Articles | Volume 21, issue 8
Nat. Hazards Earth Syst. Sci., 21, 2705–2731, 2021
https://doi.org/10.5194/nhess-21-2705-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue: Venice flooding: understanding, prediction capabilities, and...
Review article
| Highlight paper
01 Sep 2021
Review article
| Highlight paper
| 01 Sep 2021
Extreme floods of Venice: characteristics, dynamics, past and future evolution (review article)
Piero Lionello et al.
Related authors
Davide Zanchettin, Sara Bruni, Fabio Raicich, Piero Lionello, Fanny Adloff, Alexey Androsov, Fabrizio Antonioli, Vincenzo Artale, Eugenio Carminati, Christian Ferrarin, Vera Fofonova, Robert J. Nicholls, Sara Rubinetti, Angelo Rubino, Gianmaria Sannino, Giorgio Spada, Rémi Thiéblemont, Michael Tsimplis, Georg Umgiesser, Stefano Vignudelli, Guy Wöppelmann, and Susanna Zerbini
Nat. Hazards Earth Syst. Sci., 21, 2643–2678, https://doi.org/10.5194/nhess-21-2643-2021, https://doi.org/10.5194/nhess-21-2643-2021, 2021
Short summary
Short summary
Relative sea level in Venice rose by about 2.5 mm/year in the past 150 years due to the combined effect of subsidence and mean sea-level rise. We estimate the likely range of mean sea-level rise in Venice by 2100 due to climate changes to be between about 10 and 110 cm, with an improbable yet possible high-end scenario of about 170 cm. Projections of subsidence are not available, but historical evidence demonstrates that they can increase the hazard posed by climatically induced sea-level rise.
Georg Umgiesser, Marco Bajo, Christian Ferrarin, Andrea Cucco, Piero Lionello, Davide Zanchettin, Alvise Papa, Alessandro Tosoni, Maurizio Ferla, Elisa Coraci, Sara Morucci, Franco Crosato, Andrea Bonometto, Andrea Valentini, Mirko Orlić, Ivan D. Haigh, Jacob Woge Nielsen, Xavier Bertin, André Bustorff Fortunato, Begoña Pérez Gómez, Enrique Alvarez Fanjul, Denis Paradis, Didier Jourdan, Audrey Pasquet, Baptiste Mourre, Joaquín Tintoré, and Robert J. Nicholls
Nat. Hazards Earth Syst. Sci., 21, 2679–2704, https://doi.org/10.5194/nhess-21-2679-2021, https://doi.org/10.5194/nhess-21-2679-2021, 2021
Short summary
Short summary
The city of Venice relies crucially on a good storm surge forecast to protect its population and cultural heritage. In this paper, we provide a state-of-the-art review of storm surge forecasting, starting from examples in Europe and focusing on the Adriatic Sea and the Lagoon of Venice. We discuss the physics of storm surge, as well as the particular aspects of Venice and new techniques in storm surge modeling. We also give recommendations on what a future forecasting system should look like.
Piero Lionello, Robert J. Nicholls, Georg Umgiesser, and Davide Zanchettin
Nat. Hazards Earth Syst. Sci., 21, 2633–2641, https://doi.org/10.5194/nhess-21-2633-2021, https://doi.org/10.5194/nhess-21-2633-2021, 2021
Short summary
Short summary
Venice is an iconic place, and a paradigm of huge historical and cultural value is at risk. The threat posed by floods has dramatically increased in recent decades and is expected to continue to grow – and even accelerate – through this century. There is a need to better understand the future evolution of the relative sea level and its extremes and to develop adaptive planning strategies appropriate for present uncertainty, which might not be substantially reduced in the near future.
Piero Lionello, Dario Conte, and Marco Reale
Nat. Hazards Earth Syst. Sci., 19, 1541–1564, https://doi.org/10.5194/nhess-19-1541-2019, https://doi.org/10.5194/nhess-19-1541-2019, 2019
Short summary
Short summary
Large positive and negative sea level anomalies on the coast of the Mediterranean Sea are produced by cyclones moving along the Mediterranean storm track, which are mostly generated in the western Mediterranean. The wind around the cyclone center is the main cause of sea level anomalies when a shallow water fetch is present. The inverse barometer effect produces a positive anomaly near the cyclone pressure minimum and a negative anomaly at the opposite side of the Mediterranean Sea.
Sophie Bastin, Philippe Drobinski, Marjolaine Chiriaco, Olivier Bock, Romain Roehrig, Clemente Gallardo, Dario Conte, Marta Domínguez Alonso, Laurent Li, Piero Lionello, and Ana C. Parracho
Atmos. Chem. Phys., 19, 1471–1490, https://doi.org/10.5194/acp-19-1471-2019, https://doi.org/10.5194/acp-19-1471-2019, 2019
Short summary
Short summary
This paper uses colocated observations of temperature, precipitation and humidity to investigate the triggering of precipitation. It shows that there is a critical value of humidity above which precipitation picks up. This critical value depends on T and varies spatially. It also analyses how this dependency is reproduced in regional climate simulations over Europe. Models with too little and too light precipitation have both lower critical value of humidity and higher probability to exceed it.
