Articles | Volume 21, issue 2
https://doi.org/10.5194/nhess-21-703-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-21-703-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Timescales of emergence of chronic flooding in the major economic center of Guadeloupe
DRP/R3C, BRGM, Orléans, 45000, France
Déborah Idier
DRP/R3C, BRGM, Orléans, 45000, France
Marcello de Michele
DRP/R3C, BRGM, Orléans, 45000, France
Yoann Legendre
DAT/GUA, BRGM, Petit-Bourg, 97170, France
Manuel Moisan
DAT/GUA, BRGM, Petit-Bourg, 97170, France
Rodrigo Pedreros
DRP/R3C, BRGM, Orléans, 45000, France
Rémi Thiéblemont
DRP/R3C, BRGM, Orléans, 45000, France
Giorgio Spada
Dipartimento di Scienze Pure e Applicate (DiSPeA), Università di Urbino “Carlo Bo”, Urbino, Italy
Daniel Raucoules
DRP/R3C, BRGM, Orléans, 45000, France
Ywenn de la Torre
DAT/GUA, BRGM, Petit-Bourg, 97170, France
Related authors
Susan E. Hanson, Robert J. Nicholls, Floris R. Calkoen, Gonéri Le Cozannet, and Arjen P. Luijendijk
EGUsphere, https://doi.org/10.5194/egusphere-2025-2371, https://doi.org/10.5194/egusphere-2025-2371, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
The CoasTER geographic database provides erosion relevant characteristics for Europe’s coastal floodplains. It builds on earlier erosion research and includes a coastal geomorphological typology incorporating modification in the form of hard engineering and infrastructure. Analysis shows 27 % of coastal floodplains have shown significant erosion over the last 40 years. Nearly 3,500 km will require additional or new management to protect developed areas and infrastructure if the trend continues.
Mirna Badillo-Interiano, Jérémy Rohmer, Gonéri Le Cozannet, and Virginie Duvat
EGUsphere, https://doi.org/10.5194/egusphere-2024-3884, https://doi.org/10.5194/egusphere-2024-3884, 2025
Short summary
Short summary
Small islands face growing threats from climate change. In this context, we consider it important to explore new modeling approaches to improve climate risk assessments in these islands. Our study propose a probabilistic approach using Bayesian Networks (BNs). We developed a expert-based BN model to assess the risk to habitability on four atoll islands in the Indian and Pacific Oceans. The findings suggests that BNs could be used to assess climate-related risk and other adaptation problems.
Jeremy Rohmer, Heiko Goelzer, Tamsin Edwards, Goneri Le Cozannet, and Gael Durand
EGUsphere, https://doi.org/10.5194/egusphere-2025-52, https://doi.org/10.5194/egusphere-2025-52, 2025
Short summary
Short summary
Developing robust protocols to design multi-model ensembles is of primary importance for the uncertainty quantification of sea level projections. Here, we set up a series of computer experiments to reflect design decisions for the prediction of future sea level contribution of the Greenland ice sheet. We show the importance of including the most extreme climate scenario, and the benefit of having diversity in numerical models for ice sheet modelling and regional climate assessments.
Alexander Bisaro, Giulia Galluccio, Elisa Fiorini Beckhauser, Fulvio Biddau, Ruben David, Floortje d'Hont, Antonio Góngora Zurro, Gonéri Le Cozannet, Sadie McEvoy, Begoña Pérez Gómez, Claudia Romagnoli, Eugenio Sini, and Jill Slinger
State Planet, 3-slre1, 7, https://doi.org/10.5194/sp-3-slre1-7-2024, https://doi.org/10.5194/sp-3-slre1-7-2024, 2024
Short summary
Short summary
This paper assesses coastal adaptation governance by examining socio-economic and political contexts, reviewing policy frameworks, and identifying challenges. Results show that regional and basin-scale frameworks lack sea level rise provisions, but significant national progress is observed. The main governance challenges are time horizons and uncertainty, coordination, and social vulnerability. These, however, can be addressed if flexible planning and nature-based solutions are implemented.
Jeremy Rohmer, Remi Thieblemont, Goneri Le Cozannet, Heiko Goelzer, and Gael Durand
The Cryosphere, 16, 4637–4657, https://doi.org/10.5194/tc-16-4637-2022, https://doi.org/10.5194/tc-16-4637-2022, 2022
Short summary
Short summary
To improve the interpretability of process-based projections of the sea-level contribution from land ice components, we apply the machine-learning-based
SHapley Additive exPlanationsapproach to a subset of a multi-model ensemble study for the Greenland ice sheet. This allows us to quantify the influence of particular modelling decisions (related to numerical implementation, initial conditions, or parametrisation of ice-sheet processes) directly in terms of sea-level change contribution.
Jeremy Rohmer, Deborah Idier, Remi Thieblemont, Goneri Le Cozannet, and François Bachoc
Nat. Hazards Earth Syst. Sci., 22, 3167–3182, https://doi.org/10.5194/nhess-22-3167-2022, https://doi.org/10.5194/nhess-22-3167-2022, 2022
Short summary
Short summary
We quantify the influence of wave–wind characteristics, offshore water level and sea level rise (projected up to 2200) on the occurrence of flooding events at Gâvres, French Atlantic coast. Our results outline the overwhelming influence of sea level rise over time compared to the others. By showing the robustness of our conclusions to the errors in the estimation procedure, our approach proves to be valuable for exploring and characterizing uncertainties in assessments of future flooding.
Rémi Thiéblemont, Gonéri Le Cozannet, Jérémy Rohmer, Alexandra Toimil, Moisés Álvarez-Cuesta, and Iñigo J. Losada
Nat. Hazards Earth Syst. Sci., 21, 2257–2276, https://doi.org/10.5194/nhess-21-2257-2021, https://doi.org/10.5194/nhess-21-2257-2021, 2021
Short summary
Short summary
Sea level rise and its acceleration are projected to aggravate coastal erosion over the 21st century. Resulting shoreline projections are deeply uncertain, however, which constitutes a major challenge for coastal planning and management. Our work presents a new extra-probabilistic framework to develop future shoreline projections and shows that deep uncertainties could be drastically reduced by better constraining sea level projections and improving coastal impact models.
Sophie Lecacheux, Jeremy Rohmer, Eva Membrado, Rodrigo Pedreros, Andrea Filippini, Déborah Idier, Servane Gueben-Vénière, Denis Paradis, Alice Dalphinet, and David Ayache
EGUsphere, https://doi.org/10.5194/egusphere-2024-3615, https://doi.org/10.5194/egusphere-2024-3615, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
This study comparer three data-driven methodologies to overcome the computational burden of numerical simulations for early warning purpose. They are all based on the statistical analysis of pre-calculated databases, to downscale total sea levels and predict marine flooding maps from offshore metocean forecasts. Conclusions highlight the relevance of metamodel-based approaches for fast prediction and the added value of precalculated databases during the prepardness phase.
