Articles | Volume 21, issue 12
https://doi.org/10.5194/nhess-21-3789-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-21-3789-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Probabilistic, high-resolution tsunami predictions in northern Cascadia by exploiting sequential design for efficient emulation
Dimitra M. Salmanidou
CORRESPONDING AUTHOR
Department of Statistical Science, University College London, Gower Street London WC1E 6BT, United Kingdom
Joakim Beck
Computer, Electrical and Mathematical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
Peter Pazak
Aon Impact Forecasting – Earthquake Model Development, London, United Kingdom
Earth Science Institute, Slovak Academy of Sciences, Bratislava, Slovakia
Serge Guillas
Department of Statistical Science, University College London, Gower Street London WC1E 6BT, United Kingdom
Related authors
Rónadh Cox, Mary C. Bourke, Max Engel, Andrew B. Kennedy, Annie Lau, Serge Suanez, Sarah J. Boulton, Maria Alexandra Oliveira, Raphaël Paris, Dimitra Salmanidou, Michaela Spiske, Wayne Stephenson, Storm Roberts, Adam D. Switzer, Nadia Mhammdi, Niamh D. Cullen, and Masashi Watanabe
EGUsphere, https://doi.org/10.5194/egusphere-2025-1913, https://doi.org/10.5194/egusphere-2025-1913, 2025
Short summary
Short summary
Coastal boulder deposits record extreme wave events, both storm and tsunami. Fully understanding hazards as recorded in these deposits requires high-quality data for comparison among sites and over time. We analysed methodologies and constructed a comprehensive set of field measurements to improve data consistency and reproducibility. We aim to help geomorphologists produce of data that can be widely shared and used to build extensive analytic understanding of coastal boulder deposits.
Rónadh Cox, Mary C. Bourke, Max Engel, Andrew B. Kennedy, Annie Lau, Serge Suanez, Sarah J. Boulton, Maria Alexandra Oliveira, Raphaël Paris, Dimitra Salmanidou, Michaela Spiske, Wayne Stephenson, Storm Roberts, Adam D. Switzer, Nadia Mhammdi, Niamh D. Cullen, and Masashi Watanabe
EGUsphere, https://doi.org/10.5194/egusphere-2025-1913, https://doi.org/10.5194/egusphere-2025-1913, 2025
Short summary
Short summary
Coastal boulder deposits record extreme wave events, both storm and tsunami. Fully understanding hazards as recorded in these deposits requires high-quality data for comparison among sites and over time. We analysed methodologies and constructed a comprehensive set of field measurements to improve data consistency and reproducibility. We aim to help geomorphologists produce of data that can be widely shared and used to build extensive analytic understanding of coastal boulder deposits.
Daniel Giles, Matthew M. Graham, Mosè Giordano, Tuomas Koskela, Alexandros Beskos, and Serge Guillas
Geosci. Model Dev., 17, 2427–2445, https://doi.org/10.5194/gmd-17-2427-2024, https://doi.org/10.5194/gmd-17-2427-2024, 2024
Short summary
Short summary
Digital twins of physical and human systems informed by real-time data are becoming ubiquitous across a wide range of settings. Progress for researchers is currently limited by a lack of tools to run these models effectively and efficiently. A key challenge is the optimal use of high-performance computing environments. The work presented here focuses on a developed open-source software platform which aims to improve this usage, with an emphasis placed on flexibility, efficiency, and scalability.
Ryuichi Kanai, Masashi Kamogawa, Toshiyasu Nagao, Alan Smith, and Serge Guillas
Nat. Hazards Earth Syst. Sci., 22, 849–868, https://doi.org/10.5194/nhess-22-849-2022, https://doi.org/10.5194/nhess-22-849-2022, 2022
Short summary
Short summary
The air pressure created by a tsunami causes a depression in the electron density in the ionosphere. The depression is measured at sparsely distributed, moving GPS satellite locations. We provide an estimate of the volume of the depression. When applied to the 2011 Tohoku-Oki earthquake in Japan, our method can warn of a tsunami event within 15 min of the earthquake, even when using only 5 % of the data. Thus satellite-based warnings could be implemented across the world with our approach.