Ilaria Isola, Giovanni Zanchetta, Russell N. Drysdale, Eleonora Regattieri, Monica Bini, Petra Bajo, John C. Hellstrom, Ilaria Baneschi, Piero Lionello, Jon Woodhead, and Alan Greig
Clim. Past, 15, 135–151, https://doi.org/10.5194/cp-15-135-2019, https://doi.org/10.5194/cp-15-135-2019, 2019
Short summary
Short summary
To understand the natural variability in the climate system, the hydrological aspect (dry and wet conditions) is particularly important for its impact on our societies. The reconstruction of past precipitation regimes can provide a useful tool for forecasting future climate changes. We use multi-proxy time series (oxygen and carbon isotopes, trace elements) from a speleothem to investigate circulation pattern variations and seasonality effects during the dry 4.2 ka event in central Italy.
M. Reale and P. Lionello
Nat. Hazards Earth Syst. Sci., 13, 1707–1722, https://doi.org/10.5194/nhess-13-1707-2013, https://doi.org/10.5194/nhess-13-1707-2013, 2013
A. Sanna, P. Lionello, and S. Gualdi
Nat. Hazards Earth Syst. Sci., 13, 1567–1577, https://doi.org/10.5194/nhess-13-1567-2013, https://doi.org/10.5194/nhess-13-1567-2013, 2013
R. Mel, A. Sterl, and P. Lionello
Nat. Hazards Earth Syst. Sci., 13, 1135–1142, https://doi.org/10.5194/nhess-13-1135-2013, https://doi.org/10.5194/nhess-13-1135-2013, 2013
Sam White, Eduardo Moreno-Chamarro, Davide Zanchettin, Heli Huhtamaa, Dagomar Degroot, Markus Stoffel, and Christophe Corona
Clim. Past, 18, 739–757, https://doi.org/10.5194/cp-18-739-2022, https://doi.org/10.5194/cp-18-739-2022, 2022
Short summary
Short summary
This study examines whether the 1600 Huaynaputina volcano eruption triggered persistent cooling in the North Atlantic. It compares previous paleoclimate simulations with new climate reconstructions from natural proxies and historical documents and finds that the reconstructions are consistent with, but do not support, an eruption trigger for persistent cooling. The study also analyzes societal impacts of climatic change in ca. 1600 and the use of historical observations in model–data comparison.
Panagiotis Athanasiou, Ap van Dongeren, Alessio Giardino, Michalis Vousdoukas, Jose A. A. Antolinez, and Roshanka Ranasinghe
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-106, https://doi.org/10.5194/nhess-2022-106, 2022
Preprint under review for NHESS
Short summary
Short summary
Sandy dunes protect the hinterland from coastal flooding during storms. Thus, models that can efficiently predict dune erosion are critical for coastal zone management and early warning systems. Here we develop such a model for the Dutch coast based on machine learning techniques, allowing for dune erosion estimations in a matter of seconds relative to available computationally expensive models. Validation of the model against benchmark data and observations shows good agreement.
Davide Zanchettin, Claudia Timmreck, Myriam Khodri, Anja Schmidt, Matthew Toohey, Manabu Abe, Slimane Bekki, Jason Cole, Shih-Wei Fang, Wuhu Feng, Gabriele Hegerl, Ben Johnson, Nicolas Lebas, Allegra N. LeGrande, Graham W. Mann, Lauren Marshall, Landon Rieger, Alan Robock, Sara Rubinetti, Kostas Tsigaridis, and Helen Weierbach
Geosci. Model Dev., 15, 2265–2292, https://doi.org/10.5194/gmd-15-2265-2022, https://doi.org/10.5194/gmd-15-2265-2022, 2022
Short summary
Short summary
This paper provides metadata and first analyses of the volc-pinatubo-full experiment of CMIP6-VolMIP. Results from six Earth system models reveal significant differences in radiative flux anomalies that trace back to different implementations of volcanic forcing. Surface responses are in contrast overall consistent across models, reflecting the large spread due to internal variability. A second phase of VolMIP shall consider both aspects toward improved protocol for volc-pinatubo-full.
Zachary D. Lawrence, Marta Abalos, Blanca Ayarzagüena, David Barriopedro, Amy H. Butler, Natalia Calvo, Alvaro de la Cámara, Andrew Charlton-Perez, Daniela I. V. Domeisen, Etienne Dunn-Sigouin, Javier García-Serrano, Chaim I. Garfinkel, Neil P. Hindley, Liwei Jia, Martin Jucker, Alexey Y. Karpechko, Hera Kim, Andrea L. Lang, Simon H. Lee, Pu Lin, Marisol Osman, Froila M. Palmeiro, Judith Perlwitz, Inna Polichtchouk, Jadwiga H. Richter, Chen Schwartz, Seok-Woo Son, Irina Statnaia, Masakazu Taguchi, Nicholas L. Tyrrell, Corwin J. Wright, and Rachel W.-Y. Wu
Weather Clim. Dynam. Discuss., https://doi.org/10.5194/wcd-2022-12, https://doi.org/10.5194/wcd-2022-12, 2022
Revised manuscript under review for WCD
Short summary
Short summary
Forecast models that are used to predict weather often struggle to represent the Earth’s stratosphere. This may impact their ability to predict surface weather weeks in advance, on subseasonal-to-seasonal (S2S) timescales. We use data from many S2S forecast systems to characterize and compare the stratospheric biases present in such forecast models. These models have many similar stratospheric biases, but they tend to be worse in systems with low model tops located within the stratosphere.