Susan E. Hanson, Robert J. Nicholls, Floris R. Calkoen, Gonéri Le Cozannet, and Arjen P. Luijendijk
EGUsphere, https://doi.org/10.5194/egusphere-2025-2371, https://doi.org/10.5194/egusphere-2025-2371, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Short summary
The CoasTER geographic database provides erosion relevant characteristics for Europe’s coastal floodplains. It builds on earlier erosion research and includes a coastal geomorphological typology incorporating modification in the form of hard engineering and infrastructure. Analysis shows 27 % of coastal floodplains have shown significant erosion over the last 40 years. Nearly 3,500 km will require additional or new management to protect developed areas and infrastructure if the trend continues.
Mirna Badillo-Interiano, Jérémy Rohmer, Gonéri Le Cozannet, and Virginie Duvat
EGUsphere, https://doi.org/10.5194/egusphere-2024-3884, https://doi.org/10.5194/egusphere-2024-3884, 2025
Short summary
Short summary
Small islands face growing threats from climate change. In this context, we consider it important to explore new modeling approaches to improve climate risk assessments in these islands. Our study propose a probabilistic approach using Bayesian Networks (BNs). We developed a expert-based BN model to assess the risk to habitability on four atoll islands in the Indian and Pacific Oceans. The findings suggests that BNs could be used to assess climate-related risk and other adaptation problems.
Jeremy Rohmer, Heiko Goelzer, Tamsin Edwards, Goneri Le Cozannet, and Gael Durand
EGUsphere, https://doi.org/10.5194/egusphere-2025-52, https://doi.org/10.5194/egusphere-2025-52, 2025
Short summary
Short summary
Developing robust protocols to design multi-model ensembles is of primary importance for the uncertainty quantification of sea level projections. Here, we set up a series of computer experiments to reflect design decisions for the prediction of future sea level contribution of the Greenland ice sheet. We show the importance of including the most extreme climate scenario, and the benefit of having diversity in numerical models for ice sheet modelling and regional climate assessments.
Alexander Bisaro, Giulia Galluccio, Elisa Fiorini Beckhauser, Fulvio Biddau, Ruben David, Floortje d'Hont, Antonio Góngora Zurro, Gonéri Le Cozannet, Sadie McEvoy, Begoña Pérez Gómez, Claudia Romagnoli, Eugenio Sini, and Jill Slinger
State Planet, 3-slre1, 7, https://doi.org/10.5194/sp-3-slre1-7-2024, https://doi.org/10.5194/sp-3-slre1-7-2024, 2024
Short summary
Short summary
This paper assesses coastal adaptation governance by examining socio-economic and political contexts, reviewing policy frameworks, and identifying challenges. Results show that regional and basin-scale frameworks lack sea level rise provisions, but significant national progress is observed. The main governance challenges are time horizons and uncertainty, coordination, and social vulnerability. These, however, can be addressed if flexible planning and nature-based solutions are implemented.
Nicolaj Hansen, Louise Sandberg Sørensen, Giorgio Spada, Daniele Melini, Rene Forsberg, Ruth Mottram, and Sebastian B. Simonsen
The Cryosphere Discuss., https://doi.org/10.5194/tc-2023-104, https://doi.org/10.5194/tc-2023-104, 2023
Preprint withdrawn
Short summary
Short summary
We use ICESat-2 to estimate the surface elevation change over Greenland and Antarctica in the period of 2018 to 2021. Numerical models have been used the compute the firn compaction and the vertical bedrock movement so non-mass-related elevation changes can be taken into account. We have made a parameterization of the surface density so we can convert the volume change to mass change. We find that Antarctica has lost 135.7±27.3 Gt per year, and the Greenland ice sheet 237.5±14.0 Gt per year.
Marcello de Michele, Daniel Raucoules, Claire Rault, Bertrand Aunay, and Michael Foumelis
Earth Surf. Dynam., 11, 451–460, https://doi.org/10.5194/esurf-11-451-2023, https://doi.org/10.5194/esurf-11-451-2023, 2023
Short summary
Short summary
Landslide processes are causes of major concern to population and infrastructures on Réunion. In this study, we used data from the Copernicus Sentinel-1 satellite to map ground motion in Cirque de Salazie. We concentrate on the cyclonic season 2017–2018. Our results show ground motion in the Hell-Bourg, Ilet à Vidot,
Grand-Ilet, Camp Pierrot, and Le Bélier landslides. Moreover, we show an unknown pattern of ground motion situated in a non-instrumented, uninhabited area on the ground.
Inès N. Otosaka, Andrew Shepherd, Erik R. Ivins, Nicole-Jeanne Schlegel, Charles Amory, Michiel R. van den Broeke, Martin Horwath, Ian Joughin, Michalea D. King, Gerhard Krinner, Sophie Nowicki, Anthony J. Payne, Eric Rignot, Ted Scambos, Karen M. Simon, Benjamin E. Smith, Louise S. Sørensen, Isabella Velicogna, Pippa L. Whitehouse, Geruo A, Cécile Agosta, Andreas P. Ahlstrøm, Alejandro Blazquez, William Colgan, Marcus E. Engdahl, Xavier Fettweis, Rene Forsberg, Hubert Gallée, Alex Gardner, Lin Gilbert, Noel Gourmelen, Andreas Groh, Brian C. Gunter, Christopher Harig, Veit Helm, Shfaqat Abbas Khan, Christoph Kittel, Hannes Konrad, Peter L. Langen, Benoit S. Lecavalier, Chia-Chun Liang, Bryant D. Loomis, Malcolm McMillan, Daniele Melini, Sebastian H. Mernild, Ruth Mottram, Jeremie Mouginot, Johan Nilsson, Brice Noël, Mark E. Pattle, William R. Peltier, Nadege Pie, Mònica Roca, Ingo Sasgen, Himanshu V. Save, Ki-Weon Seo, Bernd Scheuchl, Ernst J. O. Schrama, Ludwig Schröder, Sebastian B. Simonsen, Thomas Slater, Giorgio Spada, Tyler C. Sutterley, Bramha Dutt Vishwakarma, Jan Melchior van Wessem, David Wiese, Wouter van der Wal, and Bert Wouters
Earth Syst. Sci. Data, 15, 1597–1616, https://doi.org/10.5194/essd-15-1597-2023, https://doi.org/10.5194/essd-15-1597-2023, 2023
Short summary
Short summary
By measuring changes in the volume, gravitational attraction, and ice flow of Greenland and Antarctica from space, we can monitor their mass gain and loss over time. Here, we present a new record of the Earth’s polar ice sheet mass balance produced by aggregating 50 satellite-based estimates of ice sheet mass change. This new assessment shows that the ice sheets have lost (7.5 x 1012) t of ice between 1992 and 2020, contributing 21 mm to sea level rise.