Maryam Ilyas, Douglas Nychka, Chris Brierley, and Serge Guillas
Atmos. Meas. Tech., 14, 7103–7121, https://doi.org/10.5194/amt-14-7103-2021, https://doi.org/10.5194/amt-14-7103-2021, 2021
Short summary
Short summary
Instrumental temperature records are fundamental to climate science. There are spatial gaps in the distribution of these measurements across the globe. This lack of spatial coverage introduces coverage error. In this research, a methodology is developed and used to quantify the coverage errors. It results in a data product that, for the first time, provides a full description of both the spatial coverage uncertainties along with the uncertainties in the modeling of these spatial gaps.
Cited articles
Atwater, B. and Hemphill-Haley, E.: Recurrence Intervals for Great Earthquakes of the Past 3,500 Years at Northeastern Willapa Bay, Washington, USGS professional paper, 1576, Western Region, Menlo Park, Calif., 1997. a
Beck, J. and Guillas, S.: Sequential Design with Mutual Information for Computer Experiments (MICE): Emulation of a Tsunami Model, SIAM/ASA Journal on Uncertainty Quantification, 4, 739–766, https://doi.org/10.1137/140989613, 2016. a, b, c, d
Behrens, J. and Dias, F.: New computational methods in tsunami science, Philos. T. R. Soc. A, 373, 20140 382, https://doi.org/10.1098/rsta.2014.0382, 2015. a
Bilek, S. L. and Lay, T.: Subduction zone megathrust earthquakes, Geosphere, 14, 1468–1500, https://doi.org/10.1130/GES01608.1, 2018. a
Clague, J., Munro, A., and Murty, T.: Tsunami Hazard and Risk in Canada, Nat. Hazards, 28, 435–463, https://doi.org/10.1023/A:1022994411319, 2003. a, b
Clague, J. J., Bobrowsky, P. T., and Hutchinson, I.: A review of geological records of large tsunamis at Vancouver Island, British Columbia, and implications for hazard, Quaternary Sci. Rev., 19, 849–863, https://doi.org/10.1016/S0277-3791(99)00101-8, 2000. a, b, c, d
Davies, G., Griffin, J., Løvholt, F., Glimsdal, S., Harbitz, C., Thio, H. K., Lorito, S., Basili, R., Selva, J., Geist, E., and Baptista, M. A.: A global probabilistic tsunami hazard assessment from earthquake sources, Geol. Soc. Sp., 456, 219–244, https://doi.org/10.1144/SP456.5, 2018. a
Denamiel, C., Šepić, J., Huan, X., Bolzer, C., and Vilibić, I.: Stochastic Surrogate Model for Meteotsunami Early Warning System in the Eastern Adriatic Sea, J. Geophys. Res.-Oceans, 124, 8485–8499, https://doi.org/10.1029/2019JC015574, 2019. a
Fine, I., Cherniawsky, J., Rabinovich, A., and Stephenson, F.: Numerical Modeling and Observations of Tsunami Waves in Alberni Inlet and Barkley Sound, British Columbia, Pure Appl. Geophys., 165, 2019–2044, https://doi.org/10.1007/s00024-008-0414-9, 2008. a, b
Fujiwara, T., Kodaira, S., No, T., Kaiho, Y., Takahashi, N., and Kaneda, Y.: The 2011 Tohoku-Oki Earthquake: Displacement Reaching the Trench Axis, Science (New York, N. Y.), Science, 334, 1240, https://doi.org/10.1126/science.1211554, 2011. a
Gao, D., Wang, K., Insua, T. L., Sypus, M., Riedel, M., and Sun, T.: Defining megathrust tsunami source scenarios for northernmost Cascadia, Nat. Hazards, 94, 445–469, https://doi.org/10.1007/s11069-018-3397-6, 2018. a, b