Emmanouil Flaounas, Silvio Davolio, Shira Raveh-Rubin, Florian Pantillon, Mario Marcello Miglietta, Miguel Angel Gaertner, Maria Hatzaki, Victor Homar, Samira Khodayar, Gerasimos Korres, Vassiliki Kotroni, Jonilda Kushta, Marco Reale, and Didier Ricard
Weather Clim. Dynam., 3, 173–208, https://doi.org/10.5194/wcd-3-173-2022, https://doi.org/10.5194/wcd-3-173-2022, 2022
Short summary
Short summary
This is a collective effort to describe the state of the art in Mediterranean cyclone dynamics, climatology, prediction (weather and climate scales) and impacts. More than that, the paper focuses on the future directions of research that would advance the broader field of Mediterranean cyclones as a whole. Thereby, we propose interdisciplinary cooperation and additional modelling and forecasting strategies, and we highlight the need for new impact-oriented approaches to climate prediction.
Begoña Pérez Gómez, Ivica Vilibić, Jadranka Šepić, Iva Međugorac, Matjaž Ličer, Laurent Testut, Claire Fraboul, Marta Marcos, Hassen Abdellaoui, Enrique Álvarez Fanjul, Darko Barbalić, Benjamín Casas, Antonio Castaño-Tierno, Srđan Čupić, Aldo Drago, María Ángeles Fraile, Daniele A. Galliano, Adam Gauci, Branislav Gloginja, Víctor Martín Guijarro, Maja Jeromel, Marcos Larrad Revuelto, Ayah Lazar, Ibrahim Haktan Keskin, Igor Medvedev, Abdelkader Menassri, Mohamed A. Meslem, Hrvoje Mihanović, Sara Morucci, Dragos Niculescu, José Manuel Quijano de Benito, Josep Pascual, Atanas Palazov, Marco Picone, Fabio Raicich, Mohamed Said, Jordi Salat, Erdinc Sezen, Mehmet Simav, Georgios Sylaios, Elena Tel, Joaquín Tintoré, Klodian Zaimi, and George Zodiatis
Ocean Sci. Discuss., https://doi.org/10.5194/os-2021-125, https://doi.org/10.5194/os-2021-125, 2022
Revised manuscript accepted for OS
Short summary
Short summary
A survey was conducted in 2021 to tide gauge operators and sea level scientists in the Mediterranean and Black Seas. As a result, a detailed mapping of active tide gauges in this region, including relevant metadata and national contacts, is provided. The work is complemented with an assessment of tide gauge data availability in international programs, and a review of the fit-for-purpose status of the network for those coasts more threatened by sea level related hazards.
Melissa Wood, Ivan D. Haigh, Quan Quan Le, Hung Nghia Nguyen, Hoang Ba Tran, Stephen E. Darby, Robert Marsh, Nikolaos Skliris, Joël J.-M. Hirschi, Robert J. Nicholls, and Nadia Bloemendaal
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2021-397, https://doi.org/10.5194/nhess-2021-397, 2022
Revised manuscript under review for NHESS
Short summary
Short summary
We used a novel database of simulated tropical cyclone tracks to explore whether typhoon-induced storm surges present a future flood risk to low lying coastal communities around the South China Sea. We found that future climate change is likely to change tropical cyclone behaviour to an extent that this increases the severity and frequency of storm surges to Vietnam, southern China and Thailand. Consequently, coastal flood defences need to be reviewed for resilience against this future hazard.
Julius Schlumberger, Christian Ferrarin, Sebastiaan N. Jonkman, Andres Diaz Loaiza, Alessandro Antonini, and Sandra Fatorić
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2021-272, https://doi.org/10.5194/nhess-2021-272, 2021
Revised manuscript under review for NHESS
Short summary
Short summary
Flooding has been a serious struggle to the old-town of Venice, its residents and cultural heritage and continues to be a challenge in the future. To support decisions to improve protection against future floods under consideration of the recently built MOSE barrier in light of rising sea levels, a model framework has been developed. This study highlights the influence of individual protection measures on the flood damages in case the MOSE storm surge barrier does not operate as anticipated.
