018.
Le Cozannet, G., Raucoules, D., Woppelmann, G., Garcin, M., Da Sylva, S.,
Meyssignac, B., Gravelle, M., and Lavigne, F.: Vertical ground motion and
historical sea-level records in Dakar (Senegal), Environ. Res.
Lett., 10, , 084016,
https://doi.org/10.1088/1748-9326/10/8/084016, 2015.
Le Cozannet, G., Nicholls, R., Hinkel, J., Sweet, W., McInnes, K., Van de
Wal, R., Slangen, A., Lowe, J., and White, K.: Sea Level Change and Coastal
Climate Services: The Way Forward, J. Mar. Sci. Eng., 5, 49, https://doi.org/10.3390/jmse5040049, 2017.
Le Cozannet, G., Thiéblemont, R., Rohmer, J., Idier, D., Manceau, J. C., and
Quique, R.: Low-End Probabilistic Sea-Level Projections, Water, 11, 1507,
https://doi.org/10.3390/w11071507, 2019.
Le Mouelic, S., Raucoules, D., Carnec, C., and King, C.: A least squares
adjustment of multi-temporal InSAR data: Application to the ground
deformation of Paris, Photogramm. Eng. Remote Sens., 71,
197–204, https://doi.org/10.14358/pers.71.2.197, 2005.
Lemoine, A., Briole, P., Bertil, D., Roullé, A., Foumelis, M., Thinon,
I., Raucoules, D., De Michele, M., and Valty, P.: The 2018–2019
Seismo-volcanic Crisis East of Mayotte, Comoros Islands: Seismicity and
Ground Deformation Markers of an Exceptional Submarine Eruption, Geophys. J. Int., 223, 22–44, https://doi.org/10.1093/gji/ggaa273, 2018.
Martinez-Asensio, A., Woppelmann, G., Ballu, V., Becker, M., Testut, L.,
Magnan, A. K., and Duvat, V. K. E.: Relative sea-level rise and the
influence of vertical land motion at Tropical Pacific Islands, Global
Planet. Change, 176, 132–143, https://doi.org/10.1016/j.gloplacha.2019.03.008, 2019.
Massonnet, D., Rossi, M., Carmona, C., Adragna, F., Peltzer, G., Feigl, K.,
and Rabaute, T.: The Displacement Field of the Landers Earthquake Mapped by Radar Interferometry, Nature, 364, 138–142, https://doi.org/10.1038/364138a0, 1993.
Melet, A., Meyssignac, B., Almar, R., and Le Cozannet, G.: Under-estimated
wave contribution to coastal sea-level rise, Nat. Clim. Change, 8,
234–239, https://doi.org/10.1038/s41558-018-0088-y, 2018.
Meredith, M., Sommerkorn, M., Cassotta, S., Derksen, C., Ekaykin, A.,
Hollowed, A., Kofinas, G., Mackintosh, A., Melbourne-Thomas, J., Muelbert,
M. M. C., Ottersen, G., Pritchard, H., and Schuur, E. A. G.: Polar Regions,
in: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate,
edited by: Pörtner, H.-O., Roberts, D. C., Masson-Delmotte, V., Zhai,
P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai,
M., Okem, A., Petzold, J., Rama, B., and Weyer, N. M., available at: https://www.ipcc.ch/srocc/chapter/chapter-3-2/ (last access: 11 February 2021), 2019.
Meyssignac, B., Becker, M., Llovel, W., and Cazenave, A.: An Assessment of
Two-Dimensional Past Sea Level Reconstructions Over 1950–2009 Based on
Tide-Gauge Data and Different Input Sea Level Grids, Surv. Geophys.,
33, 945–972, https://doi.org/10.1007/s10712-011-9171-x, 2012.
Moftakhari, H. R., AghaKouchak, A., Sanders, B. F., Feldman, D. L., Sweet,
W., Matthew, R. A., and Luke, A.: Increased nuisance flooding along the
coasts of the United States due to sea level rise: Past and future,
Geophys. Res. Lett., 42, 9846–9852, https://doi.org/10.1002/2015gl066072, 2015.
Moftakhari, H. R., AghaKouchak, A., Sanders, B. F., and Matthew, R. A.:
Cumulative hazard: The case of nuisance flooding, Earths Future, 5, 214–223,
https://doi.org/10.1002/2016ef000494, 2017.
