
Nat. Hazards Earth Syst. Sci., 21, 3789–3807, 2021
https://doi.org/10.5194/nhess-21-3789-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

Probabilistic, high-resolution tsunami predictions in northern
Cascadia by exploiting sequential design for efficient emulation
Dimitra M. Salmanidou1, Joakim Beck2, Peter Pazak3,4, and Serge Guillas1

1Department of Statistical Science, University College London, Gower Street London WC1E 6BT, United Kingdom
2Computer, Electrical and Mathematical Sciences and Engineering, King Abdullah University of Science and Technology
(KAUST), Thuwal, Saudi Arabia
3Aon Impact Forecasting – Earthquake Model Development, London, United Kingdom
4Earth Science Institute, Slovak Academy of Sciences, Bratislava, Slovakia

Correspondence: Dimitra M. Salmanidou (d.salmanidou.12@ucl.ac.uk)

Received: 27 February 2021 – Discussion started: 9 March 2021
Revised: 20 October 2021 – Accepted: 9 November 2021 – Published: 17 December 2021

Abstract. The potential of a full-margin rupture along the
Cascadia subduction zone poses a significant threat over a
populous region of North America. Previous probabilistic
tsunami hazard assessment studies produced hazard curves
based on simulated predictions of tsunami waves, either at
low resolution or at high resolution for a local area or un-
der limited ranges of scenarios or at a high computational
cost to generate hundreds of scenarios at high resolution. We
use the graphics processing unit (GPU)-accelerated tsunami
simulator VOLNA-OP2 with a detailed representation of to-
pographic and bathymetric features. We replace the simula-
tor by a Gaussian process emulator at each output location
to overcome the large computational burden. The emulators
are statistical approximations of the simulator’s behaviour.
We train the emulators on a set of input–output pairs and
use them to generate approximate output values over a six-
dimensional scenario parameter space, e.g. uplift/subsidence
ratio and maximum uplift, that represent the seabed deforma-
tion. We implement an advanced sequential design algorithm
for the optimal selection of only 60 simulations. The low cost
of emulation provides for additional flexibility in the shape
of the deformation, which we illustrate here considering two
families – buried rupture and splay-faulting – of 2000 poten-
tial scenarios. This approach allows for the first emulation-
accelerated computation of probabilistic tsunami hazard in
the region of the city of Victoria, British Columbia.

1 Introduction

The Cascadia subduction zone is a long subduction zone that
expands for more than 1000 km along the Pacific coast of
North America, from Vancouver Island in the north to north-
ern California in the south (Fig. 1). The zone lies on the inter-
face of the subducting oceanic plate of Juan de Fuca and the
overriding lithospheric plate of North America. Earthquake-
induced tsunamis generated from the Cascadia subduction
zone pose an imminent threat for the west coasts of the
United States and Canada but also other coastal regions in
the Pacific Ocean. Historical and geological records show
that great plate boundary earthquakes were responsible for
large-tsunami events in the past (Clague et al., 2000; Goldfin-
ger et al., 2012). A sequence of great earthquakes has been
inferred for the region over the last ∼ 6500 years with an
average interval rate of 500–600 years (individual intervals
may vary from a few hundred to 1000 years) (Atwater and
Hemphill-Haley, 1997; Clague et al., 2000; Goldfinger et al.,
2003, 2012). The most recent megathrust earthquake in the
Cascadia subduction zone was the 1700 earthquake, the tim-
ing of which was inferred from records of an orphan tsunami
in Japan (Satake et al., 1996; Satake, 2003). The moment
magnitude (Mw) of the earthquake was estimated close to 9,
with a rupture length of ca. 1100 km, likely rupturing the en-
tire zone (Satake, 2003).

There exists a large level of uncertainty with regard to the
level of destruction that similar events could cause in the fu-
ture. Major tsunamis in historical times have not caused sig-
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Figure 1. The domain of interest. The black line and white ar-
rows depict the location of the trench; the orange triangles show
the points used to drive the maximum subsidence. The reference
point of the scale bar is assumed to be the bottom left corner of the
map.

nificant damage to infrastructure in the west coast of British
Columbia (Clague et al., 2003). This is partly attributed to the
scarce and less densely populated areas in the region. How-
ever, the risk of such an episode nowadays has increased fol-
lowing an increase in urbanization. The most recent major
tsunami impacting the area was generated by the 1964 Great
Alaskan earthquake on 27 March 1964. Although no casu-
alties were reported in Canada, the tsunami caused millions
of dollars in damage on the west coast of Vancouver Island
(Clague et al., 2000, 2003). Studies examining the impact of
tsunamis in Cascadia have mostly focused on a worst-case-
scenario potential (Cherniawsky et al., 2007; Witter et al.,
2013; Fine et al., 2018); a few probabilistic studies exist, pri-

marily assessing hazard potential on the US coastline (Gon-
zalez et al., 2009; Park et al., 2017) for a limited number
of scenarios at high resolution or at individual local points
(Guillas et al., 2018) for a large number of scenarios but at a
moderate resolution of 100 m. Davies et al. (2018) performed
a probabilistic tsunami hazard assessment at a global scale.

Probabilistic approaches allow for the exploration of large
scenario distributions that benefit risk-informed decision
making (Volpe et al., 2019). The probabilistic approach is to
treat the uncertain scenario parameters as random variables
and then propagate the parameter uncertainty to model the
outputs. Uncertainty quantification aims to efficiently esti-
mate the resulting variability in the simulation output, for in-
stance in the simulated maximum tsunami wave heights on
a set of locations. Thus, one needs to run the tsunami simu-
lator for many scenarios with parameter values drawn from
a chosen probability distribution, defining our prior belief
about different scenarios’ probability. High-accuracy, high-
resolution computations are especially useful in tsunami
modelling studies to assess inundation, damage to infras-
tructure and asset losses but also for evacuation modelling.
The parameter space dimension is also typically high, and
the number of expensive numerical simulations needed to
resolve the statistics about the output tends to be large (on
the order of thousands for a well-approximated distribution;
Salmanidou et al., 2017; Gopinathan et al., 2021) and hard
to materialize as it depends on the available resources, code
architecture and other factors.

Statistical emulators (also known as statistical surrogate
models) can be called to address these issues (Sarri et al.,
2012; Behrens and Dias, 2015). We propose using a statisti-
cal surrogate approach, also called emulation, in which one
approximates simulation outputs of interest as a function of
the scenario parameter space. Such approaches have been
implemented for uncertainty quantification of tsunami haz-
ard at various settings (Sraj et al., 2014; Salmanidou et al.,
2017, 2019; Guillas et al., 2018; Denamiel et al., 2019;
Snelling et al., 2020; Gopinathan et al., 2021; Giles et al.,
2021).