Marc Peruzzetto, Yoann Legendre, Aude Nachbaur, Thomas J. B. Dewez, Yannick Thiery, Clara Levy, and Benoit Vittecoq
Nat. Hazards Earth Syst. Sci., 22, 3973–3992, https://doi.org/10.5194/nhess-22-3973-2022, https://doi.org/10.5194/nhess-22-3973-2022, 2022
Short summary
Short summary
Volcanic edifices result from successive construction and dismantling phases. Thus, the geological units forming volcanoes display complex geometries. We show that such geometries can be reconstructed thanks to aerial views, topographic surveys and photogrammetric models. In our case study of the Samperre cliff (Martinique, Lesser Antilles), it allows us to link destabilizations from a rocky cliff to the existence of a filled paleo-valley and estimate a potentially unstable volume.
Jeremy Rohmer, Remi Thieblemont, Goneri Le Cozannet, Heiko Goelzer, and Gael Durand
The Cryosphere, 16, 4637–4657, https://doi.org/10.5194/tc-16-4637-2022, https://doi.org/10.5194/tc-16-4637-2022, 2022
Short summary
Short summary
To improve the interpretability of process-based projections of the sea-level contribution from land ice components, we apply the machine-learning-based
SHapley Additive exPlanationsapproach to a subset of a multi-model ensemble study for the Greenland ice sheet. This allows us to quantify the influence of particular modelling decisions (related to numerical implementation, initial conditions, or parametrisation of ice-sheet processes) directly in terms of sea-level change contribution.
Jeremy Rohmer, Deborah Idier, Remi Thieblemont, Goneri Le Cozannet, and François Bachoc
Nat. Hazards Earth Syst. Sci., 22, 3167–3182, https://doi.org/10.5194/nhess-22-3167-2022, https://doi.org/10.5194/nhess-22-3167-2022, 2022
Short summary
Short summary
We quantify the influence of wave–wind characteristics, offshore water level and sea level rise (projected up to 2200) on the occurrence of flooding events at Gâvres, French Atlantic coast. Our results outline the overwhelming influence of sea level rise over time compared to the others. By showing the robustness of our conclusions to the errors in the estimation procedure, our approach proves to be valuable for exploring and characterizing uncertainties in assessments of future flooding.
Ioannis A. Daglis, Loren C. Chang, Sergio Dasso, Nat Gopalswamy, Olga V. Khabarova, Emilia Kilpua, Ramon Lopez, Daniel Marsh, Katja Matthes, Dibyendu Nandy, Annika Seppälä, Kazuo Shiokawa, Rémi Thiéblemont, and Qiugang Zong
Ann. Geophys., 39, 1013–1035, https://doi.org/10.5194/angeo-39-1013-2021, https://doi.org/10.5194/angeo-39-1013-2021, 2021
Short summary
Short summary
We present a detailed account of the science programme PRESTO (PREdictability of the variable Solar–Terrestrial cOupling), covering the period 2020 to 2024. PRESTO was defined by a dedicated committee established by SCOSTEP (Scientific Committee on Solar-Terrestrial Physics). We review the current state of the art and discuss future studies required for the most effective development of solar–terrestrial physics.
Davide Zanchettin, Sara Bruni, Fabio Raicich, Piero Lionello, Fanny Adloff, Alexey Androsov, Fabrizio Antonioli, Vincenzo Artale, Eugenio Carminati, Christian Ferrarin, Vera Fofonova, Robert J. Nicholls, Sara Rubinetti, Angelo Rubino, Gianmaria Sannino, Giorgio Spada, Rémi Thiéblemont, Michael Tsimplis, Georg Umgiesser, Stefano Vignudelli, Guy Wöppelmann, and Susanna Zerbini
Nat. Hazards Earth Syst. Sci., 21, 2643–2678, https://doi.org/10.5194/nhess-21-2643-2021, https://doi.org/10.5194/nhess-21-2643-2021, 2021
Short summary
Short summary
Relative sea level in Venice rose by about 2.5 mm/year in the past 150 years due to the combined effect of subsidence and mean sea-level rise. We estimate the likely range of mean sea-level rise in Venice by 2100 due to climate changes to be between about 10 and 110 cm, with an improbable yet possible high-end scenario of about 170 cm. Projections of subsidence are not available, but historical evidence demonstrates that they can increase the hazard posed by climatically induced sea-level rise.
Rémi Thiéblemont, Gonéri Le Cozannet, Jérémy Rohmer, Alexandra Toimil, Moisés Álvarez-Cuesta, and Iñigo J. Losada
Nat. Hazards Earth Syst. Sci., 21, 2257–2276, https://doi.org/10.5194/nhess-21-2257-2021, https://doi.org/10.5194/nhess-21-2257-2021, 2021
Short summary
Short summary
Sea level rise and its acceleration are projected to aggravate coastal erosion over the 21st century. Resulting shoreline projections are deeply uncertain, however, which constitutes a major challenge for coastal planning and management. Our work presents a new extra-probabilistic framework to develop future shoreline projections and shows that deep uncertainties could be drastically reduced by better constraining sea level projections and improving coastal impact models.
Stéphane Abadie, Alexandre Paris, Riadh Ata, Sylvestre Le Roy, Gael Arnaud, Adrien Poupardin, Lucie Clous, Philippe Heinrich, Jeffrey Harris, Rodrigo Pedreros, and Yann Krien
Nat. Hazards Earth Syst. Sci., 20, 3019–3038, https://doi.org/10.5194/nhess-20-3019-2020, https://doi.org/10.5194/nhess-20-3019-2020, 2020
Short summary
Short summary
The tsunami which could be generated by a potential flank collapse of the Cumbre Vieja volcano in La Palma, Canary Islands, is evaluated through a numerical simulation based on an advanced and finely calibrated model. Then the consequences of such an event for Europe, France and Guadeloupe island are investigated using different numerical models for propagation. The impacts vary from negligible to very significant depending on the location considered.