Nachmany, M. and Mangan, E.: Aligning national and international climate
targets, available at: https://www.lse.ac.uk/granthaminstitute/publication/targets/ (last access: 11 February 2021), 2018.
Nicholls, R. J., Hanson, S. E., Lowe, J. A., Warrick, R. A., Lu, X. F., and
Long, A. J.: Sea-level scenarios for evaluating coastal impacts, WIRES Clim. Change, 5, 129–150, https://doi.org/10.1002/wcc.253, 2014.
Nurse, L. A., McLean, R. F., Agard, J., Briguglio, L. P., Duvat-Magnan, V.,
Pelesikoti, N., Tompkins, E., and Webb, A.: Small islands, in: Climate
Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional
Aspects.Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Barros, V. R., Field, C. B., Dokken, D. J., Mastrandrea,
M. D., Mach, K. J., Bilir, T. E., Chatterjee, M., Ebi, K. L., Estrada, Y.
O., Genova, R. C., Girma, B., Kissel, E. S., Levy, A. N., MacCracken, S.,
Mastrandrea, P. R., and White, L. L., Cambridge University Press, Cambridge,
United Kingdom and New York, NY, USA, 1613–1654, 2014.
Oppenheimer, M., Glavovic, B. C., Hinkel, J., van de Wal, R., Magnan, A.
K., Abd-Elgawad, A., Cai, R., Cifuentes-Jara, M., DeConto, R. M., Ghosh, T.,
Hay, J., Isla, F., Marzeion, B., Meyssignac, B., and Sebesvari, Z.: Sea
Level Rise and Implications for Low-Lying Islands, Coasts and Communities,
in: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate,
edited by: Pörtner, H.-O., Roberts, D. C., Masson-Delmotte, V., Zhai,
P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai,
M., Okem, A., Petzold, J., Rama, B., and Weyer, N. M.: available at: https://www.ipcc.ch/site/assets/uploads/sites/3/2019/11/08_SROCC_Ch04_FINAL.pdf (last access: 11 February 2021), 2019.
Palanisamy, H., Becker, M., Meyssignac, B., Henry, O., and Cazenave, A.:
Regional sea level change and variability in the Caribbean Sea since 1950,
J. Geodetic Sci., 2, 125–133, https://doi.org/10.2478/v10156-011-0029-4, 2012.
Pattyn, F.: The paradigm shift in Antarctic ice sheet modelling, Nat.
Commun., 9, 2728–2728, https://doi.org/10.1038/s41467-018-05003-z, 2018.
Pedreros, R., Terrier, M., and Poisson, B.: Tsunamis: Etude de cas au niveau de la côte antillaise française, Rapport de synthèse, [Tsunamis:
case study at the French Carribean coasts – synthesis report]
BRGM/RP-55795-FR, 72 pp., 2007 (in French).
Pedreros, R., Lecacheux, S., Paris, F., Lambert, J., Le Roy, S., Garcin, M.,
and Mompelat, J. M.: OURAGAN 1928: Modélisation de la submersion marine
que génèrerait aujourd'hui un ouragan de type 1928 sur le
Petit-Cul-de-Sac-marin et l'agglomération Pontoise [Marine flooding modelling induced by a 1928-like event in the Petit-Cul-de-Sac-marin and in the area of Pointe-à-Pitre], Rapport final,
78 pp., 2016 (in French).
Pedreros, R., Idier, D., Muller, H., Lecacheux, S., Paris, F.,
Yates-Michelin, M., Dumas, F., Pineau-Guillou, L., and Senechal, N.:
Relative Contribution of Wave Setup to the Storm Surge: Observations and
Modeling Based Analysis in Open and Protected Environments (Truc Vert beach
and Tubuai island), in: Proceedings from the International Coastal Symposium (ICS) 2018 (Busan, Republic of Korea), edited by: Shim, J.-S., Chun, I., and Lim, H. S., J. Coast. Res., 1046–1050,
https://doi.org/10.2112/si85-210.1, 2018.
Pickering, M. D., Horsburgh, K. J., Blundell, J. R., Hirschi, J. J. M.,
Nicholls, R. J., Verlaan, M., and Wells, N. C.: The impact of future
sea-level rise on the global tides, Cont. Shelf Res., 142, 50–68,
https://doi.org/10.1016/j.csr.2017.02.004, 2017.