Davide Zanchettin, Sara Bruni, Fabio Raicich, Piero Lionello, Fanny Adloff, Alexey Androsov, Fabrizio Antonioli, Vincenzo Artale, Eugenio Carminati, Christian Ferrarin, Vera Fofonova, Robert J. Nicholls, Sara Rubinetti, Angelo Rubino, Gianmaria Sannino, Giorgio Spada, Rémi Thiéblemont, Michael Tsimplis, Georg Umgiesser, Stefano Vignudelli, Guy Wöppelmann, and Susanna Zerbini
Nat. Hazards Earth Syst. Sci., 21, 2643–2678, https://doi.org/10.5194/nhess-21-2643-2021, https://doi.org/10.5194/nhess-21-2643-2021, 2021
Short summary
Short summary
Relative sea level in Venice rose by about 2.5 mm/year in the past 150 years due to the combined effect of subsidence and mean sea-level rise. We estimate the likely range of mean sea-level rise in Venice by 2100 due to climate changes to be between about 10 and 110 cm, with an improbable yet possible high-end scenario of about 170 cm. Projections of subsidence are not available, but historical evidence demonstrates that they can increase the hazard posed by climatically induced sea-level rise.
Georg Umgiesser, Marco Bajo, Christian Ferrarin, Andrea Cucco, Piero Lionello, Davide Zanchettin, Alvise Papa, Alessandro Tosoni, Maurizio Ferla, Elisa Coraci, Sara Morucci, Franco Crosato, Andrea Bonometto, Andrea Valentini, Mirko Orlić, Ivan D. Haigh, Jacob Woge Nielsen, Xavier Bertin, André Bustorff Fortunato, Begoña Pérez Gómez, Enrique Alvarez Fanjul, Denis Paradis, Didier Jourdan, Audrey Pasquet, Baptiste Mourre, Joaquín Tintoré, and Robert J. Nicholls
Nat. Hazards Earth Syst. Sci., 21, 2679–2704, https://doi.org/10.5194/nhess-21-2679-2021, https://doi.org/10.5194/nhess-21-2679-2021, 2021
Short summary
Short summary
The city of Venice relies crucially on a good storm surge forecast to protect its population and cultural heritage. In this paper, we provide a state-of-the-art review of storm surge forecasting, starting from examples in Europe and focusing on the Adriatic Sea and the Lagoon of Venice. We discuss the physics of storm surge, as well as the particular aspects of Venice and new techniques in storm surge modeling. We also give recommendations on what a future forecasting system should look like.
Piero Lionello, Robert J. Nicholls, Georg Umgiesser, and Davide Zanchettin
Nat. Hazards Earth Syst. Sci., 21, 2633–2641, https://doi.org/10.5194/nhess-21-2633-2021, https://doi.org/10.5194/nhess-21-2633-2021, 2021
Short summary
Short summary
Venice is an iconic place, and a paradigm of huge historical and cultural value is at risk. The threat posed by floods has dramatically increased in recent decades and is expected to continue to grow – and even accelerate – through this century. There is a need to better understand the future evolution of the relative sea level and its extremes and to develop adaptive planning strategies appropriate for present uncertainty, which might not be substantially reduced in the near future.
Jacob W. Maddison, Marta Abalos, David Barriopedro, Ricardo García-Herrera, Jose M. Garrido-Perez, and Carlos Ordóñez
Weather Clim. Dynam., 2, 675–694, https://doi.org/10.5194/wcd-2-675-2021, https://doi.org/10.5194/wcd-2-675-2021, 2021
Short summary
Short summary
Air stagnation occurs when an air mass becomes settled over a region and precipitation is suppressed. Pollutant levels can rise during stagnation. The synoptic- to large-scale influence on European air stagnation and pollution is explored here. We show that around 60 % of the monthly variability in air stagnation and pollutants can be explained by dynamical indices describing the atmospheric circulation. The weather systems most related to stagnation are different for regions across Europe.
Miroslav Gačić, Laura Ursella, Vedrana Kovačević, Milena Menna, Vlado Malačič, Manuel Bensi, Maria-Eletta Negretti, Vanessa Cardin, Mirko Orlić, Joël Sommeria, Ricardo Viana Barreto, Samuel Viboud, Thomas Valran, Boris Petelin, Giuseppe Siena, and Angelo Rubino
Ocean Sci., 17, 975–996, https://doi.org/10.5194/os-17-975-2021, https://doi.org/10.5194/os-17-975-2021, 2021
Short summary
Short summary
Experiments in rotating tanks can simulate the Earth system and help to represent the real ocean, where rotation plays an important role. We wanted to show the minor importance of the wind in driving the flow in the Ionian Sea. We did this by observing changes in the water current in a rotating tank affected only by the pumping of dense water into the system. The flow variations were similar to those in the real sea, confirming the scarce importance of the wind for the flow in the Ionian Sea.