Statistical emulators are stochastic approximations of the
deterministic response. They are used to predict the expected
outputs of the response at untried inputs that fall within the
prescribed input parameter intervals. Training data, which
are the observations of the response at various settings, are
used to build the emulators and are thus of paramount impor-
tance. In tsunami hazard, where observations of past events
are limited, these training data originate from numerical ex-
periments that have been mainly constrained by some physi-
cal understanding of the widest range of possible scenarios in
order to cover any possible event through the emulation pro-
cess since interpolation, not extrapolation, is the core tech-
nique. Extrapolation means predicting outcomes for param-
eter values beyond the parameter domain on which emula-
tors are designed to interpolate. Since the points representing
seabed deformation scenarios are in a bounded parameter do-
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main, emulators can mitigate undesired extrapolation if built
on a training design set with good coverage of the domain,
particularly if the envelope of the design set is close to the
domain boundary. For small design sets, which we consider
in this work, sequential design strategies are advantageous
as they update the design set to improved coverage, among
other desired design features, by conditioning on the current
design point locations. The role of experimental design in
the scientific studies thus becomes critical as it aims to se-
lect the optimal sets of variables that contribute to the vari-
ance in the response and, in parallel, minimize the numbers
of the runs needed for a desired accuracy. Several methods
exist in the literature, from which two commonly occurring
designs are the fixed (or one-shot) and the adaptive (or se-
quential) design. In fixed designs, such as the Latin hyper-
cube sampling (LHS), the sample size of the experiments
is prescribed. These designs have good space-filling prop-
erties but may waste computational resources over unneces-
sary regions of the input space. On the other hand, sequen-
tial designs adaptively select the next set of experiments to
optimize the training data for fitting the emulators. Such a
design can be determined by the efficient mutual informa-
tion for computer experiments (MICE) algorithm (Beck and
Guillas, 2016) that we utilize in this study for probabilistic
tsunami hazard prediction in northern Cascadia.

Our study builds a methodology that employs existent
methods and tools for the design of computer experiments
and statistical emulation in order to quantify the uncertainty
in tsunami hazard in British Columbia. The objective is
to build multi-output Gaussian process (MOGP)1 emulators
and use them for probabilistic, high-resolution tsunami haz-
ard prediction. Other surrogate model techniques have been
applied for tsunami or tsunami-like applications, such as
polynomial regression (see e.g. Kotani et al., 2020) and artifi-
cial neural networks (see e.g. Yao et al., 2021). For example,
Yao et al. (2021) predicted tsunami-like wave run-up over
fringing reefs using a neural network approach for approx-
imating the relationship between inputs, including incident
wave height and four reef features, and a wave run-up out-
put on the back-reef beach. The authors emphasized that a
disadvantage of artificial neural networks is that they are not
suitable for small data sets. Owen et al. (2017) demonstrated,
by examples involving computer-intensive simulation mod-
els, that GP emulation can approximate outputs of nonlinear
behaviour with higher accuracy than polynomial regression
when considering small- to moderate-sized, space-filling de-
signs.

The benefit of this approach is the use of a sequential de-
sign algorithm in the training to maximize the computational
information gain over the multidimensional input space and
adaptively select the succeeding set of experiments. The ver-
tical seabed displacement over the Cascadia subduction zone

1https://github.com/alan-turing-institute/mogp_emulator (last
access: 26 February 2021)

was defined by its duration and a set of shape parameters.
We develop a site-specific idealized model for the time-
dependent crustal deformation along the subduction zone,
controlled by a set of shape parameters. In our study, the
shape parameters are the model input, and the values de-
fine a specific scenario. The tsunami hazard was modelled
using the graphics processing unit (GPU)-accelerated non-
linear shallow water equation solver VOLNA-OP2 (Reguly
et al., 2018). The acceleration with GPUs makes it compu-
tationally feasible to run tsunami simulations on highly re-
fined meshes for many scenarios. By a scenario, here, we
mean a specific seabed deformation causing a tsunami out-
come. For each location in a refined area of 5148 mesh lo-
cations at the shoreline of south-eastern Vancouver Island,
we create a corresponding emulator of the expensive high-
resolution tsunami simulator. The implementation of MOGP
emulators finally allows us to predict the maximum tsunami
wave heights (or flow depths) at shoreline level (Hmax) at a
high resolution, which can then be utilized to assess the prob-
abilistic tsunami hazard for the region. We note that we com-
pute the flow depth, as opposed to the wave height, for shore-
line locations that have elevation above zero. The advantage
of the design is that only a relatively small number of ex-
pensive tsunami simulator runs, which constitute the training
data for the emulators, need to be performed. A fast evalu-
ation of these emulators for untried input data is then per-
formed to produce approximates of what the tsunami simu-
lator output would have been. The emulators’ technique of
choice is a Gaussian process regression, which is also widely
known as Kriging.

The novelty here is the use of the sequential design MICE
by Beck and Guillas (2016) for the construction of the GP
emulators of the tsunami model. This is done for the first
time towards a realistic case using high-performance com-
puting (HPC). A one-shot random sampling for the training
(as for example in Salmanidou et al., 2017; Gopinathan et al.,
2021; Giles et al., 2021) lacks the information gain achieved
by sequential design. Concretely, sequential design can re-
duce by 50 % the computational cost, as demonstrated in
Beck and Guillas (2016) for a set of toy problems, so apply-
ing this novel approach towards a realistic case is showcas-
ing real benefits in the case of high resolution with a complex
parametrization of the source. This work differs from the pre-
vious work by Guillas et al. (2018) in several aspects such
as the high-resolution modelling, the sequential design ap-
proach, the complexity of the source and the use of the emu-
lators for studying the probabilistic tsunami hazard in the re-
gion. The focus of our work is on the methodological aspect
of building the emulators and using them for multi-output
tsunami hazard predictions. For a comprehensive tsunami
hazard assessment realistic modelling of Cascadia subduc-
tion interface magnitude–frequency relationships and seabed
deformation parametrization needs to be incorporated. The
study workflow followed in this study can be divided into
three stages (Fig. 2): (I) the experimental set-up, (II) the ex-

https://doi.org/10.5194/nhess-21-3789-2021 Nat. Hazards Earth Syst. Sci., 21, 3789–3807, 2021

https://github.com/alan-turing-institute/mogp_emulator


3792 D. M. Salmanidou et al.: Probabilistic predictions in northern Cascadia

perimental design, (III) the emulation and its use in hazard
assessment. Each stage is described in detail in the following
sections.

2 Set-up of experiments

To proceed with the numerical experiments, some choices
with regard to the input data need to be made a priori. Hence,
the first stage of the study deals with the set-up of the numer-
ical experiments. This stage can prove critical as changes in
the set-up at a later stage of the study (e.g. emulation stage)
might result in the re-initiation of the process. Several as-
pects need to be considered, some of which are the choice of
models and functions to perform the analysis, the input pa-
rameters to describe the seabed deformation and their ranges,
the data acquisition and processing, and the grid configura-
tion required to best represent the issues in question (see also
the yellow panel in Fig. 2).

2.1 Input parameters

Most of the megathrust earthquake scenarios examine the
possibility of buried rupture or splay-faulting rupture in the
northern part of the segment (Priest et al., 2010; Witter et al.,
2013; Fine et al., 2018). Trench breaching rupture scenarios
were also studied by Gao et al. (2018). Various studies have
dealt with the seabed displacement leading to tsunami exci-
tation in the Cascadia subduction zone (Satake, 2003; Wang
et al., 2003). In this study, an idealized geometry in the form
of a cosine interpolation is employed for the smooth repre-
sentation of the seabed deformation along with the deforma-
tion from its highest point towards the coast direction. The
maximum and minimum points of the interpolation func-
tion correspond to the locations of maximum uplift and sub-
sidence, respectively (Fig. 1). The points along the trench
(60 locations) were defined by the morphological change be-
tween the undeformed ocean floor of the subducting Juan de
Fuca plate and the irregular deformed slope of the overriding
North American plate. A full-length rupture is computed for
all the scenarios presented in the study. The seabed deforma-
tions change over time by multiplying an amplitude factor
that increases linearly from the initial time set at 0 to the
duration value t . Seven input parameters were considered to
describe the deformation: the total rupture duration; the hor-
izontal distance from the trench to (a) the point of the max-
imum uplift (Dhmax), (b) the point of maximum subsidence
(Dhmin) and (c) the point where the deformation stops (Dd);
the maximum uplift on the trench line (ht); the maximum
uplift recorded (hmax); and the maximum subsidence (hmin)
(Fig. 3). The duration (t) and the maximum vertical displace-
ment (hmax) as well as the ratios of hmin/hmax, ht/hmax,
Dhmax/Dhmin and Dd/Dhmin are then utilized to model the
deformation.