Raucoules, D., Le Cozannet, G., Woppelmann, G., de Michele, M., Gravelle,
M., Daag, A., and Marcos, M.: High nonlinear urban ground motion in Manila
(Philippines) from 1993 to 2010 observed by DInSAR: Implications for
sea-level measurement, Remote Sens. Environ., 139, 386–397,
https://doi.org/10.1016/j.rse.2013.08.021, 2013.
Riahi, K., van Vuuren, D. P., Kriegler, E., Edmonds, J., O'Neill, B. C.,
Fujimori, S., Bauer, N., Calvin, K., Dellink, R., Fricko, O., Lutz, W.,
Popp, A., Cuaresma, J. C., Kc, S., Leimbach, M., Jiang, L., Kram, T., Rao,
S., Emmerling, J., Ebi, K., Hasegawa, T., Havlik, P., Humpenöder, F., Da
Silva, L. A., Smith, S., Stehfest, E., Bosetti, V., Eom, J., Gernaat, D.,
Masui, T., Rogelj, J., Strefler, J., Drouet, L., Krey, V., Luderer, G.,
Harmsen, M., Takahashi, K., Baumstark, L., Doelman, J. C., Kainuma, M.,
Klimont, Z., Marangoni, G., Lotze-Campen, H., Obersteiner, M., Tabeau, A.,
and Tavoni, M.: The Shared Socioeconomic Pathways and their energy, land
use, and greenhouse gas emissions implications: An overview, Global
Environ. Chang., 42, 153–168, https://doi.org/10.1016/J.GLOENVCHA.2016.05.009, 2017.
Ritz, C., Edwards, T. L., Durand, G., Payne, A. J., Peyaud, V., and
Hindmarsh, R. C. A.: Potential sea-level rise from Antarctic ice-sheet
instability constrained by observations, Nature, 528, 115–118,
https://doi.org/10.1038/nature16147, 2015.
Rockström, J., Gaffney, O., Rogelj, J., Meinshausen, M., Nakicenovic,
N., and Schellnhuber, H. J.: A roadmap for rapid decarbonization, Science,
355, 1269–1271, 2017.
Roques, C., Bengoubou-Valérius, M., Le Cozannet, G., Bourdon, E., Mompelat, J.-M., and Oliveros, C.: Evolution et dynamique du trait de côte de l'archipel guadeloupéen étude de 1956 à 2004, [Shoreline evolution and dynamics in the Guadeloupe archipellago from 1956 to 2004], Rapport BRGM/RP-58750-FR, 93 pp., 28 fig., 5 ann., 2010.
Rueda, A., Vitousek, S., Camus, P., Tomas, A., Espejo, A., Losada, I. J.,
Barnard, P. L., Erikson, L. H., Ruggiero, P., Reguero, B. G., and Mendez, F.
J.: A global classification of coastal flood hazard climates associated with
large-scale oceanographic forcing, Sci. Rep.-UK, 7, 5038,
https://doi.org/10.1038/s41598-017-05090-w, 2017.
Sakic, P., Männel, B., Bradke, M., Ballu, V., de Chabalier, J.-B., and
Lemarchand, A.: Estimation of Lesser Antilles vertical velocity using a
GNSS-PPP software comparison, in: International Association of Geodesy Symposia, Springer, Berlin, Heidelberg, https://doi.org/10.1007/1345_2020_101, 2020.
Santamaria-Gomez, A., Gravelle, M., Collilieux, X., Guichard, M., Miguez, B.
M., Tiphaneau, P., and Woppelmann, G.: Mitigating the effects of vertical
land motion in tide gauge records using a state-of-the-art GPS velocity
field, Global Planet. Change, 98–99, 6–17,
https://doi.org/10.1016/j.gloplacha.2012.07.007, 2012.
Santamaria-Gomez, A., Gravelle, M., Dangendorf, S., Marcos, M., Spada, G.,
and Woppelmann, G.: Uncertainty of the 20th century sea-level rise due to
vertical land motion errors, Earth Planet. Sci. Lett., 473,
24–32, https://doi.org/10.1016/j.epsl.2017.05.038, 2017.
Schindelegger, M., Green, J. A. M., Wilmes, S. B., and Haigh, I. D.: Can We
Model the Effect of Observed Sea Level Rise on Tides?, J.
Geophys. Res.-Oceans, 123, 4593–4609, https://doi.org/10.1029/2018jc013959, 2018.