Claudia Timmreck, Matthew Toohey, Davide Zanchettin, Stefan Brönnimann, Elin Lundstad, and Rob Wilson
Clim. Past, 17, 1455–1482, https://doi.org/10.5194/cp-17-1455-2021, https://doi.org/10.5194/cp-17-1455-2021, 2021
Short summary
Short summary
The 1809 eruption is one of the most recent unidentified volcanic eruptions with a global climate impact. We demonstrate that climate model simulations of the 1809 eruption show generally good agreement with many large-scale temperature reconstructions and early instrumental records for a range of radiative forcing estimates. In terms of explaining the spatially heterogeneous and temporally delayed Northern Hemisphere cooling suggested by tree-ring networks, the investigation remains open.
Fabio Raicich and Renato R. Colucci
Earth Syst. Sci. Data, 13, 3363–3377, https://doi.org/10.5194/essd-13-3363-2021, https://doi.org/10.5194/essd-13-3363-2021, 2021
Short summary
Short summary
To understand climate change, it is essential to analyse long time series of atmospheric data. Here we studied the atmospheric pressure observed at Trieste (Italy) from 1841 to 2018. We examined the available information on the characteristics and elevations of the barometers and on the data sampling. A basic data quality control was also applied. As a result, we built a homogeneous time series of daily mean pressures at mean sea level, from which a trend of 0.5 hPa per century was estimated.
Paula Camus, Ivan D. Haigh, Ahmed A. Nasr, Thomas Wahl, Stephen E. Darby, and Robert J. Nicholls
Nat. Hazards Earth Syst. Sci., 21, 2021–2040, https://doi.org/10.5194/nhess-21-2021-2021, https://doi.org/10.5194/nhess-21-2021-2021, 2021
Short summary
Short summary
In coastal regions, floods can arise through concurrent drivers, such as precipitation, river discharge, storm surge, and waves, which exacerbate the impact. In this study, we identify hotspots of compound flooding along the southern coast of the North Atlantic Ocean and the northern coast of the Mediterranean Sea. This regional assessment can be considered a screening tool for coastal management that provides information about which areas are more predisposed to experience compound flooding.
Margot Clyne, Jean-Francois Lamarque, Michael J. Mills, Myriam Khodri, William Ball, Slimane Bekki, Sandip S. Dhomse, Nicolas Lebas, Graham Mann, Lauren Marshall, Ulrike Niemeier, Virginie Poulain, Alan Robock, Eugene Rozanov, Anja Schmidt, Andrea Stenke, Timofei Sukhodolov, Claudia Timmreck, Matthew Toohey, Fiona Tummon, Davide Zanchettin, Yunqian Zhu, and Owen B. Toon
Atmos. Chem. Phys., 21, 3317–3343, https://doi.org/10.5194/acp-21-3317-2021, https://doi.org/10.5194/acp-21-3317-2021, 2021
Short summary
Short summary
This study finds how and why five state-of-the-art global climate models with interactive stratospheric aerosols differ when simulating the aftermath of large volcanic injections as part of the Model Intercomparison Project on the climatic response to Volcanic forcing (VolMIP). We identify and explain the consequences of significant disparities in the underlying physics and chemistry currently in some of the models, which are problems likely not unique to the models participating in this study.
Christian Ferrarin, Marco Bajo, and Georg Umgiesser
Geosci. Model Dev., 14, 645–659, https://doi.org/10.5194/gmd-14-645-2021, https://doi.org/10.5194/gmd-14-645-2021, 2021
Short summary
Short summary
The problem of the optimization of ocean monitoring networks is tackled through the implementation of data assimilation techniques in a numerical model. The methodology has been applied to the tide gauge network in the Lagoon of Venice (Italy). The data assimilation methods allow identifying the minimum number of stations and their distribution that correctly represent the lagoon's dynamics. The methodology is easily exportable to other environments and can be extended to other variables.
Zvjezdana B. Klaić, Karmen Babić, and Mirko Orlić
Hydrol. Earth Syst. Sci., 24, 3399–3416, https://doi.org/10.5194/hess-24-3399-2020, https://doi.org/10.5194/hess-24-3399-2020, 2020
Short summary
Short summary
Fine-resolution lake temperature measurements (2 min, 15 depths) show different lake responses to atmospheric forcings: (1) continuous diurnal oscillations in the temperature in the first 5 m of the lake, (2) occasional diurnal oscillations in the temperature at depths from 7 to 20 m, and (3) occasional surface and internal seiches. Due to the sloped lake bottom, surface seiches produced the high-frequency oscillations in the lake temperatures with periods of 9 min at depths from 9 to 17 m.
Emanuele Bevacqua, Michalis I. Vousdoukas, Theodore G. Shepherd, and Mathieu Vrac
Nat. Hazards Earth Syst. Sci., 20, 1765–1782, https://doi.org/10.5194/nhess-20-1765-2020, https://doi.org/10.5194/nhess-20-1765-2020, 2020
Short summary
Short summary
Coastal compound flooding (CF), caused by interacting storm surges and high water runoff, is typically studied based on concurring storm surge extremes with either precipitation or river discharge extremes. Globally, these two approaches show similar CF spatial patterns, especially where the CF potential is the highest. Deviations between the two approaches increase with the catchment size. The precipitation-based analysis allows for considering
local-rainfall-driven CF and CF in small rivers.