The choices for constraining some of these variables were
motivated by the existing literature. For example, the dura-
tion of megathrust earthquakes may increase with increas-
ing earthquake size. The co-seismic crustal deformation of
earthquakes larger than Mw 8 can usually last for more than
1 min (McCaffrey, 2011). The rupture duration recorded dur-
ing the 2004 Sumatra–Andaman earthquake was approxi-
mately 500 s, during which the 1300 km zone ruptured at
speeds of 2.8 kms−1 (Ishii et al., 2005). The 2011 Tohoku
earthquake, on the other hand, had a rupture duration that
might have lasted approximately 150 s (Lay, 2018). These
large variations in the rupture duration are not solely depen-
dent on magnitude but on more complex rupture character-
istics (Bilek and Lay, 2018; Lay, 2018). Assuming rupture
speeds of 2.8–4 kms−1, a rupture of 1100 km in the Cascadia
subduction zone would yield 275–393 s. A larger time range,
t , varying between 100 and 420 s is considered for the simu-
lations.

The seabed deformation of a future event in the Cascadia
subduction zone cannot be predicted with certainty. The 1700
earthquake possibly caused a vertical displacement of ca. 4 m
when considering a full-length rupture (Satake, 2003). The
subsidence of the event was inferred from microfossil data to
have ranged between 0.5–1.5 m at several coastal sites in the
Pacific Northwest (references in Satake et al., 2003). Similar
or larger values have been observed in other great subduction
zone earthquakes (Fujiwara et al., 2011; Maksymowicz et al.,
2017). Turbidite event history for the Cascadia subduction
interface (Goldfinger et al., 2012) shows that for larger mag-
nitudes the zone predominantly ruptures as a whole rather
than concentrating high slip on smaller rupture surfaces. The
recently published 6th Generation seismic hazard model for
Canada by the Geological Survey of Canada includes only
full-margin ruptures for the range of magnitudes 8.4–9.2 that
are important for seismic and also for tsunami hazard assess-
ment. Therefore, for the purpose of our modelling only full-
margin ruptures are employed, and variations in the seabed
deformation for such ruptures are considered; the variations
are due to different final slip distribution on the full-margin
rupture surface. Comparing the typical shape of the displace-
ment against the deformation generated using the Okada so-
lution for a dipping thrust fault gives a good agreement for
the shape of the uplift, albeit a more extensive subsidence
(Fig. 3b), the impact of which needs to be further assessed in
future research. Leonard et al. (2004) showed that the largest
subsidence (0–1 m) concentrated on the west part of Vancou-
ver Island, during the 1700 earthquake.

It is estimated that splay-faulting rupture in the northern
part of the zone could result in an enhanced vertical dis-
placement in the vicinity of the deformation front (Priest
et al., 2010). Witter et al. (2013) modelled various deforma-
tion models for tsunami excitation with respect to a 1000 km
rupture length. They found that for events with recurrence
rates of 425–525 years, splay-faulting may increase the max-
imum vertical displacement in the northern part of the zone
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Figure 2. The graph of the workflow divides the study into three principal stages that are interlinked: stage 1 (yellow panel) comprises
the study specification and set-up of the experiments, stage 2 (blue panel) comprises the study design and conduction of the numerical
experiments, and stage 3 (red panel) comprises the building of the emulators and their use for prediction. The maps in the predictions section
of stage 3 are produced with the QGIS software using as base maps the Wikimedia (https://maps.wikimedia.org, last access: 11 August 2021)
layers with data provided by © OpenStreetMap contributors, 2021. Distributed under a Creative Commons BY-SA License (https://www.
openstreetmap.org/copyright, last access: 11 August 2021).

Figure 3. Geometry of the vertical seabed displacement (cross-section). (a) Example using Dhmax/Dhmin = 0.1, Dd/Dhmin = 1.3,
hmin/hmax = 0.4, hmax = 4.5 m and ht/hmax = 0.4. (b) Comparison to an Okada solution for slip occurring on a fault with geometry
similar to the Cascadia subduction interface.

(Olympic Peninsula) to 7–8 m with maximum subsidence be-
tween 1.5–2.5 m. The maximum uplift and subsidence de-
crease to ca. 4 and 1.4 m when moving southward (Cape
Blanco), and splay-related displacement ceases below 42.8◦

(Witter et al., 2013). Based on the above considerations the
range of hmax was chosen to be 1–8 m, with the ratio of
hmin/hmax estimated to range between 0.3–0.8. A full-margin
range was specified for the ratio of ht/hmax: [0.0, 1.0]. Fi-

nally for the distance lengths the ratios of Dhmax/Dhmin and
Dd/Dhmin were varied between [0.1, 0.3] and [1.1, 1.3], re-
spectively. Despite the larger ranges to train the emulators,
information on the source can be interpreted more efficiently
in the prediction of the process (Sect. 4).
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2.2 Model choices

For the tsunami simulations the numerical code VOLNA-
OP2 was used (Reguly et al., 2018; Giles et al., 2020). The
code has been employed at several occasions for the numer-
ical simulation and the uncertainty quantification of tsunami
hazard (Sarri et al., 2012; Salmanidou et al., 2017; Guil-
las et al., 2018; Gopinathan et al., 2021). By integrating the
bathymetry displacement in VOLNA-OP2, the full tsunami
process can be modelled from generation to onshore inun-
dation. The code solves the depth-averaged nonlinear shal-
low water equations (NSWEs) using a cell-centred finite
volume scheme for the spatial discretization. The second-
order Runge–Kutta scheme in conjunction with a strong
stability-preserving (SSP) method is used for the tempo-
ral discretization. The utilization of unstructured, triangular
meshes allows for the incorporation of complex topographic
and bathymetric features and accommodates the accurate
representation of the region of interest. The VOLNA-OP2
has been massively parallelized and accelerated on general-
purpose GPUs and has been validated against known tsunami
benchmarks and tested for its accuracy and computational ef-
ficiency (Giles et al., 2020).

For the tsunami hazard predictions the multi-output Gaus-
sian process (MOGP) emulators are utilized. To perform
the analysis we use the MOGP emulation code, which is
maintained and freely distributed by the research engineer-
ing group at the Alan Turing Institute. A Gaussian process
(GP) regression is the core component of the method. The
GP fits a specified set of input and output variables using a
multivariate Gaussian distribution with given mean and co-
variance functions. It also allows for the prior choice of the
hyperparameters. The hyperparameters are the parameters in
the covariance function of the GP regression model. Their
values are generally uncertain and can be assigned using pri-
ors or fitted to the training data by maximum likelihood esti-
mation. The benefits of the MO approach is that this process
can be run in parallel so that multiple emulators are fitted to
the training input and output variables simultaneously while
maintaining their independence in the solution. In this study
we use as input variables the time and the shape parameters
of the deformation (Sect. 2.1) and as outputs the Hmax val-
ues observed at the coastline to build the emulators at 5148
locations.

An active-learning approach is employed to sequentially
design the training data for the Gaussian process regression.
A common approach is active-learning MacKay (ALM),
where one chooses the design input in each sequential se-
lection that produces the longest predictive variance. In this
work, we use the active-learning algorithm MICE that pro-
vides an informative design of training data for prediction
at a lower computational cost than ALM (Beck and Guillas,
2016). The MICE algorithm extended the algorithm for near-
optimal sensor placement by Krause et al. (2008), who use a
mutual information-based design criterion, to the setting of

design of computer experiments with Gaussian process em-
ulation.