Slangen, A. B. A., Katsman, C. A., van de Wal, R. S. W., Vermeersen, L. L.
A., and Riva, R. E. M.: Towards regional projections of twenty-first century
sea-level change based on IPCC SRES scenarios, Clim. Dynam., 38,
1191–1209, https://doi.org/10.1007/s00382-011-1057-6, 2012.
Slangen, A. B. A., Carson, M., Katsman, C. A., van de Wal, R. S. W., Kohl,
A., Vermeersen, L. L. A., and Stammer, D.: Projecting twenty-first century
regional sea-level changes, Climatic Change, 124, 317–332,
https://doi.org/10.1007/s10584-014-1080-9, 2014.
Spada, G., Bamber, J. L., and Hurkmans, R.: The gravitationally consistent
sea- level fingerprint of future terrestrial ice loss, Geophys. Res.
Lett., 40, 482–486, https://doi.org/10.1029/2012gl053000, 2013.
Stammer, D., Cazenave, A., Ponte, R. M., and Tamisiea, M. E.: Causes for
Contemporary Regional Sea Level Changes, Annu.
Rev. Mar. Sci., 5, 21–46, 2013.
Stammer, D., van de Wal, R. S. W., Nicholls, R. J., Church, J. A., Le
Cozannet, G., Lowe, J. A., Horton, B. P., White, K., Behar, D., and Hinkel,
J.: Framework for High-End Estimates of Sea Level Rise for Stakeholder
Applications, Earths Future, 7, 923–938, https://doi.org/10.1029/2019ef001163, 2019.
Stephens, S. A., Bell, R. G., and Lawrence, J.: Developing signals to trigger
adaptation to sea-level rise, Environ. Res. Lett., 13, 104004,
https://doi.org/10.1088/1748-9326/aadf96, 2018.
Sweet, W. V. and Park, J.: From the extreme to the mean: Acceleration and
tipping points of coastal inundation from sea level rise, Earths Future, 2,
579–600, https://doi.org/10.1002/2014ef000272, 2014.
Thiéblemont, R., Le Cozannet, G., Toimil, A., Meyssignac, B., and Losada, I.
J.: Likely and High-End Impacts of Regional Sea-Level Rise on the Shoreline
Change of European Sandy Coasts Under a High Greenhouse Gas Emissions
Scenario, Water, 11, 2607, https://doi.org/10.3390/w11122607, 2019.
Thompson, R. and Hamon, B. V.: Wave setup of harbor water levels, J. Geophys. Res.-Oceans, 85, 1151–1152, https://doi.org/10.1029/JC085iC02p01151,
1980.
University of Hamburg: AR5 Sea Level Rise, Integrated Climate Data Center (ICDC), University of Hamburg, Hamburg, Germany, available at: https://icdc.cen.uni-hamburg.de/en/ar5-slr.html, last access: 11 February 2021.
Usai, S.: A least squares database approach for SAR interferometric data,
IEEE T. Geosci. Remote, 41, 753–760, https://doi.org/10.1109/tgrs.2003.810675, 2003.
Wegmüller, U., Werner, C. L., and Santoro, M.: Motion monitoring for
Etna using ALOS PALSAR time series, ALOS PI Symposium 2009, Hawaii,
9–13 November 2009, 2009.
Williams, S., Bock, Y., and Fang, P.: Integrated satellite interferometry:
Tropospheric noise, GPS estimates and implications for interferometric
synthetic aperture radar products, J. Geophys. Res.-Solid, 103, 27051–27067, https://doi.org/10.1029/98jb02794, 1998.
Woppelmann, G. and Marcos, M.: Vertical land motion as a key to
understanding sea level change and variability, Rev. Geophys., 54,
64–92, https://doi.org/10.1002/2015rg000502, 2016.
Short summary
Chronic flooding occurring at high tides under calm weather conditions is an early impact of sea-level rise. This hazard is a reason for concern on tropical islands, where coastal infrastructure is commonly located in low-lying areas. We focus here on the Guadeloupe archipelago, in the French Antilles, where chronic flood events have been reported for about 10 years. We show that the number of such events will increase drastically over the 21st century under continued growth of CO2 emissions.
Chronic flooding occurring at high tides under calm weather conditions is an early impact of...
Altmetrics
Final-revised paper
Preprint