Reinhard Schiemann, Panos Athanasiadis, David Barriopedro, Francisco Doblas-Reyes, Katja Lohmann, Malcolm J. Roberts, Dmitry V. Sein, Christopher D. Roberts, Laurent Terray, and Pier Luigi Vidale
Weather Clim. Dynam., 1, 277–292, https://doi.org/10.5194/wcd-1-277-2020, https://doi.org/10.5194/wcd-1-277-2020, 2020
Short summary
Short summary
In blocking situations the westerly atmospheric flow in the midlatitudes is blocked by near-stationary high-pressure systems. Blocking can be associated with extremes such as cold spells and heat waves. Climate models are known to underestimate blocking occurrence. Here, we assess the latest generation of models and find improvements in simulated blocking, partly due to increases in model resolution. These new models are therefore more suitable for studying climate extremes related to blocking.
Fabio Raicich
Hist. Geo Space. Sci., 11, 1–14, https://doi.org/10.5194/hgss-11-1-2020, https://doi.org/10.5194/hgss-11-1-2020, 2020
Short summary
Short summary
The ongoing sea level rise is a big concern in the context of present climatic change. The study of past sea level observations is of great importance in describing sea level variations. This work describes the rescue and analysis of a previously unrecognised 12-year record of sea level heights, measured at Trieste in the late 18th century. Besides having historical value, the data were found to be consistent, although undocumented technical issues limited the scientific conclusions.
Christian Ferrarin, Andrea Valentini, Martin Vodopivec, Dijana Klaric, Giovanni Massaro, Marco Bajo, Francesca De Pascalis, Amedeo Fadini, Michol Ghezzo, Stefano Menegon, Lidia Bressan, Silvia Unguendoli, Anja Fettich, Jure Jerman, Matjaz̆ Ličer, Lidija Fustar, Alvise Papa, and Enrico Carraro
Nat. Hazards Earth Syst. Sci., 20, 73–93, https://doi.org/10.5194/nhess-20-73-2020, https://doi.org/10.5194/nhess-20-73-2020, 2020
Short summary
Short summary
Here we present a shared and interoperable system to allow a better exchange of and elaboration on information related to sea storms among countries. The proposed integrated web system (IWS) is a combination of a common data system for sharing ocean observations and forecasts, a multi-model ensemble system, a geoportal, and interactive geo-visualization tools. This study describes the application of the developed system to the exceptional storm event of 29 October 2018.
Panagiotis Athanasiou, Ap van Dongeren, Alessio Giardino, Michalis Vousdoukas, Sandra Gaytan-Aguilar, and Roshanka Ranasinghe
Earth Syst. Sci. Data, 11, 1515–1529, https://doi.org/10.5194/essd-11-1515-2019, https://doi.org/10.5194/essd-11-1515-2019, 2019
Short summary
Short summary
This dataset provides the spatial distribution of nearshore slopes at a resolution of 1 km along the global coastline. The calculation was based on available global topo-bathymetric datasets and ocean wave reanalysis. The calculated slopes show skill in capturing the spatial variability of the nearshore slopes when compared against local observations. The importance of this variability is presented with a global coastal retreat assessment for an arbitrary sea level rise scenario.
Piero Lionello, Dario Conte, and Marco Reale
Nat. Hazards Earth Syst. Sci., 19, 1541–1564, https://doi.org/10.5194/nhess-19-1541-2019, https://doi.org/10.5194/nhess-19-1541-2019, 2019
Short summary
Short summary
Large positive and negative sea level anomalies on the coast of the Mediterranean Sea are produced by cyclones moving along the Mediterranean storm track, which are mostly generated in the western Mediterranean. The wind around the cyclone center is the main cause of sea level anomalies when a shallow water fetch is present. The inverse barometer effect produces a positive anomaly near the cyclone pressure minimum and a negative anomaly at the opposite side of the Mediterranean Sea.
Blanca Ayarzagüena, Froila M. Palmeiro, David Barriopedro, Natalia Calvo, Ulrike Langematz, and Kiyotaka Shibata
Atmos. Chem. Phys., 19, 9469–9484, https://doi.org/10.5194/acp-19-9469-2019, https://doi.org/10.5194/acp-19-9469-2019, 2019
Short summary
Short summary
Sudden stratospheric warmings (SSWs) are abrupt rises in the wintertime polar stratosphere that also affect the troposphere. Their study is hampered by the limited observations in the stratosphere and mostly relies on reanalyses, i.e., models that include observations. Here we compare the representation of SSWs by the most used reanalyses. SSW results are consistent across reanalyses but some differences are found, in particular before the satellite era.
Fabio Raicich and Renato R. Colucci
Earth Syst. Sci. Data, 11, 761–768, https://doi.org/10.5194/essd-11-761-2019, https://doi.org/10.5194/essd-11-761-2019, 2019
Short summary
Short summary
Thanks to near-surface sea temperatures measured at Trieste, northern Adriatic Sea, from 1899 to 2015, we estimated mean daily temperatures at 2 m depth and built a quasi-homogeneous 117-year-long time series. We describe the instruments used and the sites of measurements, which are all within Trieste harbour. The data set represents a valuable tool to study sea temperature variability on different timescales. A mean temperature rise rate of 1.1 ± 0.3 °C per century was estimated.