2.3 Data and grid configuration

The digital bathymetry and topography data originate from
a compilation of sources that vary in resolution from fine
to coarse layers. For the coarse digital elevation layer the
GEBCO_2019 grid product, from the General Bathymetric
Chart of the Oceans (GEBCO), is used, which has a spatial
resolution of 15 arcsec. For the high-resolution layer, dig-
ital elevation models from two data sets are merged: the
Shuttle Radar Topography Mission (SRTM) and the Na-
tional Oceanic and Atmospheric Administration (NOAA).
The SRTM provide topographic data at a spatial resolution
of 1 arcsec (∼ 30 m). The NOAA digital elevation models
(DEMs) are distributed by the National Centers for Environ-
mental Information (NCEI) and have a spatial resolution that
can be as fine as 1/3 arcsec (∼ 9 m), albeit without a full cov-
erage. The data were interpolated and merged to generate a
computational grid with a fine spatial resolution of 30 m in
the region of interest that gradually decreases with increas-
ing distance, sustaining however a 500 m coastline resolu-
tion all across the computational domain. The interpolation
and mesh generation algorithms were first implemented by
Gopinathan et al. (2021) for the numerical simulations and
the statistical emulation of tsunami hazard in the Makran
subduction zone. The algorithms create a triangular grid by
making use of the Gmsh mesh generator2. Several design
strategies were explored to perform the high-resolution anal-
ysis for the coastlines of Vancouver Island in a way that satis-
fies the optimal trade-off between the different mesh set-ups
and the affordable size of each run. The domain was, thus,
split into three sub-domains that focused the high-resolution
outputs either at the coastlines of SW Vancouver Island or in
the western or the eastern part of the Strait of Juan de Fuca.
The results presented here show the tsunami propagation and
inundation in the eastern part of the strait; the computational
mesh has 8 693 871 elements.

3 Experimental design

To automate the experimental process a workflow was de-
veloped exploiting the HPC capabilities. In the core of the
workflow (see also blue panel in Fig. 2) lies the sequential
design algorithm MICE, which controls the scenario selec-
tion. The numerical experiments are divided into batches,
with each batch containing a set of five experiments. In the
beginning of the process, MICE selects randomly the first
set of experiments. Based on the selection of the initial input
values (first five runs), the deformation for each scenario is
computed. The input files required for the tsunami simula-
tions are then produced, following the selected deformation.

2https://gmsh.info/ (last access: 9 September 2020)
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Figure 4. The location that drives the design algorithm is indicated
with a black star (lat 48.4127, long −123.3934). The locations of
three emulators (01: lat 48.4149, long −123.3904; 02: lat 48.6657,
long −123.3989; 03: lat 48.420584, long −123.415478) at the cell
centres of the grid are displayed with purple diamonds.

Figure 5. The parallel coordinates plot shows the choice of input
parameters and the output maximum surface elevation at the design
location for the 60 experiments. All the data values are normalized.

In the end of the tsunami simulations, the maximum eleva-
tion recorded at one location informative for the design (here
we choose lat 48.4127, long −123.3934; see Fig. 4) is ex-
tracted and used as a quantity of interest for MICE (Fig. 2).
The algorithm then drives the selection of the subsequent sets
in a way that allows for the optimal exploration of the input
parameter space, and the process is repeated. These iterations
occur 12 times for a total of 60 scenarios. Each simulation
runs for 3 h in real time with a time step of dt = 0.01 s.

The tsunami generation follows the pattern of the
bathymetry deformation across the 60 scenarios (Fig. 5). The

parallel coordinates plot in Fig. 5 represents the values of the
input parameters selected by MICE and their associated out-
put maximum sea surface elevation as recorded at the design
location (black star in Fig. 4). This location drives the exper-
imental design, and it was selected as it provides variance in
the response driven by each scenario and as it is close to the
centre of the region of impact. As it directs the sequential de-
sign, there is some sensitivity of the design to this point, but
not that large, in our opinion, as another point in the region
would yield similar results since the influence of the param-
eters on impact points does not vary significantly. Further-
more, small variations in the design of experiments obtained
have little influence on the construction of the emulator, but
an agnostic one-shot design (such as LHS, where zero de-
sign locations are used) would greatly differ from any of the
sequential designs obtained by our approach and be less ef-
ficient as it would ignore completely the concrete influence
of the inputs on outputs to efficiently design the computer
experiment. Evidently, adding more locations could improve
the design further, but some methodological statistical devel-
opments should be first established to decide on a strategy to
actually benefit from using more points. All the values are
normalized, whereas the surface elevation values are catego-
rized in three bins ([0–0.25], [0.25–0.75], [0.75–1]) for clar-
ity. From the plot, some inference can be made on the influ-
ence of the input parameters on the output values. For exam-
ple, the most influential parameter is the maximum uplift as
higher values result in higher surface elevation (Fig. 5). As
an output from VOLNA-OP2 we extract Hmax, as recorded
on the cell centres of the grid all across the domain’s coast-
line. To build the statistical emulators, the Hmax values at the
coast have been extracted from each simulation for the geo-
graphical region with longitudes of [−123.49, −123.22] and
latitudes of [48.38, 48.55]. Within these boundaries, the cell
centres that correspond to the coastline that had recorded an
elevation greater than 10−5 m, for at least one scenario were
considered, resulting in 5148 locations (and subsequently
emulators).

3.1 A large scenario for initial validation

Looking at a sample scenario demonstrates part of the
process at an individual level. Scenario 24 is selected as
it is the first scenario in our list of scenarios that has a
maximum deformation of ca. 4 m, similar to the maximum
uplift in numerical studies of the event (Fig. 6) (Satake,
2003; Cherniawsky et al., 2007). The input parameter
values of the scenario are time= 281 s, Dhmax/Dhmin =

0.18439, Dd/Dhmin = 1.18176, hmin/hmax = 0.31049,
hmax = 4.09125 m and ht/hmax = 0.36047. The maximum
uplift was used as a guideline for this comparison due to
its significant contribution to the tsunami excitation. As the
experimental setting is controlled by MICE, the rest of the
parameter values of scenario 24 do not necessarily match
with the values of other numerical studies. For example, the

https://doi.org/10.5194/nhess-21-3789-2021 Nat. Hazards Earth Syst. Sci., 21, 3789–3807, 2021



3796 D. M. Salmanidou et al.: Probabilistic predictions in northern Cascadia

maximum subsidence of scenario 24 is selected to be around
1.27 m as opposed to 2 m in the buried rupture model by
Fine et al. (2018). This causes some discrepancies in the
wave signal, the degree of which is not calculated since the
scope of this comparison is to do an initial validation of
our modelling as opposed to a reproduction of the currently
existing work.

