Articles | Volume 21, issue 2
https://doi.org/10.5194/nhess-21-629-2021
https://doi.org/10.5194/nhess-21-629-2021
Research article
 | 
15 Feb 2021
Research article |  | 15 Feb 2021

Leveraging time series analysis of radar coherence and normalized difference vegetation index ratios to characterize pre-failure activity of the Mud Creek landslide, California

Mylène Jacquemart and Kristy Tiampo

Related authors

glenglat: A database of global englacial temperatures
Mylène Jacquemart and Ethan Welty
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-249,https://doi.org/10.5194/essd-2024-249, 2024
Preprint under review for ESSD
Short summary
Monitoring snow wetness evolution from satellite with Sentinel-1 multi-track composites
Gwendolyn Dasser, Valentin T. Bickel, Marius Rüetschi, Mylène Jacquemart, Mathias Bavay, Elisabeth D. Hafner, Alec van Herwijnen, and Andrea Manconi
EGUsphere, https://doi.org/10.5194/egusphere-2024-1510,https://doi.org/10.5194/egusphere-2024-1510, 2024
Short summary
A regional analysis of paraglacial landslide activation in southern coastal Alaska
Jane Walden, Mylène Jacquemart, Bretwood Higman, Romain Hugonnet, Andrea Manconi, and Daniel Farinotti
EGUsphere, https://doi.org/10.5194/egusphere-2024-1086,https://doi.org/10.5194/egusphere-2024-1086, 2024
Short summary
Greenland and Canadian Arctic ice temperature profiles database
Anja Løkkegaard, Kenneth D. Mankoff, Christian Zdanowicz, Gary D. Clow, Martin P. Lüthi, Samuel H. Doyle, Henrik H. Thomsen, David Fisher, Joel Harper, Andy Aschwanden, Bo M. Vinther, Dorthe Dahl-Jensen, Harry Zekollari, Toby Meierbachtol, Ian McDowell, Neil Humphrey, Anne Solgaard, Nanna B. Karlsson, Shfaqat A. Khan, Benjamin Hills, Robert Law, Bryn Hubbard, Poul Christoffersen, Mylène Jacquemart, Julien Seguinot, Robert S. Fausto, and William T. Colgan
The Cryosphere, 17, 3829–3845, https://doi.org/10.5194/tc-17-3829-2023,https://doi.org/10.5194/tc-17-3829-2023, 2023
Short summary
Pre-collapse motion of the February 2021 Chamoli rock–ice avalanche, Indian Himalaya
Maximillian Van Wyk de Vries, Shashank Bhushan, Mylène Jacquemart, César Deschamps-Berger, Etienne Berthier, Simon Gascoin, David E. Shean, Dan H. Shugar, and Andreas Kääb
Nat. Hazards Earth Syst. Sci., 22, 3309–3327, https://doi.org/10.5194/nhess-22-3309-2022,https://doi.org/10.5194/nhess-22-3309-2022, 2022
Short summary

Related subject area

Landslides and Debris Flows Hazards
The vulnerability of buildings to a large-scale debris flow and outburst flood hazard cascade that occurred on 30 August 2020 in Ganluo, southwest China
Li Wei, Kaiheng Hu, Shuang Liu, Lan Ning, Xiaopeng Zhang, Qiyuan Zhang, and Md. Abdur Rahim
Nat. Hazards Earth Syst. Sci., 24, 4179–4197, https://doi.org/10.5194/nhess-24-4179-2024,https://doi.org/10.5194/nhess-24-4179-2024, 2024
Short summary
Optimizing rainfall-triggered landslide thresholds for daily landslide hazard warning in the Three Gorges Reservoir area
Bo Peng and Xueling Wu
Nat. Hazards Earth Syst. Sci., 24, 3991–4013, https://doi.org/10.5194/nhess-24-3991-2024,https://doi.org/10.5194/nhess-24-3991-2024, 2024
Short summary
Brief communication: Monitoring impending slope failure with very high-resolution spaceborne synthetic aperture radar
Andrea Manconi, Yves Bühler, Andreas Stoffel, Johan Gaume, Qiaoping Zhang, and Valentyn Tolpekin
Nat. Hazards Earth Syst. Sci., 24, 3833–3839, https://doi.org/10.5194/nhess-24-3833-2024,https://doi.org/10.5194/nhess-24-3833-2024, 2024
Short summary
Size scaling of large landslides from incomplete inventories
Oliver Korup, Lisa V. Luna, and Joaquin V. Ferrer
Nat. Hazards Earth Syst. Sci., 24, 3815–3832, https://doi.org/10.5194/nhess-24-3815-2024,https://doi.org/10.5194/nhess-24-3815-2024, 2024
Short summary
InSAR-informed in situ monitoring for deep-seated landslides: insights from El Forn (Andorra)
Rachael Lau, Carolina Seguí, Tyler Waterman, Nathaniel Chaney, and Manolis Veveakis
Nat. Hazards Earth Syst. Sci., 24, 3651–3661, https://doi.org/10.5194/nhess-24-3651-2024,https://doi.org/10.5194/nhess-24-3651-2024, 2024
Short summary

Cited articles

Agram, P. S., Jolivet, R., Riel, B., Lin, Y. N., Simons, M., Hetland, E., Doin, M.-P., and Lasserre, C.: New Radar Interferometric Time Series Analysis Toolbox Released, Eos Trans. Am. Geophys. Union, 94, 69–70, https://doi.org/10.1002/2013EO070001, 2013. a
Behling, R., Roessner, S., Kaufmann, H., and Kleinschmit, B.: Automated Spatiotemporal Landslide Mapping over Large Areas Using RapidEye Time Series Data, Remote Sens., 6, 8026–8055, https://doi.org/10.3390/rs6098026, 2014a. a
Behling, R., Roessner, S., Segl, K., Kleinschmit, B., and Kaufmann, H.: Robust Automated Image Co-Registration of Optical Multi-Sensor Time Series Data: Database Generation for Multi-Temporal Landslide Detection, Remote Sens., 6, 2572–2600, https://doi.org/10.3390/rs6032572, 2014b. a
Berardino, P., Fornaro, G., Lanari, R., and Sansosti, E.: A New Algorithm for Surface Deformation Monitoring Based on Small Baseline Differential SAR Interferograms, IEEE T. Geosci. Remote, 40, 2375–2383, https://doi.org/10.1109/TGRS.2002.803792, 2002. a
Burrows, K., Walters, R. J., Milledge, D., Spaans, K., and Densmore, A. L.: A New Method for Large-Scale Landslide Classification from Satellite Radar, Remote Sens., 11, 237, https://doi.org/10.3390/rs11030237, 2019. a, b
Download
Short summary
We used interferometric radar coherence – a data quality indicator typically used to assess the reliability of radar interferometry data – to document the destabilization of the Mud Creek landslide in California, 5 months prior to its catastrophic failure. We calculated a time series of coherence on the slide relative to the surrounding hillslope and suggest that this easy-to-compute metric might be useful for assessing the stability of a hillslope.
Altmetrics
Final-revised paper
Preprint