Letizia Anderlini, Enrico Serpelloni, Cristiano Tolomei, Paolo Marco De Martini, Giuseppe Pezzo, Adriano Gualandi, and Giorgio Spada
Solid Earth, 11, 1681–1698, https://doi.org/10.5194/se-11-1681-2020, https://doi.org/10.5194/se-11-1681-2020, 2020
Short summary
Short summary
The Venetian Southern Alps (Italy) are located in a slowly deforming plate-boundary region where strong earthquakes occurred in the past even if seismological and geomorphological evidence is not conclusive about the specific thrust faults involved. In this study, we integrate and model different geodetic datasets of ground velocity to constrain the seismogenic potential of the studied faults, giving an example of the importance of using vertical geodetic data for seismic hazard estimates.
Cited articles
Ablain, M., Cazenave, A., Larnicol, G., Balmaseda, M., Cipollini, P., Faugère, Y., Fernandes, M. J., Henry, O., Johannessen, J. A., Knudsen, P., Andersen, O., Legeais, J., Meyssignac, B., Picot, N., Roca, M., Rudenko, S., Scharffenberg, M. G., Stammer, D., Timms, G., and Benveniste, J.: Improved sea level record over the satellite altimetry era (1993–2010) from the Climate Change Initiative project, Ocean Sci., 11, 67–82, https://doi.org/10.5194/os-11-67-2015, 2015.
Ballu, V., Bouin, M. N., Siméoni, P., Crawford, W. C., Calmant, S.,
Boré, J. M., Kanas, T., and Pelletier, B.: Comparing the role of absolute
sea-level rise and vertical tectonic motions in coastal flooding, Torres
Islands (Vanuatu), P. Natl. Acad. Sci. USA, 108, 13019–13022, https://doi.org/10.1073/pnas.1102842108, 2011.
Berardino, P., Fornaro, G., Lanari, R., and Sansosti, E.: A new algorithm
for surface deformation monitoring based on small baseline differential SAR
interferograms, IEEE T. Geosci. Remote, 40, 2375–2383, https://doi.org/10.1109/tgrs.2002.803792, 2002.
Bertin, X., Li, K., Roland, A., and Bidlot, J. R.: The contribution of
short-waves in storm surges: Two case studies in the Bay of Biscay,
Cont. Shelf Res., 96, 1–15, https://doi.org/10.1016/j.csr.2015.01.005, 2015.
Blewitt, G., Hammond, W. C., and Kreemer, C.: Harnessing the GPS data
explosion for interdisciplinary science, EOS T. Am. Geophys. Un., 99, https://doi.org/10.1029/2018EO104623, 2018.
BRGM: Regional Sea Level Change web client demonstrator, BRGM, Orléans, France, available at: https://sealevelrise.brgm.fr/, last access: 11 February 2021.
Bourdon, E. and Chiozzotto, C.: impacts géotechniques et hydrauliques
de l'élévation du niveau de la mer due au changement climatique dans
le contexte urbain côtier de la zone pointoise (Guadeloupe),
[geotechnical and hydraulic impacts of sea-level rise caused by climate
change in the urban coastal area surrounding Pointe-à-Pitre
(Guadeloupe)], available at: http://infoterre.brgm.fr/rapports/RP-60857-FR.pdf (last access: 11 November 2020), 135 pp., 2012 (in French).
Camus, P., Tomás, A., Díaz-Hernández, G., Rodríguez, B.,
Izaguirre, C., and Losada, I. J.: Probabilistic assessment of port operation
downtimes under climate change, Coast. Eng., 147, 12–24,
https://doi.org/10.1016/j.coastaleng.2019.01.007, 2019.
Carson, M., Kohl, A., Stammer, D., Slangen, A. B. A., Katsman, C. A., van de
Wal, R. S. W., Church, J., and White, N.: Coastal sea level changes,
observed and projected during the 20th and 21st century, Clim. Change,
134, 269–281, https://doi.org/10.1007/s10584-015-1520-1, 2016.
Carson, M., Kohl, A., Stammer, D., Meyssignac, B., Church, J., Schroter, J.,
Wenzel, M., and Hamlington, B.: Regional Sea Level Variability and Trends,
1960–2007: A Comparison of Sea Level Reconstructions and Ocean Syntheses,
J. Geophys. Res.-Oceans, 122, 9068–9091,
https://doi.org/10.1002/2017jc012992, 2017.
Cazenave, A., Dominh, K., Ponchaut, F., Soudarin, L., Cretaux, J. F., and Le
Provost, C.: Sea level changes from Topex-Poseidon altimetry and tide
gauges, and vertical crustal motions from DORIS, Geophys. Res.
Lett., 26, 2077–2080, https://doi.org/10.1029/1999gl900472, 1999.
Cesca, S., Letort, J., Razafindrakoto, H. N. T., Heimann, S., Rivalta, E.,
Isken, M. P., Nikkhoo, M., Passarelli, L., Petersen, G. M., Cotton, F., and
Dahm, T.: Drainage of a deep magma reservoir near Mayotte inferred from
seismicity and deformation, Nat. Geosci., 13, 87–93,
https://doi.org/10.1038/s41561-019-0505-5, 2020.
Chauvin, F., Pilon, R., Palany, P., and Belmadani, A.: Future changes in
Atlantic hurricanes with the rotated-stretched ARPEGE-Climat at very high
resolution, Clim. Dynam., 54, 947–972, https://doi.org/10.1007/s00382-019-05040-4, 2020.
Chen, X. Y., Zhang, X. B., Church, J. A., Watson, C. S., King, M. A.,
Monselesan, D., Legresy, B., and Harig, C.: The increasing rate of global
mean sea-level rise during 1993–2014, Nat. Clim. Change, 7, 492–495,
https://doi.org/10.1038/nclimate3325, 2017.
Church, J. A., Clark, P. U., Cazenave, A., Gregory, J. M., Jevrejeva, S.,
Levermann, A., Merrifield, M. A., Milne, G. A., Nerem, R. S., Nunn, P. D.,
Payne, A. J., Pfeffer, W. T., Stammer, D., and Unnikrishnan, A. S.: Sea
Level Change, in: Climate Change 2013: The Physical Science Basis.
Contribution of Working Group I to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change, Cambridge University Press,
Cambridge, United Kingdom and New York, NY, USA, 2013a.
Church, J. A., Clark, P. U., Cazenave, A., Gregory, J. M., Jevrejeva, S.,
Levermann, A., Merrifield, M. A., Milne, G. A., Nerem, R. S., Nunn, P. D.,
Payne, A. J., Pfeffer, W. T., Stammer, D., and Unnikrishnan, A. S.:
Sea-Level Rise by 2100, Science, 342, 1445–1445,
https://doi.org/10.1126/science.342.6165.1445-a, 2013b.