The tsunami generation and propagation are shown in the
snapshots of Fig. 7. A tsunami trough is generated in the area
of maximum subsidence and propagates east in the Strait of
Juan de Fuca followed by the tsunami crest generated in the
region of maximum uplift (Fig. 7). The tsunami crest arrives
in the strait approximately 30 min after the tsunami genera-
tion and has reached the San Juan islands after 110 min of
propagation (Fig. 7). The tsunami trough arrives at the loca-
tion of the offshore design gauge, near Victoria’s breakwater
(Fig. 8), after ca. 50 min of propagation and records −0.2 m.
The first wave crest in the gauge is recorded at ca. 100 min
at an elevation of ca. 1.8 m (Fig. 8). The arrival times come
in close agreement with the arrival times computed by Fine
et al. (2018) for two rupture scenarios with maximum uplifts
of 4 m (buried rupture) and 8 m (splay-faulting rupture). The
authors computed arrival times of 52 and 88 min for the first
wave trough and wave crest, respectively, at a similar location
(Victoria’s breakwater); the corresponding minimum water
levels were −0.96 and 1.63 m (Fine et al., 2018). The maxi-
mum wave elevation is in close agreement with the maximum
wave amplitude of scenario 24. The discrepancies in the neg-
ative wave troughs can be attributed to the discrepancies in
maximum subsidence between the two rupture scenarios.

Similar values have been recorded in other numerical stud-
ies. Clague et al. (2000) estimated wave run-ups ranging be-
tween 1–5 m in the city of Victoria. Cherniawsky et al. (2007)
computed a maximum wave elevation of ca. 2 m in Victo-
ria’s harbour, with larger values concentrated in small bays
around the area. Larger water elevations have been computed
by AECOM (2013) for a Mw 9 earthquake, having a maxi-
mum uplift of 6.2 m and maximum subsidence of −2.3 m.
The earthquake-induced tsunami resulted in maximum water
surface elevation between 2.4 and 2.6 m in the harbour open-
ings of Victoria and Esquimalt, which increased up to 4.3 m
due to resonance in shallow, narrow regions; the computed
minimum water levels varied between −1 and −2 m (AE-
COM, 2013). Figure 8 shows the contours of the maximum
elevation of the event, as computed around the area of Vic-
toria and Esquimalt. In the geographical opening of the har-
bours the maximum tsunami elevation recorded for scenario
24 ranges between 1.8–2 m. However, these values tend to
increase inside the harbours, which is especially evident in
narrow bays and coves. Similar outputs are also observed in
the predictions and are discussed in more detail in Sect. 4.2.

4 Probabilistic tsunami hazard

To generate the probabilistic outputs the emulators must be
built and used. Hence, this stage can be split into three main
parts: (a) the fitting of the MOGP emulators, (b) their uti-
lization for tsunami hazard predictions at the cell centres
of the grid (see also red panel in Fig. 2), and (c) prob-
abilistic tsunami hazard calculation via association of the
output seabed deformations to earthquake events and their
magnitude–frequency relationships so that annual frequen-
cies can be assigned to the calculated inundation depths.

4.1 Fitting

The fitting process involves the construction of the emulators
using the training data with certain choices in the statistical
model. The training data are the input deformation param-
eters and the numerical outputs of the VOLNA-OP2, repre-
sented as Hmax at the cell centres of the grid at the coastline,
from the 60 numerical scenarios selected by MICE. These
are used in conjunction with the statistical choices for the
mean and the covariance function. A zero mean function was
used for each emulator. The emulators were built employing
a squared exponential covariance function with the hyperpa-
rameter values estimated from the training data by a maxi-
mum likelihood estimation; thus no prior distributions were
considered on the hyperparameter values.

The design and the built emulators were validated us-
ing the leave-one-out (LOO) diagnostics. Following this ap-
proach, we build an emulator by excluding each time one
simulation from the training inputs and outputs; we then pre-
dict the expected outputs for the selected scenario. We test
the results at three locations to illustrate the variations in the
outputs: one close to the gauge that was utilized in the de-
sign, one farther away from the design point (location 02)
but with elevation similar to the one of location 01 and one
(location 03) close to the design location but with a very dif-
ferent elevation (locations 01, 02 and 03 in Fig. 4). The plots
in Fig. 9a–c represent the comparison between the numeri-
cal response from VOLNA-OP2 (characterized as the “true”
response in the graphs) and the predicted response with the
variance in these locations. As the plots demonstrate, in some
cases the emulator underpredicts the response, but there is an
overall good agreement between the predictions and the re-
sponse as the majority of the points are captured by the vari-
ance around the predictions (Fig. 9a–c). As the waves prop-
agate on land, the prediction becomes more challenging due
to even the slightest variations caused by the surrounding to-
pography. The sensitivity of the locations to the variance in
the scenarios also plays a significant role. Location 02, for
example, does not show large sensitivity to the variation in
the parameters; the maximum elevation is close to zero in
all of the cases. Location 03 is closer to the source and is
experiencing the highest wave run-up, and it is therefore less
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Figure 6. Top view of the seabed deformation for trial no. 24 (a) and profiles of the trench (b) and vertical displacement (c).

Figure 7. Snapshots of the tsunami propagation of scenario 24 at time intervals T = 10, 30, 90 and 120 min.

affected by these slight variations in the topography but more
sensitive to the varying scenarios.

The root mean square error (RMSE) is also relatively
small, ranging from 0.066 at location 01 to 0.145 at loca-
tion 03, where the wave elevation is higher (Fig. 9a–c). The
RMSE is computed at these three locations for illustrating the

behaviour of the emulator’s predictions at certain points; the
relative error might increase further inland at inundated lo-
cations. To gain a more comprehensive understanding of the
RMSE trend and the efficacy of the design, we fit 4 emulators
in location 01 using as training data the first 20, 30, 40 and
50 runs out of the 60 runs, predicting each time for the last
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Table 1. Modelling studies of tsunami at the mouth of Victoria Harbour.

Study Uplift (m) Subsidence (m) Approximate
arrival time of
wave trough
(min)

Approximate
arrival time
of wave crest
(min)

Approximate
wave trough
(m)

Approximate
wave crest (m)

Scenario 24 4.09 1.27 50 100 0.2 1.7–1.8

AECOM, 2013 6.2 2.3 Not found 96 1–1.05 2.4–2.5

Cherniawsky
et al. (2007)

Not found,
Mw 9

Not found,
Mw 9

50 90 0.5–0.6 1.9–2.2

Fine et al.
(2018)

4 2–2.5 52 88 0.96 1.6–1.7

Figure 8. The contours of the maximum elevation from scenario 24.
The black star denotes the design location used to drive the experi-
ments.

10 runs and calculating the RMSE (Fig. 9d). It is noticed that
the error reduces to a significant extent when adding more
runs to train the emulators and becomes very small for an
emulator trained at 50 runs. Following this trend, a smaller
error would be also expected for the emulators trained at 60
runs (Fig. 9d). GP emulation is well suited for approximat-
ing nonlinear simulation behaviours, even when consider-
ing continuous outputs of low regularity and when restricted
to small-sized experimental designs with space-filling prop-
erties. As shown by Owen et al. (2017), when considering
two cases with computationally intensive simulators – more
specifically, a land-surface simulator and a launch vehicle
controller – GP emulation demonstrates good approximation
properties even for small design sizes. By small design sizes,
we refer to designs with the number of samples being about
10 times the number of input parameters, a widely used rule
of thumb for effective computer experiment design (Loeppky
et al., 2009).

