Articles | Volume 21, issue 12
https://doi.org/10.5194/nhess-21-3789-2021
https://doi.org/10.5194/nhess-21-3789-2021
Research article
 | 
17 Dec 2021
Research article |  | 17 Dec 2021

Probabilistic, high-resolution tsunami predictions in northern Cascadia by exploiting sequential design for efficient emulation

Dimitra M. Salmanidou, Joakim Beck, Peter Pazak, and Serge Guillas

Related authors

Understanding extreme-wave hazards on high-energy coasts requires a standardised approach to field data collection: Analysis and recommendations
Rónadh Cox, Mary C. Bourke, Max Engel, Andrew B. Kennedy, Annie Lau, Serge Suanez, Sarah J. Boulton, Maria Alexandra Oliveira, Raphaël Paris, Dimitra Salmanidou, Michaela Spiske, Wayne Stephenson, Storm Roberts, Adam D. Switzer, Nadia Mhammdi, Niamh D. Cullen, and Masashi Watanabe
EGUsphere, https://doi.org/10.5194/egusphere-2025-1913,https://doi.org/10.5194/egusphere-2025-1913, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary

Related subject area

Sea, Ocean and Coastal Hazards
Super typhoons Mangkhut (2018) and Saola (2023) during landfall: comparison and insights for wind engineering practice
Yujie Liu, Yuncheng He, Pakwai Chan, Aiming Liu, and Qijun Gao
Nat. Hazards Earth Syst. Sci., 25, 2255–2269, https://doi.org/10.5194/nhess-25-2255-2025,https://doi.org/10.5194/nhess-25-2255-2025, 2025
Short summary
Recent Baltic Sea storm surge events from a climate perspective
Nikolaus Groll, Lidia Gaslikova, and Ralf Weisse
Nat. Hazards Earth Syst. Sci., 25, 2137–2154, https://doi.org/10.5194/nhess-25-2137-2025,https://doi.org/10.5194/nhess-25-2137-2025, 2025
Short summary
Development of a wind-based storm surge model for the German Bight
Laura Schaffer, Andreas Boesch, Johanna Baehr, and Tim Kruschke
Nat. Hazards Earth Syst. Sci., 25, 2081–2096, https://doi.org/10.5194/nhess-25-2081-2025,https://doi.org/10.5194/nhess-25-2081-2025, 2025
Short summary
Advancing nearshore and onshore tsunami hazard approximation with machine learning surrogates
Naveen Ragu Ramalingam, Kendra Johnson, Marco Pagani, and Mario L. V. Martina
Nat. Hazards Earth Syst. Sci., 25, 1655–1679, https://doi.org/10.5194/nhess-25-1655-2025,https://doi.org/10.5194/nhess-25-1655-2025, 2025
Short summary
Untangling the waves: decomposing extreme sea levels in a non-tidal basin, the Baltic Sea
Marvin Lorenz, Katri Viigand, and Ulf Gräwe
Nat. Hazards Earth Syst. Sci., 25, 1439–1458, https://doi.org/10.5194/nhess-25-1439-2025,https://doi.org/10.5194/nhess-25-1439-2025, 2025
Short summary

Cited articles

AECOM: Modeling of potential tsunami inundation limits and run-up, Report for the capital region district, 60242933, Victoria, BC, Canada, 2013. a, b, c, d, e
Atwater, B. and Hemphill-Haley, E.: Recurrence Intervals for Great Earthquakes of the Past 3,500 Years at Northeastern Willapa Bay, Washington, USGS professional paper, 1576, Western Region, Menlo Park, Calif., 1997. a
Beck, J. and Guillas, S.: Sequential Design with Mutual Information for Computer Experiments (MICE): Emulation of a Tsunami Model, SIAM/ASA Journal on Uncertainty Quantification, 4, 739–766, https://doi.org/10.1137/140989613, 2016. a, b, c, d
Behrens, J. and Dias, F.: New computational methods in tsunami science, Philos. T. R. Soc. A, 373, 20140 382, https://doi.org/10.1098/rsta.2014.0382, 2015. a
Bilek, S. L. and Lay, T.: Subduction zone megathrust earthquakes, Geosphere, 14, 1468–1500, https://doi.org/10.1130/GES01608.1, 2018. a
Download
Short summary
The potential of large-magnitude earthquakes in Cascadia poses a significant threat over a populous region of North America. We use statistical emulation to assess the probabilistic tsunami hazard from such events in the region of the city of Victoria, British Columbia. The emulators are built following a sequential design approach for information gain over the input space. To predict the hazard at coastal locations of the region, two families of potential seabed deformation are considered.
Share
Altmetrics
Final-revised paper
Preprint