Sophie Bastin, Philippe Drobinski, Marjolaine Chiriaco, Olivier Bock, Romain Roehrig, Clemente Gallardo, Dario Conte, Marta Domínguez Alonso, Laurent Li, Piero Lionello, and Ana C. Parracho
Atmos. Chem. Phys., 19, 1471–1490, https://doi.org/10.5194/acp-19-1471-2019, https://doi.org/10.5194/acp-19-1471-2019, 2019
Short summary
Short summary
This paper uses colocated observations of temperature, precipitation and humidity to investigate the triggering of precipitation. It shows that there is a critical value of humidity above which precipitation picks up. This critical value depends on T and varies spatially. It also analyses how this dependency is reproduced in regional climate simulations over Europe. Models with too little and too light precipitation have both lower critical value of humidity and higher probability to exceed it.
Ilaria Isola, Giovanni Zanchetta, Russell N. Drysdale, Eleonora Regattieri, Monica Bini, Petra Bajo, John C. Hellstrom, Ilaria Baneschi, Piero Lionello, Jon Woodhead, and Alan Greig
Clim. Past, 15, 135–151, https://doi.org/10.5194/cp-15-135-2019, https://doi.org/10.5194/cp-15-135-2019, 2019
Short summary
Short summary
To understand the natural variability in the climate system, the hydrological aspect (dry and wet conditions) is particularly important for its impact on our societies. The reconstruction of past precipitation regimes can provide a useful tool for forecasting future climate changes. We use multi-proxy time series (oxygen and carbon isotopes, trace elements) from a speleothem to investigate circulation pattern variations and seasonality effects during the dry 4.2 ka event in central Italy.
Michalis I. Vousdoukas, Dimitrios Bouziotas, Alessio Giardino, Laurens M. Bouwer, Lorenzo Mentaschi, Evangelos Voukouvalas, and Luc Feyen
Nat. Hazards Earth Syst. Sci., 18, 2127–2142, https://doi.org/10.5194/nhess-18-2127-2018, https://doi.org/10.5194/nhess-18-2127-2018, 2018
Short summary
Short summary
We examine sources of epistemic uncertainty in coastal flood risk models. We find that uncertainty from sea level estimations can be higher than that related to greenhouse gas emissions or climate prediction errors. Of comparable importance is information on coastal protection levels and the topography. In the absence of large datasets with sufficient resolution and accuracy, the last two factors are the main bottlenecks in terms of estimating coastal flood risks at large scales.
Dominik Paprotny, Michalis I. Vousdoukas, Oswaldo Morales-Nápoles, Sebastiaan N. Jonkman, and Luc Feyen
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-132, https://doi.org/10.5194/hess-2018-132, 2018
Preprint withdrawn
Ivica Vilibić, Hrvoje Mihanović, Ivica Janeković, Cléa Denamiel, Pierre-Marie Poulain, Mirko Orlić, Natalija Dunić, Vlado Dadić, Mira Pasarić, Stipe Muslim, Riccardo Gerin, Frano Matić, Jadranka Šepić, Elena Mauri, Zoi Kokkini, Martina Tudor, Žarko Kovač, and Tomislav Džoić
Ocean Sci., 14, 237–258, https://doi.org/10.5194/os-14-237-2018, https://doi.org/10.5194/os-14-237-2018, 2018
Lauren Marshall, Anja Schmidt, Matthew Toohey, Ken S. Carslaw, Graham W. Mann, Michael Sigl, Myriam Khodri, Claudia Timmreck, Davide Zanchettin, William T. Ball, Slimane Bekki, James S. A. Brooke, Sandip Dhomse, Colin Johnson, Jean-Francois Lamarque, Allegra N. LeGrande, Michael J. Mills, Ulrike Niemeier, James O. Pope, Virginie Poulain, Alan Robock, Eugene Rozanov, Andrea Stenke, Timofei Sukhodolov, Simone Tilmes, Kostas Tsigaridis, and Fiona Tummon
Atmos. Chem. Phys., 18, 2307–2328, https://doi.org/10.5194/acp-18-2307-2018, https://doi.org/10.5194/acp-18-2307-2018, 2018
Short summary
Short summary
We use four global aerosol models to compare the simulated sulfate deposition from the 1815 Mt. Tambora eruption to ice core records. Inter-model volcanic sulfate deposition differs considerably. Volcanic sulfate deposited on polar ice sheets is used to estimate the atmospheric sulfate burden and subsequently radiative forcing of historic eruptions. Our results suggest that deriving such relationships from model simulations may be associated with greater uncertainties than previously thought.