4.2 Predictions with two families of scenarios

Once the emulators are built, the maximum tsunami eleva-
tion can be predicted for any input deformation scenario. The
prediction involves the utilization of the built emulator with
a given set of inputs to calculate the mean predictions and
their uncertainty in the outputs. Uncertainties are fully prop-
agated to display sometimes complex distributions of outputs
such as skewed distributions (as in the case below): vari-
ance would not be enough to describe such uncertainties.
Emulation provides a complete description of uncertainties
compared to a mean and variance in more basic approaches.
These inputs can be represented by the distributions of the
input parameters (Fig. 10). The distributions are flexible and
can be used to represent different hypothetical cases. A beta
distribution is employed for each parameter, from which
2000 scenarios are randomly selected. The shape parameters
of the distributions can be utilized to express the scientific
knowledge on the source. To predict Hmax we initially ex-
plore the likelihood of maximum uplift to vary around 4 m,
similar to the values inferred by Satake (2003) for the 1700
event, and within a range of 1–7 m (Fig. 10: hmax, H1). A
maximum subsidence is considered with the minimum val-
ues to be more likely at 1/2 of the uplift (Fig. 10: hmin/hmax,
H1). The total time of the event is considered to most likely
vary around 300 s (Fig. 10: total time, H1). For the most un-
certain parameters we use a symmetric distribution. In more
detail, the a and b shape parameters of the beta distributions
used to produce the 2000 seabed displacement scenarios in
Figs. 11 and 12a and b have values of total time of [2.5, 2],
Dhmax/Dhmin of [2, 2], Dd/Dhmin of [2, 2], hmin/hmax of [2,
2.5], hmax of [3, 2] and ht/hmax of [2, 2] (Fig. 10: H1).

The MOGP emulation framework allows us to produce
the predictions of tsunami hazard in parallel for each em-
ulator. The mean predictions are represented in the form of
the histograms of the predictions at each location as shown in
Fig. 11 for locations 01, 02 and 03 of Fig. 4. Locations 01 and
02 display very small elevation values above the ground level
due to the tsunami. It appears that the splay-faulting sensitiv-
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Figure 9. (a–c) LOO diagnostics for points close to (a: location L01) and far from (b: location L02) the design location and large fluctuations
in the results (c: location L03) (locations 01, 02 and 03 in Fig. 4). The RMSE yields values that vary from 0.066 to 0.105 for locations 01
and 02 and 0.145 in location 03. (d) Error estimation for the predictions of the last 10 runs at location 01.

Figure 10. Input parameter distributions for two sets of hypothetical cases. Histograms of buried ruptures (H1) are depicted with dark-green
colour and of splay-faulting (H2) with dark-blue colour.
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Figure 11. Predictions for three cell centres of the grid (see locations 01, 02 and 03, respectively, in Fig. 4) for scenarios resulting from the
distributions H1 (buried ruptures; prediction histograms in yellow) and H2 (splay-faulting; prediction histograms in purple).

ity is larger at locations 01 and 03 than at location 02 since
the histogram of outputs shifts more towards higher values.
Location 03 gives values that most likely range around 1.5 m
depending on the selected deformation scenarios. The min-
imum values shown in the histograms can become negative
since a positive prediction is not imposed by the emulator,
but this is very rare, and it does not manifest in the produc-
tion of the hazard maps.

The hazard maps in the south-eastern part of Vancouver
Island are produced based on the 50th and 90th percentiles
of the emulator’s predictions for the 2000 tsunami scenar-
ios. A total of 5148 coastline locations that correspond to the
cell centres of the computational grid are studied (Fig. 12a
and b). The 50th percentile of the predictions demonstrates
that 67.19 % of the predictions (3459 locations) have val-
ues between 0 and 0.25 m, whereas 86.36 % (4446 locations)
fall under 1 m (Fig. 12a). When considering the 90th per-
centile, however,Hmax values increase. The results show that
48.77 % of the predictions (2511 locations) have Hmax be-
tween 0 and 0.25 m; 74.86 % (3854) of the predictions fall
under 1 m (Fig. 12b). It is observed thatHmax ranges between
1–3 m at 22.76 % of the locations (1172 locations) (Fig. 12b).

It is noted that the fitting of each emulator takes approxi-
mately 1.5–3.0 s, whereas each emulator prediction takes ca.
0.001 s on the KNL (Knight’s Landing) nodes of the Cam-
bridge High Performance Computer Service (Peta4-KNL of
the CSD3 cluster). Hence, once the emulators are built, they
can be used to explore alternative rupture scenarios in fast
times. Such is the hypothetical case of increased uplift in
the northern part of the subduction zone caused by splay-
faulting. There is a large uncertainty surrounding the pres-
ence of splay-faulting in the northern part of the zone (Gao
et al., 2018). Witter et al. (2013) have estimated the proba-
bility of splay-faulting during a megathrust earthquake to be
at ca. 60 %. Although such enhanced vertical displacements
are not likely to occur in the southern part of the zone, the
tsunami impact from a short-north segment or a long rupture
could be similar for British Columbia (Cherniawsky et al.,
2007). To fully assess splay-faulting-related tsunami hazard
in south-eastern Vancouver Island, the complexity of the fault
geometry needs to be more accurately incorporated at the ini-

tial stages of the process. The impact of an enhanced uplift is
thus explored in a simplified form for the area here. Keeping
the distributions of time and Dd/Dhmin the same, 2000 addi-
tional rupture scenarios are predicted to study the impact of
a larger rupture in the region. Larger-rupture scenarios may
be characterized by an increased uplift and a more abrupt
vertical deformation; the shapes of the parameter distribu-
tions for Dhmax/Dhmin, hmax and ht/hmax can thus be defined
by a = [2,3,3] and b = [3,2,2], respectively (Fig. 10: H2).
These values raise the likelihood of the maximum uplift to
vary between 5–7 m (Fig. 10: H2). The ratio of hmin/hmax is
estimated to be lower (a = 1.5, b = 3) as the maximum sub-
sidence in worst-case rupture scenarios is expected to be at
ca. −2 m (AECOM, 2013; Witter et al., 2013).

Looking at the 50th percentile of the predictions for H2,
it is shown that the Hmax values from these scenarios are
increased (Fig. 12c). In Fig. 12c, 57.98 % (2985 locations)
of the predicted Hmax falls between 0.0–0.25 m, whereas
79.51 % (4093 locations) falls under 1 m. In both hypothet-
ical cases the large majority of the predicted Hmax falls un-
der 2 m (98.17 % of the locations in Fig. 12a and 94.09 % in
Fig. 12c). However, when considering the 90th percentile of
the predictions, the outputs become more severe (Fig. 12d).
In this case, only slightly more than one-third of Hmax
(35.18 % of the locations) falls within the range of 0–0.25 m.
Hmax falls below 1 m at 63.81 % (3285) of the locations and
ranges between 1–3 m at 27.93 % (1438) of the locations.
Maximum wave heights (or flow depths) between 3–4 m are
recorded at 6.29 % of the locations (Fig. 12d) as opposed to
2.33 % in the previous case (Fig. 12b). Following similar pro-
cedures, seismic data in combination with expert knowledge
on the rupture characteristics can be translated to probabilis-
tic tsunami hazard outputs.

Tsunami amplification is especially apparent at narrow
bays and coves inside the Victoria and Esquimalt harbours
and is likely the outcome of wave resonance (Fig. 12). Wave
amplification in harbours and small bays has also been ob-
served in other numerical studies in the area (Cherniawsky
et al., 2007; AECOM, 2013; Fine et al., 2018). In their nu-
merical studies of large earthquake-induced tsunamis, Cher-
niawsky et al. (2007) found maximum elevations above 4 m
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Figure 12. The percentiles (50th a, 90th b) of the mean predictions at the cell centres of the computational grid, for buried ruptures (H1) and
for splay-faulting (H2: 50th percentile c, 90th percentile d). The circles show the locations of the emulators. The figures were produced with
the QGIS software using as base maps the Wikimedia layers with data provided by © OpenStreetMap contributors, 2021. Distributed under
a Creative Commons BY-SA License.

in the north-western shallow parts of Esquimalt Harbour,
with the second wave peak being larger than the first one
in some locations. Similar values (ca. 4.3 m) have been com-
puted by AECOM (2013) in the area. These higher values
are possibly the effect of wave resonance attributed to the re-
gional geomorphology. Wave resonance has been observed
in Port Alberni, located at the head of a narrow inlet in the
western part of Vancouver Island, during the 1964 Alaskan
earthquake (Fine et al., 2008). The recorded wave heights in
the port were 3–4 times larger than in the adjacent areas, of-
ten recorded in the third or later waves, and the tsunami oscil-
lations continued for days after the event (Fine et al., 2008).
It is likely that local topographic features can contribute to
tsunami amplification also in other parts of the region.