GEBCO Bathymetric Compilation Group: The GEBCO_2019 Grid – a continuous terrain model of the global oceans and land, British Oceanographic Data Centre, National Oceanography Centre, NERC, UK [data set], https://doi.org/10.5285/836f016a-33be-6ddc-e053-6c86abc0788e, 2019. a
Giles, D.: Volna, Github [code], available at: https://github.com/DanGiles/volna, last access: 23 November 2020. a
Giles, D., Kashdan, E., Salmanidou, D. M., Guillas, S., and Dias, F.: Performance analysis of Volna-OP2 – massively parallel code for tsunami modelling, Comput. Fluids, 209, 104 649, https://doi.org/10.1016/j.compfluid.2020.104649, 2020. a, b
Giles, D., Gopinathan, D., Guillas, S., and Dias, F.: Faster Than Real Time Tsunami Warning with Associated Hazard Uncertainties, Front. Earth Sci., 8, 560, https://doi.org/10.3389/feart.2020.597865, 2021. a, b
Goldfinger, C., Nelson, C. H., and Johnson, J. E. A.: Holocene Earthquake Records from the Cascadia Subduction Zone and Northern San Andreas Fault Based on Precise Dating of Offshore Turbidites, Ann. Rev. Earth Pl. Sc., 31, 555–577, https://doi.org/10.1146/annurev.earth.31.100901.141246, 2003. a
Goldfinger, C., Nelson, C., Morey, A., Johnson, J., Patton, J., Karabanov, E., Gutiérrez-Pastor, J., Eriksson, A., Gràcia, E., Dunhill, G., Enkin, R., Dallimore, A., and Vallier, T.: Turbidite Event History: Methods and Implications for Holocene Paleoseismicity of the Cascadia Subduction Zone. U. S. Geological Survey Professional Paper 1661-F, Turbidite Event History-Methods and Implications for Holocene Paleoseismicity of the Cascadia Subduction Zone, U.S. Geological Survey, Reston: Virginia, 2012. a, b, c, d
Gonzalez, F. I., Geist, E. L., Jaffe, B., Kanoglu, U., Mofjeld, H., Synolakis, C. E., Titov, V. V., Arcas, D., Bellomo, D., Carlton, D., Horning, T., Johnson, J., Newman, J., Parsons, T., Peters, R., Peterson, C., Priest, G., Venturato, A., Weber, J., Wong, F., and Yalciner, A.: Probabilistic tsunami hazard assessment at Seaside, Oregon, for near- and far-field seismic sources, J. Geophys. Res.-Oceans, 114, C11023, https://doi.org/10.1029/2008JC005132, 2009. a
Guillas, S., Sarri, A., Day, S. J., Liu, X., and Dias, F.: Functional emulation of high resolution tsunami modelling over Cascadia, Ann. Appl. Stat., 12, 2023–2053, https://doi.org/10.1214/18-AOAS1142, 2018. a, b, c, d
Ishii, M., Shearer, P. M., Houston, H., and Vidale, J. E.: Extent, duration and speed of the 2004 Sumatra–Andaman earthquake imaged by the Hi-Net array, Nature, 435, 933–936, https://doi.org/10.1038/nature03675, 2005. a
Kotani, T., Tozato, K., Takase, S., Moriguchi, S., Terada, K., Fukutani, Y., Otake, Y., Nojima, K., Sakuraba, M., and Choe, Y.: Probabilistic tsunami hazard assessment with simulation-based response surfaces, Coast. Eng., 160, 103 719, https://doi.org/10.1016/j.coastaleng.2020.103719, 2020. a
Krause, A., Singh, A., and Guestrin, C.: Near-Optimal Sensor Placements in Gaussian Processes: Theory, Efficient Algorithms and Empirical Studies, J. Mach. Learn. Res., 9, 235–284, 2008. a
Lay, T.: A review of the rupture characteristics of the 2011 Tohoku-oki Mw 9.1 earthquake, Tectonophysics, 733, 4–36, https://doi.org/10.1016/j.tecto.2017.09.022, 2018. a, b
Leonard, L. J., Hyndman, R. D., and Mazzotti, S.: Coseismic subsidence in the 1700 great Cascadia earthquake: Coastal estimates versus elastic dislocation models, GSA Bulletin, 116, 655–670, https://doi.org/10.1130/B25369.1, 2004. a