Dahl, K. A., Fitzpatrick, M. F., and Spanger-Siegfried, E.: Sea level rise
drives increased tidal flooding frequency at tide gauges along the US East
and Gulf Coasts: Projections for 2030 and 2045, Plos One, 12, e0170949,
https://doi.org/10.1371/journal.pone.0170949, 2017.
Dangendorf, S., Marcos, M., Woppelmann, G., Conrad, C. P., Frederikse, T.,
and Riva, R.: Reassessment of 20th century global mean sea level rise,
P. Natl. Acad. Sci. USA, 114, 5946–5951, https://doi.org/10.1073/pnas.1616007114, 2017.
DEAL: Cartographie du territoire à risque d'inondation important
(TRI) – Centre Guadeloupe. Rapport de présentation, [Mapping territories
at risk of important innundation – Guadeloupe Center – presentation
report], available at:
http://www.guadeloupe.developpement-durable.gouv.fr/IMG/pdf/20150400_tricentre_i.pdf (last access: 11 February 2021), 2015 (in French).
de Michele, M.: Interférométrie radar sur la Guadeloupe 2003–2010
(champ géothermique de Bouillante), [Radar interferometry in Guadeloupe 2003–2010 (geothermal field of Bouillante)], BRGM, 23 pp., BRGM/RP-59247-FR, available at: http://infoterre.brgm.fr/rapports/RP-59247-FR.pdf (last access: 11 February 2021), 2010.
DeConto, R. M. and Pollard, D.: Contribution of Antarctica to past and
future sea-level rise, Nature, 531, 591–597, https://doi.org/10.1038/nature17145, 2016.
Dieng, H. B., Cazenave, A., Meyssignac, B., and Ablain, M.: New estimate of
the current rate of sea level rise from a sea level budget approach,
Geophys. Res. Lett., 44, 3744–3751, https://doi.org/10.1002/2017gl073308, 2017.
Edwards, T. L., Brandon, M. A., Durand, G., Edwards, N. R., Golledge, N. R.,
Holden, P. B., Nias, I. J., Payne, A. J., Ritz, C., and Wernecke, A.:
Revisiting Antarctic ice loss due to marine ice-cliff instability, Nature,
566, 58–64, https://doi.org/10.1038/s41586-019-0901-4, 2019.
Ezer, T. and Atkinson, L. P.: Accelerated flooding along the US East Coast:
On the impact of sea-level rise, tides, storms, the Gulf Stream, and the
North Atlantic Oscillations, Earths Future, 2, 362–382,
https://doi.org/10.1002/2014ef000252, 2014.
Fürst, J. J., Goelzer, H., and Huybrechts, P.: Ice-dynamic projections of the Greenland ice sheet in response to atmospheric and oceanic warming, The Cryosphere, 9, 1039–1062, https://doi.org/10.5194/tc-9-1039-2015, 2015.
Gabriel, A. K., Goldstein, R. M., and Zebker, H. A.: MAPPING SMALL ELEVATION
CHANGES OVER LARGE AREAS – DIFFERENTIAL RADAR INTERFEROMETRY, J.
Geophys. Res.-Solid, 94, 9183–9191,
https://doi.org/10.1029/JB094iB07p09183, 1989.
Garner, A. J., Weiss, J. L., Parris, A., Kopp, R. E., Horton, R. M.,
Overpeck, J. T., and Horton, B. P.: Evolution of 21st Century Sea Level Rise
Projections, Earths Future, 6, 1603–1615, https://doi.org/10.1029/2018ef000991, 2018.
Gregory, J. M., Griffies, S. M., Hughes, C. W., Lowe, J. A., Church, J. A.,
Fukimori, I., Gomez, N., Kopp, R. E., Landerer, F., Le Cozannet, G., Ponte,
R. M., Stammer, D., Tamisiea, M. E., and van de Wal, R. S. W.: Concepts and
Terminology for Sea Level: Mean, Variability and Change, Both Local and
Global, Surv. Geophys., 40, 1251–1289, https://doi.org/10.1007/s10712-019-09525-z, 2019.
Haasnoot, M., Kwadijk, J., Van Alphen, J., Le Bars, D., Van Den Hurk, B., Diermanse, F., Van Der Spek, A., Oude Essink, G., Delsman, J., and Mens, M.: Adaptation to
uncertain sea-level rise; how uncertainty in Antarctic mass-loss impacts the
coastal adaptation strategy of the Netherlands, Environ. Res. Lett., 15, 034007, https://doi.org/10.1088/1748-9326/ab666c, 2020.
Hanna, E., Fettweis, X., and Hall, R. J.: Brief communication: Recent changes in summer Greenland blocking captured by none of the CMIP5 models, The Cryosphere, 12, 3287–3292, https://doi.org/10.5194/tc-12-3287-2018, 2018.
Hinkel, J., Jaeger, C., Nicholls, R. J., Lowe, J., Renn, O., and Shi, P. J.:
Sea-level rise scenarios and coastal risk management, Nat. Clim. Change,
5, 188–190, https://doi.org/10.1038/nclimate2505, 2015.
Hinkel, J., Church, J. A., Gregory, J. M., Lambert, E., Le Cozannet, G.,
Lowe, J., McInnes, K. L., Nicholls, R. J., van der Pol, T. D., and van de
Wal, R.: Meeting User Needs for Sea Level Rise Information: A Decision
Analysis Perspective, Earths Future, 7, 320–337, https://doi.org/10.1029/2018ef001071, 2019.
Jackson, L. P. and Jevrejeva, S.: A probabilistic approach to 21st century
regional sea-level projections using RCP and High-end scenarios, Global
Planet. Change, 146, 179–189, https://doi.org/10.1016/j.gloplacha.2016.10.006, 2016.
Jacobs, J. M., Cattaneo, L. R., Sweet, W., and Mansfield, T.: Recent and
Future Outlooks for Nuisance Flooding Impacts on Roadways on the US East
Coast, Transp. Res. Record, 2672, 1–10, https://doi.org/10.1177/0361198118756366,
2018.
Jamero, M. L., Onuki, M., Esteban, M., Billones-Sensano, X. K., Tan, N.,
Nellas, A., Takagi, H., Thao, N. D., and Valenzuela, V. P.: Small-island
communities in the Philippines prefer local measures to relocation in
response to sea-level rise, Nat. Clim. Change, 7, 581–586, https://doi.org/10.1038/nclimate3344, 2017.
Jevrejeva, S., Moore, J. C., Grinsted, A., Matthews, A. P., and Spada, G.:
Trends and acceleration in global and regional sea levels since 1807, Global Planet. Change, 113, 11–22, https://doi.org/10.1016/j.gloplacha.2013.12.004, 2014.