4.3 Probabilistic tsunami hazard calculation

Further, we associate the scenarios with annual frequen-
cies to be able to calculate probability of exceedance for
predictions of the H2 distribution. We study the pattern of
1/1000 year exceedance rate flow depths over the region,
drawing elements from the process followed in Park et al.
(2017). The probability of a full-margin-rupture-generated
tsunami is considered; the earthquake magnitudes associated
with such an event important for the tsunami hazard assess-
ment are in the range of Mw = 8.7–9.3. To link seabed de-
formations to earthquake moment magnitudes, we use a sim-

plified approach by matching maximum seabed uplift, cal-
culated using the Okada (1985) solution for idealized pla-
nar fault, with rupture dimensions similar to Cascadia sub-
duction interface experiencing linearly decaying slip with
depth. Following this approach, the magnitudes of the H2
scenarios range between 8.77–9.28 (Fig. 13a). To associate
frequency of events with earthquake magnitudes, a tapered
Gutenberg–Richter (TGR) distribution is utilized, which has
been proven to give adequate predictions for the Cascadia
subduction zone (Rong et al., 2014). The TGR complemen-
tary cumulative distribution function for a given earthquake
magnitude m is defined as

F(m)= [101.5(mt−m)]
β exp[101.5(mt−mc)− 101.5(m−mc)],

wheremt is a threshold magnitude above which the catalogue
is assumed to be complete (here mt = 6.0), mc is the corner
magnitude, and β is the index parameter of the distribution.
Considering the 10 000 year palaeoseismic record, as recon-
structed by Goldfinger et al. (2012) from turbidite data, mc
and β take values of 9.02 and 0.59, respectively. The discrete
number of mj magnitudes can also be computed by

P [M =mj ] =G(mj + 0.51m)−G(mj − 0.51m),

where G(m)= 1−F(m) denotes the cumulative density
function, and1m is the discretization interval. Following the
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Figure 13. Panel (a) shows the relationship between earthquake magnitude (Mw) and maximum uplift (hmax) when using a linear Okada
solution for full rupture of the zone. Panel (d) shows the number of events per magnitude band following the tapered Gutenberg–Richter
distribution for a 200 000-year band (blue) and the H2 scenarios (purple). The sample hazard curves in (c) show the annual exceedance rates
at three locations. The coastal hazard map in (d) shows the hazard values for the return period of 1000 years. Panel (d) was produced with
the QGIS software using as base maps the Wikimedia layers with data provided by © OpenStreetMap contributors, 2021. Distributed under
a Creative Commons BY-SA License.

above, the number of earthquakes in 200 000 years per mag-
nitude band can be estimated as shown in Fig. 13b. In the
same figure, the number of events per magnitude band for
the H2 predictions is shown. Because prediction parameters,
especially hmax, were drawn from independent distributions,
the frequencies of the H2 set events need to be rescaled us-
ing the ratio between number of events per magnitude band
for TGR distribution and the H2 set to assign the appropriate
relative frequency of each event within H2.

Having the event frequencies, occurrence exceedance
probability for the hazard values can be calculated for each
of the sites. We start by arranging the hazard values at a site
in descending order: h1 > h2 > · · ·> hn, with n= 2000. The
exceedance probability for the largest hazard value h1 (cor-
responding magnitude isMw 9.2–9.3) becomes Pex(h1)= 0.
For the second-largest hazard value, Pex(h2)= f1, and for
the other hazard values it can be computed recurrently as

Pex(hi+1)= 1− (1−Pex(hi))(1− fi) for i = 2,3, . . .,n.

The above relations are valid for a set of independent events
when their annual occurrence rates are known. They are de-
rived from basic probability theory and used in hazard anal-
ysis studies, such as for example in Monte Carlo event-based
probabilistic seismic hazard assessment (e.g. Musson, 2009).

Accordingly, the mean annual exceedance rate can be com-
puted for the hazard values at each location (Fig. 13c). Con-
sidering then a 1/1000 exceedance rate, according to the haz-
ard curves for locations 01–03 of Fig. 4, the most signif-
icant tsunami run-up is expected for location 03 (between
80–90 cm). Larger hazard values (slightly above 3 m) are
expected for location 03 when considering a 1/10 000 ex-
ceedance rate, whereas for the other two locations the val-
ues would fall below 25 cm (Fig. 13c). The hazard curves
for each location can be used to construct the hazard map
of Fig. 13d, which represents the Hmax for the H2 events
occurring in 1000 years. The hazard map shows that when
considering an event within this interval, 4.19 % of the lo-
cations have Hmax above 1 m. The majority of the locations
experience Hmax below 1 m. Compared to the hazard values
at Seaside, Oregon, as calculated by Park et al. (2017) for
the 1/1000 probability of exceedance, the expected hazard
at Victoria sites is significantly lower. One factor for these
discrepancies is the location of the two sites as Seaside is im-
pacted by the tsunami waves from the Cascadia subduction
zone directly, whereas Victoria is protected by the Olympic
Peninsula and the western side of Vancouver Island; there-
fore, to reach sites in Victoria, the waves have to travel much
farther and are attenuated along their path.
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We note that as a first demonstration on how the emula-
tors’ predictions can be linked with the probability of exceed-
ing a tsunami intensity measure over time, this is a simplified
case. To better capture the probabilistic tsunami hazard in the
region, the seabed deformation parameter distributions used
for generation of the predictions need to be more precisely
associated with Cascadia rupture characteristics. In future re-
search, the Okada solution for a realistic slip distribution on
the precisely modelled Cascadia subduction interface will be
employed to generate more physically driven seabed uplifts.
To these uplifts, perturbations can be applied to gather a dis-
tribution of deformation parameters. Also, alternative, more
realistic magnitude–frequency relationships than the selected
tapered Gutenberg–Richter distribution can be considered,
for example the distribution used by the Geological Survey
of Canada for the new 2020 6th Generation seismic hazard
model for Canada or for the 2018 National Seismic Hazard
Model for the United States.

5 Conclusions

In this work, a sequential design algorithm was employed
for the conduction of the computational experiments for
earthquake-generated tsunami hazard in the Cascadia sub-
duction zone. This approach aided an informative, innova-
tive selection of the sets of numerical experiments in order to
train the statistical emulators. It forms the first of its kind, to
the authors’ knowledge, which involves the application of a
sequential design algorithm towards realistic tsunami hazard
predictions through emulation. Focusing the high-resolution
computations in the south-eastern part of Vancouver Island,
Hmax was predicted at 5148 coastal locations with the uti-
lization of the emulators. Once the emulators are built, expert
knowledge can be facilitated to swiftly assess hazard in the
region. The flexibility of the method allowed here the predic-
tion of thousands of scenarios in a few moments of time un-
der different parameter set-ups. The hazard outputs demon-
strated in the study resulted from 2000 potential rupture sce-
narios, the parameters of which were distributed following
two hypothetical cases (2000 predictions/case). The emula-
tors’ predictions were linked to their occurrence exceedance
probability, which allowed us to produce probabilistic haz-
ard maps that assess the hazard intensity of such events in
the area (Fig. 13). This forms one way of representing the
mean predictions under a probabilistic framework. Alterna-
tively one could present other probabilistic statements, for
instance assessing the probability of exceeding some given
threshold of maximum tsunami run-up. This methodology
could prove useful for assessing the hazard at the first stages
of mitigation planning in order to take preventive measures
such as built structures or natural hazard solutions.