Liu, X. and Guillas, S.: Dimension Reduction for Gaussian Process Emulation: An Application to the Influence of Bathymetry on Tsunami Heights, SIAM/ASA Journal on Uncertainty Quantification, 5, 787–812, https://doi.org/10.1137/16M1090648, 2017. a
Loeppky, J. L., Sacks, J., and Welch, W. J.: Choosing the Sample Size of a Computer Experiment: A Practical Guide, Technometrics, 51, 366–376, https://doi.org/10.1198/TECH.2009.08040, https://doi.org/10.1198/TECH.2009.08040, 2009. a
Maksymowicz, A., Chadwell, C. D., Ruiz, J., Tréhu, A. M., Contreras-Reyes, E., Weinrebe, W., Díaz-Naveas, J., Gibson, J. C., Lonsdale, P., and Tryon, M. D.: Coseismic seafloor deformation in the trench region during the Mw8.8 Maule megathrust earthquake, Sci. Rep.-UK, 7, 45 918, https://doi.org/10.1038/srep45918, 2017. a
McCaffrey, R.: Earthquakes and Crustal Deformation, in: Encyclopedia of Solid Earth Geophysics, edited by: Gupta, H. K., series Title: Encyclopedia of Earth Sciences Series, 218–226, Springer Netherlands, Dordrecht, https://doi.org/10.1007/978-90-481-8702-7_2, 2011. a
Ming, D., Williamson, D., and Guillas, S.: Deep Gaussian Process Emulation using Stochastic Imputation, arXiv preprint arXiv:2107.01590, 2021. a
Musson, R.: The use of Monte Carlo simulations for seismic hazard assessment in the UK, Ann. Geophys., 43, 1, https://doi.org/10.4401/ag-3617, 2009. a
NASA Shuttle Radar Topography Mission (SRTM): 1 arc-second for the United States and 3 arc-seconds for global coverage, SRTM 1 Arc-Second Global [data set], https://doi.org/10.5066/F7PR7TFT, 2019. a
NOAA National Geophysical Data Centre: Bathymetric Data Viewer, NOAA National Geophysical Data Centre [data set], available at: https://www.ncei.noaa.gov/maps/bathymetry/, last access: 11 June 2019. a
Okada, Y.: Surface deformation to shear and tensile faults in a halfspace, B. Seismol. Soc. Am., 75, 1135–1154, https://doi.org/10.1785/BSSA0750041135, 1985. a
Owen, N. E., Challenor, P., Menon, P. P., and Bennani, S.: Comparison of Surrogate-Based Uncertainty Quantification Methods for Computationally Expensive Simulators, SIAM/ASA Journal on Uncertainty Quantification, 5, 403–435, https://doi.org/10.1137/15M1046812, 2017. a, b
Park, H., Cox, D. T., Alam, M. S., and Barbosa, A. R.: Probabilistic Seismic and Tsunami Hazard Analysis Conditioned on a Megathrust Rupture of the Cascadia Subduction Zone, Frontiers in Built Environment, 3, 32, https://doi.org/10.3389/fbuil.2017.00032, 2017. a, b, c
Priest, G. R., Goldfinger, C., Wang, K., Witter, R. C., Zhang, Y., and Baptista, A. M.: Confidence levels for tsunami-inundation limits in northern Oregon inferred from a 10,000-year history of great earthquakes at the Cascadia subduction zone, Nat. Hazards, 54, 27–73, https://doi.org/10.1007/s11069-009-9453-5, 2010. a, b
Reguly, I. and Giles, D.: Volna, Github [code], available at: https://github.com/reguly/volna, last access: 23 November 2020. a
Reguly, I. Z., Giles, D., Gopinathan, D., Quivy, L., Beck, J. H., Giles, M. B., Guillas, S., and Dias, F.: The VOLNA-OP2 tsunami code (version 1.5), Geosci. Model Dev., 11, 4621–4635, https://doi.org/10.5194/gmd-11-4621-2018, 2018. a, b