Jevrejeva, S., Bricheno, L., Brown, J., Byrne, D., De Dominicis, M., Matthews, A., Rynders, S., Palanisamy, H., and Wolf, J.: Quantifying processes contributing to marine hazards to inform coastal climate resilience assessments, demonstrated for the Caribbean Sea, Nat. Hazards Earth Syst. Sci., 20, 2609–2626, https://doi.org/10.5194/nhess-20-2609-2020, 2020.
Knapp, K. R., Kruk, M. C., Levinson, D. H., Diamond, H. J., and Neumann, C.
J.: The International Best track Archive for Climate Stewardship (IBTrACS)
Unifying Tropical Cyclone Data, B. Am. Meteorol.
Soc., 91, 363–376, https://doi.org/10.1175/2009bams2755.1, 2010.
Kopp, R. E.: Does the mid-Atlantic United States sea level acceleration hot
spot reflect ocean dynamic variability?, Geophys. Res. Lett., 40,
3981–3985, https://doi.org/10.1002/grl.50781, 2013.
Kopp, R. E., Horton, R. M., Little, C. M., Mitrovica, J. X., Oppenheimer,
M., Rasmussen, D. J., Strauss, B. H., and Tebaldi, C.: Probabilistic 21st
and 22nd century sea-level projections at a global network of tide-gauge
sites, Earths Future, 2, 383–406, https://doi.org/10.1002/2014ef000239, 2014.
Kopp, R. E., DeConto, R. M., Bader, D. A., Hay, C. C., Horton, R. M., Kulp,
S., Oppenheimer, M., Pollard, D., and Strauss, B. H.: Evolving Understanding
of Antarctic Ice-Sheet Physics and Ambiguity in Probabilistic Sea-Level
Projections, Earths Future, 5, 1217–1233, https://doi.org/10.1002/2017ef000663, 2017.
Krien, Y., Dudon, B., Roger, J., and Zahibo, N.: Probabilistic hurricane-induced storm surge hazard assessment in Guadeloupe, Lesser Antilles, Nat. Hazards Earth Syst. Sci., 15, 1711–1720, https://doi.org/10.5194/nhess-15-1711-2015, 2015.
Kumar, L., and Taylor, S.: Exposure of coastal built assets in the South
Pacific to climate risks, Nat. Clim. Change, 5, 992–996,
https://doi.org/10.1038/nclimate2702, 2015.
Le Bars, D., Drijfhout, S., and de Vries, H.: A high-end sea level rise
probabilistic projection including rapid Antarctic ice sheet mass loss,
Environ. Res. Lett., 12, 044013, https://doi.org/10.1088/1748-9326/aa6512, 2017.
Le Bars, D.: Uncertainty in Sea Level Rise Projections Due to the Dependence
Between Contributors, Earths Future, 6, 1275–1291, https://doi.org/10.1029/2018ef000849,
2018.
Le Cozannet, G., Raucoules, D., Woppelmann, G., Garcin, M., Da Sylva, S.,
Meyssignac, B., Gravelle, M., and Lavigne, F.: Vertical ground motion and
historical sea-level records in Dakar (Senegal), Environ. Res.
Lett., 10, , 084016,
https://doi.org/10.1088/1748-9326/10/8/084016, 2015.
Le Cozannet, G., Nicholls, R., Hinkel, J., Sweet, W., McInnes, K., Van de
Wal, R., Slangen, A., Lowe, J., and White, K.: Sea Level Change and Coastal
Climate Services: The Way Forward, J. Mar. Sci. Eng., 5, 49, https://doi.org/10.3390/jmse5040049, 2017.
Le Cozannet, G., Thiéblemont, R., Rohmer, J., Idier, D., Manceau, J. C., and
Quique, R.: Low-End Probabilistic Sea-Level Projections, Water, 11, 1507,
https://doi.org/10.3390/w11071507, 2019.
Le Mouelic, S., Raucoules, D., Carnec, C., and King, C.: A least squares
adjustment of multi-temporal InSAR data: Application to the ground
deformation of Paris, Photogramm. Eng. Remote Sens., 71,
197–204, https://doi.org/10.14358/pers.71.2.197, 2005.
Lemoine, A., Briole, P., Bertil, D., Roullé, A., Foumelis, M., Thinon,
I., Raucoules, D., De Michele, M., and Valty, P.: The 2018–2019
Seismo-volcanic Crisis East of Mayotte, Comoros Islands: Seismicity and
Ground Deformation Markers of an Exceptional Submarine Eruption, Geophys. J. Int., 223, 22–44, https://doi.org/10.1093/gji/ggaa273, 2018.
Martinez-Asensio, A., Woppelmann, G., Ballu, V., Becker, M., Testut, L.,
Magnan, A. K., and Duvat, V. K. E.: Relative sea-level rise and the
influence of vertical land motion at Tropical Pacific Islands, Global
Planet. Change, 176, 132–143, https://doi.org/10.1016/j.gloplacha.2019.03.008, 2019.
Massonnet, D., Rossi, M., Carmona, C., Adragna, F., Peltzer, G., Feigl, K.,
and Rabaute, T.: The Displacement Field of the Landers Earthquake Mapped by Radar Interferometry, Nature, 364, 138–142, https://doi.org/10.1038/364138a0, 1993.
Melet, A., Meyssignac, B., Almar, R., and Le Cozannet, G.: Under-estimated
wave contribution to coastal sea-level rise, Nat. Clim. Change, 8,
234–239, https://doi.org/10.1038/s41558-018-0088-y, 2018.
Meredith, M., Sommerkorn, M., Cassotta, S., Derksen, C., Ekaykin, A.,
Hollowed, A., Kofinas, G., Mackintosh, A., Melbourne-Thomas, J., Muelbert,
M. M. C., Ottersen, G., Pritchard, H., and Schuur, E. A. G.: Polar Regions,
in: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate,
edited by: Pörtner, H.-O., Roberts, D. C., Masson-Delmotte, V., Zhai,
P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai,
M., Okem, A., Petzold, J., Rama, B., and Weyer, N. M., available at: https://www.ipcc.ch/srocc/chapter/chapter-3-2/ (last access: 11 February 2021), 2019.
Meyssignac, B., Becker, M., Llovel, W., and Cazenave, A.: An Assessment of
Two-Dimensional Past Sea Level Reconstructions Over 1950–2009 Based on
Tide-Gauge Data and Different Input Sea Level Grids, Surv. Geophys.,
33, 945–972, https://doi.org/10.1007/s10712-011-9171-x, 2012.
Moftakhari, H. R., AghaKouchak, A., Sanders, B. F., Feldman, D. L., Sweet,
W., Matthew, R. A., and Luke, A.: Increased nuisance flooding along the
coasts of the United States due to sea level rise: Past and future,
Geophys. Res. Lett., 42, 9846–9852, https://doi.org/10.1002/2015gl066072, 2015.