The predictions showed a high dependence of the maxi-
mum wave heights (or flow depths) on the maximum uplift
during the rupture. In the areas of Victoria and Esquimalt,

the majority of the predictions tend to be under 1 m and
most likely under 0.25 m. However, wave amplification is ob-
served inside the harbours and especially in narrow bays and
coves, possibly as an effect of wave resonance. When con-
sidering the maximum uplift distributions with a higher like-
lihood ranging between 4–7 m, the 90th percentile of the pre-
dictions shows that Hmax ranged between 3–4 m at 6.29 % of
the locations studied. In rare cases (at 1.9 % of the locations)
the values may exceed the threshold of 4 m, falling within a
range of 4–4.9 m. Similarly for the probabilistic tsunami haz-
ard for 1/1000 exceedance rate, 4.19 % of the locations ex-
perience Hmax above 1 m. These percentages are expected to
increase when looking at larger return periods, and the hazard
values have to be further assessed to produce a probabilistic
risk assessment for the area.

This study expands on the methodology and the develop-
ment of the workflow to build the emulators under a sequen-
tial design approach. As such, there are some aspects that
need to be considered in future work to further refine the
probabilistic outputs. These span from the tsunami genera-
tion to the inundation. In this case, an idealized geometry
was used for the source, and the current results agree with
the numerical studies of more incorporating fault geometries.
However, to fully explore the complexity of the rupture, fu-
ture work would benefit from the integration of compound
rupture characteristics, especially when it comes to splay-
faulting consideration. Furthermore, gaps and mismatches in
the digital elevation data should be accounted for and incor-
porated in the modelling for a more finely resolved repre-
sentation. Uncertainties and/or errors in the bathymetry and
elevation data may play a critical role in the wave elevation
outputs when assessing tsunami impact at a high resolution
and can be included in the emulation (Liu and Guillas, 2017).
Model bias is also not addressed in this study but could be
explored in future investigations, for example by correcting
the bias by adding a discrepancy estimated by comparing
against past observations. Finally, to produce a complete haz-
ard assessment in the region, probabilistic tsunami inunda-
tion should be carried out. This is enabled by highly non-
linear features in the emulators’ predictions and even ben-
efits from recent advances in emulation (Ming et al., 2021)
whenever nonlinearities consist of dramatic step changes,
e.g. in the case where over-topping of defences would gener-
ate vastly different flooding patterns.

https://doi.org/10.5194/nhess-21-3789-2021 Nat. Hazards Earth Syst. Sci., 21, 3789–3807, 2021



3804 D. M. Salmanidou et al.: Probabilistic predictions in northern Cascadia

Appendix A

Table A1. Deformation scenarios selected by MICE to be used as sources in the tsunami simulations.

Scenario Time (s) Dhmax/Dhmin Dd/Dhmin hmin/hmax hmax (m) ht/hmax

01 415 0.18876 1.14439 0.65090 3.57400 0.89827
02 118 0.11066 1.18921 0.52726 2.25844 0.51710
03 322 0.26905 1.29754 0.40622 5.15068 0.24049
04 269 0.15534 1.24382 0.79471 6.92122 0.05661
05 168 0.25932 1.10375 0.36200 6.27256 0.73954
06 324 0.19257 1.13175 0.58639 1.20224 0.78907
07 333 0.29182 1.29837 0.46602 1.14988 0.36028
08 321 0.20928 1.11077 0.78350 1.07064 0.68148
09 415 0.28950 1.14091 0.31510 1.24523 0.87016
10 396 0.28166 1.26802 0.42280 1.32406 0.98242
11 203 0.28396 1.10121 0.40705 7.95143 0.95837
12 142 0.13749 1.11697 0.54020 7.95486 0.98510
13 346 0.17685 1.12009 0.47852 7.80322 0.84656
14 173 0.13373 1.23984 0.34994 7.98143 0.69699
15 336 0.23286 1.27498 0.55781 7.91868 0.67009
16 237 0.13273 1.27853 0.54955 5.63092 0.98188
17 343 0.12069 1.13049 0.53715 2.21708 0.01722
18 412 0.10322 1.29979 0.36434 2.54273 0.07739
19 120 0.29840 1.18448 0.73063 3.40402 0.22795
20 199 0.12152 1.10658 0.76242 5.12636 0.97087
21 250 0.20656 1.12431 0.38110 3.47216 0.41432
22 106 0.15650 1.19044 0.37480 3.91755 0.76439
23 227 0.19896 1.18189 0.39482 3.34181 0.06342
24 281 0.18439 1.18176 0.31049 4.09125 0.36047
25 132 0.22202 1.17230 0.32744 4.04066 0.50855
26 403 0.10581 1.15201 0.32755 5.95859 0.61608
27 121 0.25499 1.22249 0.74695 6.03230 0.95641
28 109 0.22550 1.29511 0.76429 5.62019 0.93289
29 398 0.11921 1.25359 0.45199 6.48259 0.53838
30 137 0.26685 1.20942 0.77697 6.98940 0.85119
31 148 0.27108 1.12253 0.56776 6.50266 0.01205
32 163 0.27646 1.14596 0.78362 2.18301 0.97280
33 159 0.27577 1.11221 0.32033 2.62842 0.86107
34 224 0.28072 1.23412 0.77180 2.09684 0.98993
35 213 0.10919 1.19239 0.64663 4.66165 0.09996
36 361 0.19797 1.10408 0.62892 5.58353 0.34304
37 128 0.18069 1.28457 0.30279 1.01087 0.08392
38 394 0.15899 1.11494 0.44509 7.50061 0.01201
39 413 0.27468 1.15351 0.57142 5.35065 0.23606
40 119 0.14168 1.19017 0.36867 1.09176 0.34923
41 410 0.20819 1.11398 0.70190 7.89979 0.56523
42 132 0.10632 1.20853 0.78520 3.21606 0.59659
43 130 0.29382 1.10213 0.50885 4.80543 0.69270
44 139 0.28712 1.10695 0.62522 1.68192 0.43708
45 361 0.25899 1.29084 0.45390 3.75642 0.93926
46 202 0.16599 1.24416 0.76199 2.22083 0.02408
47 141 0.10912 1.27527 0.36927 6.49197 0.02806
48 234 0.26551 1.29713 0.73814 1.38065 0.03826
49 111 0.11068 1.29673 0.55071 6.42067 0.26797
50 120 0.18138 1.29293 0.63737 1.18291 0.61683
51 376 0.14548 1.20031 0.79548 6.01218 0.97036
52 211 0.28749 1.21302 0.45755 6.80059 0.32854
53 157 0.21934 1.21763 0.48670 7.53270 0.41969
54 115 0.15668 1.14711 0.71566 7.81272 0.03208
55 375 0.20861 1.27150 0.66456 4.61712 0.26980
56 369 0.14922 1.27388 0.30216 2.26079 0.90427
57 340 0.12888 1.20553 0.34914 2.87207 0.80172
58 363 0.27871 1.26487 0.55128 2.49722 0.52515
59 376 0.25478 1.12818 0.76070 2.63381 0.65489
60 405 0.29587 1.24347 0.68209 2.90920 0.56893
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