Rong, Y., Jackson, D., Magistrale, H., and Goldfinger, C.: Magnitude Limits of Subduction Zone Earthquakes, B. Seismol. Soc. Am., 104, 2359–2377, https://doi.org/10.1785/0120130287, 2014. a
Salmanidou, D. M., Guillas, S., Georgiopoulou, A., and Dias, F.: Statistical emulation of landslide-induced tsunamis at the Rockall Bank, NE Atlantic, P. R. Soc. A, 473, 20170 026, https://doi.org/10.1098/rspa.2017.0026, 2017. a, b, c, d
Salmanidou, D. M., Heidarzadeh, M., and Guillas, S.: Probabilistic Landslide-Generated Tsunamis in the Indus Canyon, NW Indian Ocean, Using Statistical Emulation, Pure Appl. Geophys., 176, 3099–3114, https://doi.org/10.1007/s00024-019-02187-3, 2019. a
Sarri, A., Guillas, S., and Dias, F.: Statistical emulation of a tsunami model for sensitivity analysis and uncertainty quantification, Nat. Hazards Earth Syst. Sci., 12, 2003–2018, https://doi.org/10.5194/nhess-12-2003-2012, 2012. a, b
Satake, K., Shimazaki, K., Tsuji, Y., and Ueda, K.: Time and size of a giant earthquake in Cascadia inferred from Japanese tsunami records of January 1700, Nature, 379, 246–249, https://doi.org/10.1038/379246a0, 1996. a
Snelling, B., Neethling, S., Horsburgh, K., Collins, G., and Piggott, M.: Uncertainty Quantification of Landslide Generated Waves Using Gaussian Process Emulation and Variance-Based Sensitivity Analysis, Water, 12, 416, https://doi.org/10.3390/w12020416, 2020.
a
Sraj, I., Mandli, K. T., Knio, O. M., Dawson, C. N., and Hoteit, I.: Uncertainty quantification and inference of Manning's friction coefficients using DART buoy data during the Tōhoku tsunami, Ocean Model., 83, 82–97, https://doi.org/10.1016/j.ocemod.2014.09.001, 2014. a
The Alan Turing Institute, Daub, E., Strickson, O., and Barlow, N.: MOGP emulator, Github [code], available at: https://github.com/alan-turing-institute/mogp-emulator, last access: 26 February 2021. a
Volpe, M., Lorito, S., Selva, J., Tonini, R., Romano, F., and Brizuela, B.: From regional to local SPTHA: efficient computation of probabilistic tsunami inundation maps addressing near-field sources, Nat. Hazards Earth Syst. Sci., 19, 455–469, https://doi.org/10.5194/nhess-19-455-2019, 2019. a
Wang, K., Wells, R., Mazzotti, S., Hyndman, R. D., and Sagiya, T.: A revised dislocation model of interseismic deformation of the Cascadia subduction zone: Revised Dislocation Model of Interseismic Deformation, J. Geophys. Res.-Sol. Ea., 108, https://doi.org/10.1029/2001JB001227, 2003. a
Yao, Y., Yang, X., Lai, S., and Chin, R. J.: Predicting tsunami-like solitary wave run-up over fringing reefs using the multi-layer perceptron neural network, Nat. Hazards, 107, 1–16, https://doi.org/10.1007/s11069-021-04597-w, 2021. a, b
Short summary
The potential of large-magnitude earthquakes in Cascadia poses a significant threat over a populous region of North America. We use statistical emulation to assess the probabilistic tsunami hazard from such events in the region of the city of Victoria, British Columbia. The emulators are built following a sequential design approach for information gain over the input space. To predict the hazard at coastal locations of the region, two families of potential seabed deformation are considered.
The potential of large-magnitude earthquakes in Cascadia poses a significant threat over a...
Altmetrics
Final-revised paper
Preprint