Moftakhari, H. R., AghaKouchak, A., Sanders, B. F., and Matthew, R. A.:
Cumulative hazard: The case of nuisance flooding, Earths Future, 5, 214–223,
https://doi.org/10.1002/2016ef000494, 2017.
Nachmany, M. and Mangan, E.: Aligning national and international climate
targets, available at: https://www.lse.ac.uk/granthaminstitute/publication/targets/ (last access: 11 February 2021), 2018.
Nicholls, R. J., Hanson, S. E., Lowe, J. A., Warrick, R. A., Lu, X. F., and
Long, A. J.: Sea-level scenarios for evaluating coastal impacts, WIRES Clim. Change, 5, 129–150, https://doi.org/10.1002/wcc.253, 2014.
Nurse, L. A., McLean, R. F., Agard, J., Briguglio, L. P., Duvat-Magnan, V.,
Pelesikoti, N., Tompkins, E., and Webb, A.: Small islands, in: Climate
Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional
Aspects.Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Barros, V. R., Field, C. B., Dokken, D. J., Mastrandrea,
M. D., Mach, K. J., Bilir, T. E., Chatterjee, M., Ebi, K. L., Estrada, Y.
O., Genova, R. C., Girma, B., Kissel, E. S., Levy, A. N., MacCracken, S.,
Mastrandrea, P. R., and White, L. L., Cambridge University Press, Cambridge,
United Kingdom and New York, NY, USA, 1613–1654, 2014.
Oppenheimer, M., Glavovic, B. C., Hinkel, J., van de Wal, R., Magnan, A.
K., Abd-Elgawad, A., Cai, R., Cifuentes-Jara, M., DeConto, R. M., Ghosh, T.,
Hay, J., Isla, F., Marzeion, B., Meyssignac, B., and Sebesvari, Z.: Sea
Level Rise and Implications for Low-Lying Islands, Coasts and Communities,
in: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate,
edited by: Pörtner, H.-O., Roberts, D. C., Masson-Delmotte, V., Zhai,
P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai,
M., Okem, A., Petzold, J., Rama, B., and Weyer, N. M.: available at: https://www.ipcc.ch/site/assets/uploads/sites/3/2019/11/08_SROCC_Ch04_FINAL.pdf (last access: 11 February 2021), 2019.
Palanisamy, H., Becker, M., Meyssignac, B., Henry, O., and Cazenave, A.:
Regional sea level change and variability in the Caribbean Sea since 1950,
J. Geodetic Sci., 2, 125–133, https://doi.org/10.2478/v10156-011-0029-4, 2012.
Pattyn, F.: The paradigm shift in Antarctic ice sheet modelling, Nat.
Commun., 9, 2728–2728, https://doi.org/10.1038/s41467-018-05003-z, 2018.
Pedreros, R., Terrier, M., and Poisson, B.: Tsunamis: Etude de cas au niveau de la côte antillaise française, Rapport de synthèse, [Tsunamis:
case study at the French Carribean coasts – synthesis report]
BRGM/RP-55795-FR, 72 pp., 2007 (in French).
Pedreros, R., Lecacheux, S., Paris, F., Lambert, J., Le Roy, S., Garcin, M.,
and Mompelat, J. M.: OURAGAN 1928: Modélisation de la submersion marine
que génèrerait aujourd'hui un ouragan de type 1928 sur le
Petit-Cul-de-Sac-marin et l'agglomération Pontoise [Marine flooding modelling induced by a 1928-like event in the Petit-Cul-de-Sac-marin and in the area of Pointe-à-Pitre], Rapport final,
78 pp., 2016 (in French).
Pedreros, R., Idier, D., Muller, H., Lecacheux, S., Paris, F.,
Yates-Michelin, M., Dumas, F., Pineau-Guillou, L., and Senechal, N.:
Relative Contribution of Wave Setup to the Storm Surge: Observations and
Modeling Based Analysis in Open and Protected Environments (Truc Vert beach
and Tubuai island), in: Proceedings from the International Coastal Symposium (ICS) 2018 (Busan, Republic of Korea), edited by: Shim, J.-S., Chun, I., and Lim, H. S., J. Coast. Res., 1046–1050,
https://doi.org/10.2112/si85-210.1, 2018.
Pickering, M. D., Horsburgh, K. J., Blundell, J. R., Hirschi, J. J. M.,
Nicholls, R. J., Verlaan, M., and Wells, N. C.: The impact of future
sea-level rise on the global tides, Cont. Shelf Res., 142, 50–68,
https://doi.org/10.1016/j.csr.2017.02.004, 2017.
Raucoules, D., Le Cozannet, G., Woppelmann, G., de Michele, M., Gravelle,
M., Daag, A., and Marcos, M.: High nonlinear urban ground motion in Manila
(Philippines) from 1993 to 2010 observed by DInSAR: Implications for
sea-level measurement, Remote Sens. Environ., 139, 386–397,
https://doi.org/10.1016/j.rse.2013.08.021, 2013.
Riahi, K., van Vuuren, D. P., Kriegler, E., Edmonds, J., O'Neill, B. C.,
Fujimori, S., Bauer, N., Calvin, K., Dellink, R., Fricko, O., Lutz, W.,
Popp, A., Cuaresma, J. C., Kc, S., Leimbach, M., Jiang, L., Kram, T., Rao,
S., Emmerling, J., Ebi, K., Hasegawa, T., Havlik, P., Humpenöder, F., Da
Silva, L. A., Smith, S., Stehfest, E., Bosetti, V., Eom, J., Gernaat, D.,
Masui, T., Rogelj, J., Strefler, J., Drouet, L., Krey, V., Luderer, G.,
Harmsen, M., Takahashi, K., Baumstark, L., Doelman, J. C., Kainuma, M.,
Klimont, Z., Marangoni, G., Lotze-Campen, H., Obersteiner, M., Tabeau, A.,
and Tavoni, M.: The Shared Socioeconomic Pathways and their energy, land
use, and greenhouse gas emissions implications: An overview, Global
Environ. Chang., 42, 153–168, https://doi.org/10.1016/J.GLOENVCHA.2016.05.009, 2017.
Ritz, C., Edwards, T. L., Durand, G., Payne, A. J., Peyaud, V., and
Hindmarsh, R. C. A.: Potential sea-level rise from Antarctic ice-sheet
instability constrained by observations, Nature, 528, 115–118,
https://doi.org/10.1038/nature16147, 2015.
Rockström, J., Gaffney, O., Rogelj, J., Meinshausen, M., Nakicenovic,
N., and Schellnhuber, H. J.: A roadmap for rapid decarbonization, Science,
355, 1269–1271, 2017.
Roques, C., Bengoubou-Valérius, M., Le Cozannet, G., Bourdon, E., Mompelat, J.-M., and Oliveros, C.: Evolution et dynamique du trait de côte de l'archipel guadeloupéen étude de 1956 à 2004, [Shoreline evolution and dynamics in the Guadeloupe archipellago from 1956 to 2004], Rapport BRGM/RP-58750-FR, 93 pp., 28 fig., 5 ann., 2010.
Rueda, A., Vitousek, S., Camus, P., Tomas, A., Espejo, A., Losada, I. J.,
Barnard, P. L., Erikson, L. H., Ruggiero, P., Reguero, B. G., and Mendez, F.
J.: A global classification of coastal flood hazard climates associated with
large-scale oceanographic forcing, Sci. Rep.-UK, 7, 5038,
https://doi.org/10.1038/s41598-017-05090-w, 2017.
Sakic, P., Männel, B., Bradke, M., Ballu, V., de Chabalier, J.-B., and
Lemarchand, A.: Estimation of Lesser Antilles vertical velocity using a
GNSS-PPP software comparison, in: International Association of Geodesy Symposia, Springer, Berlin, Heidelberg, https://doi.org/10.1007/1345_2020_101, 2020.
Santamaria-Gomez, A., Gravelle, M., Collilieux, X., Guichard, M., Miguez, B.
M., Tiphaneau, P., and Woppelmann, G.: Mitigating the effects of vertical
land motion in tide gauge records using a state-of-the-art GPS velocity
field, Global Planet. Change, 98–99, 6–17,
https://doi.org/10.1016/j.gloplacha.2012.07.007, 2012.
Santamaria-Gomez, A., Gravelle, M., Dangendorf, S., Marcos, M., Spada, G.,
and Woppelmann, G.: Uncertainty of the 20th century sea-level rise due to
vertical land motion errors, Earth Planet. Sci. Lett., 473,
24–32, https://doi.org/10.1016/j.epsl.2017.05.038, 2017.
Schindelegger, M., Green, J. A. M., Wilmes, S. B., and Haigh, I. D.: Can We
Model the Effect of Observed Sea Level Rise on Tides?, J.
Geophys. Res.-Oceans, 123, 4593–4609, https://doi.org/10.1029/2018jc013959, 2018.
Slangen, A. B. A., Katsman, C. A., van de Wal, R. S. W., Vermeersen, L. L.
A., and Riva, R. E. M.: Towards regional projections of twenty-first century
sea-level change based on IPCC SRES scenarios, Clim. Dynam., 38,
1191–1209, https://doi.org/10.1007/s00382-011-1057-6, 2012.
Slangen, A. B. A., Carson, M., Katsman, C. A., van de Wal, R. S. W., Kohl,
A., Vermeersen, L. L. A., and Stammer, D.: Projecting twenty-first century
regional sea-level changes, Climatic Change, 124, 317–332,
https://doi.org/10.1007/s10584-014-1080-9, 2014.
Spada, G., Bamber, J. L., and Hurkmans, R.: The gravitationally consistent
sea- level fingerprint of future terrestrial ice loss, Geophys. Res.
Lett., 40, 482–486, https://doi.org/10.1029/2012gl053000, 2013.
Stammer, D., Cazenave, A., Ponte, R. M., and Tamisiea, M. E.: Causes for
Contemporary Regional Sea Level Changes, Annu.
Rev. Mar. Sci., 5, 21–46, 2013.
Stammer, D., van de Wal, R. S. W., Nicholls, R. J., Church, J. A., Le
Cozannet, G., Lowe, J. A., Horton, B. P., White, K., Behar, D., and Hinkel,
J.: Framework for High-End Estimates of Sea Level Rise for Stakeholder
Applications, Earths Future, 7, 923–938, https://doi.org/10.1029/2019ef001163, 2019.
Stephens, S. A., Bell, R. G., and Lawrence, J.: Developing signals to trigger
adaptation to sea-level rise, Environ. Res. Lett., 13, 104004,
https://doi.org/10.1088/1748-9326/aadf96, 2018.
Sweet, W. V. and Park, J.: From the extreme to the mean: Acceleration and
tipping points of coastal inundation from sea level rise, Earths Future, 2,
579–600, https://doi.org/10.1002/2014ef000272, 2014.
Thiéblemont, R., Le Cozannet, G., Toimil, A., Meyssignac, B., and Losada, I.
J.: Likely and High-End Impacts of Regional Sea-Level Rise on the Shoreline
Change of European Sandy Coasts Under a High Greenhouse Gas Emissions
Scenario, Water, 11, 2607, https://doi.org/10.3390/w11122607, 2019.
Thompson, R. and Hamon, B. V.: Wave setup of harbor water levels, J. Geophys. Res.-Oceans, 85, 1151–1152, https://doi.org/10.1029/JC085iC02p01151,
1980.
University of Hamburg: AR5 Sea Level Rise, Integrated Climate Data Center (ICDC), University of Hamburg, Hamburg, Germany, available at: https://icdc.cen.uni-hamburg.de/en/ar5-slr.html, last access: 11 February 2021.
Usai, S.: A least squares database approach for SAR interferometric data,
IEEE T. Geosci. Remote, 41, 753–760, https://doi.org/10.1109/tgrs.2003.810675, 2003.
Wegmüller, U., Werner, C. L., and Santoro, M.: Motion monitoring for
Etna using ALOS PALSAR time series, ALOS PI Symposium 2009, Hawaii,
9–13 November 2009, 2009.
Williams, S., Bock, Y., and Fang, P.: Integrated satellite interferometry:
Tropospheric noise, GPS estimates and implications for interferometric
synthetic aperture radar products, J. Geophys. Res.-Solid, 103, 27051–27067, https://doi.org/10.1029/98jb02794, 1998.
Woppelmann, G. and Marcos, M.: Vertical land motion as a key to
understanding sea level change and variability, Rev. Geophys., 54,
64–92, https://doi.org/10.1002/2015rg000502, 2016.
Short summary
Chronic flooding occurring at high tides under calm weather conditions is an early impact of sea-level rise. This hazard is a reason for concern on tropical islands, where coastal infrastructure is commonly located in low-lying areas. We focus here on the Guadeloupe archipelago, in the French Antilles, where chronic flood events have been reported for about 10 years. We show that the number of such events will increase drastically over the 21st century under continued growth of CO2 emissions.
Chronic flooding occurring at high tides under calm weather conditions is an early impact of...
Altmetrics
Final-revised paper
Preprint