PAGES Hydro2k Consortium
Clim. Past, 13, 1851–1900, https://doi.org/10.5194/cp-13-1851-2017, https://doi.org/10.5194/cp-13-1851-2017, 2017
Short summary
Short summary
Water availability is fundamental to societies and ecosystems, but our understanding of variations in hydroclimate (including extreme events, flooding, and decadal periods of drought) is limited due to a paucity of modern instrumental observations. We review how proxy records of past climate and climate model simulations can be used in tandem to understand hydroclimate variability over the last 2000 years and how these tools can also inform risk assessments of future hydroclimatic extremes.
Johann H. Jungclaus, Edouard Bard, Mélanie Baroni, Pascale Braconnot, Jian Cao, Louise P. Chini, Tania Egorova, Michael Evans, J. Fidel González-Rouco, Hugues Goosse, George C. Hurtt, Fortunat Joos, Jed O. Kaplan, Myriam Khodri, Kees Klein Goldewijk, Natalie Krivova, Allegra N. LeGrande, Stephan J. Lorenz, Jürg Luterbacher, Wenmin Man, Amanda C. Maycock, Malte Meinshausen, Anders Moberg, Raimund Muscheler, Christoph Nehrbass-Ahles, Bette I. Otto-Bliesner, Steven J. Phipps, Julia Pongratz, Eugene Rozanov, Gavin A. Schmidt, Hauke Schmidt, Werner Schmutz, Andrew Schurer, Alexander I. Shapiro, Michael Sigl, Jason E. Smerdon, Sami K. Solanki, Claudia Timmreck, Matthew Toohey, Ilya G. Usoskin, Sebastian Wagner, Chi-Ju Wu, Kok Leng Yeo, Davide Zanchettin, Qiong Zhang, and Eduardo Zorita
Geosci. Model Dev., 10, 4005–4033, https://doi.org/10.5194/gmd-10-4005-2017, https://doi.org/10.5194/gmd-10-4005-2017, 2017
Short summary
Short summary
Climate model simulations covering the last millennium provide context for the evolution of the modern climate and for the expected changes during the coming centuries. They can help identify plausible mechanisms underlying palaeoclimatic reconstructions. Here, we describe the forcing boundary conditions and the experimental protocol for simulations covering the pre-industrial millennium. We describe the PMIP4 past1000 simulations as contributions to CMIP6 and additional sensitivity experiments.
Isavela N. Monioudi, Adonis F. Velegrakis, Antonis E. Chatzipavlis, Anastasios Rigos, Theophanis Karambas, Michalis I. Vousdoukas, Thomas Hasiotis, Nikoletta Koukourouvli, Pascal Peduzzi, Eva Manoutsoglou, Serafim E. Poulos, and Michael B. Collins
Nat. Hazards Earth Syst. Sci., 17, 449–466, https://doi.org/10.5194/nhess-17-449-2017, https://doi.org/10.5194/nhess-17-449-2017, 2017
Short summary
Short summary
This work constitutes the first comprehensive attempt to record the spatial characteristics of the Aegean island beaches (Greece) and assess the long-term and episodic sea level rise (SLR) impacts under different scenarios. Results suggest that Aegean beaches may be particularly vulnerable to SLRs, where severe impacts which could be devastating are projected by 2100. Appropriate coastal "setback zone" policies should be adopted, as they form a significant environmental and economic resource.
Carlos Ordóñez, David Barriopedro, Ricardo García-Herrera, Pedro M. Sousa, and Jordan L. Schnell
Atmos. Chem. Phys., 17, 3111–3131, https://doi.org/10.5194/acp-17-3111-2017, https://doi.org/10.5194/acp-17-3111-2017, 2017
Short summary
Short summary
Blocks and ridges are synoptic patterns associated with an anticyclonic circulation. They also divert the atmospheric flow. This work proves that near-surface ozone in Europe is sensitive to these patterns. This quantitative assessment has been performed on a seasonal basis for a 15-year period. The results can be exploited in the future to evaluate modelled ozone responses to atmospheric circulation changes and to understand the contribution of dynamic effects to air quality projections.
Nadia Pinardi, Vladyslav Lyubartsev, Nicola Cardellicchio, Claudio Caporale, Stefania Ciliberti, Giovanni Coppini, Francesca De Pascalis, Lorenzo Dialti, Ivan Federico, Marco Filippone, Alessandro Grandi, Matteo Guideri, Rita Lecci, Lamberto Lamberti, Giuliano Lorenzetti, Paolo Lusiani, Cosimo Damiano Macripo, Francesco Maicu, Michele Mossa, Diego Tartarini, Francesco Trotta, Georg Umgiesser, and Luca Zaggia
Nat. Hazards Earth Syst. Sci., 16, 2623–2639, https://doi.org/10.5194/nhess-16-2623-2016, https://doi.org/10.5194/nhess-16-2623-2016, 2016
Short summary
Short summary
A multiscale sampling experiment was carried out in the Gulf of Taranto (eastern Mediterranean) providing the first synoptic evidence of the large-scale circulation structure and associated mesoscale variability. The circulation is shown to be dominated by an anticyclonic gyre and upwelling areas at the gyre periphery.
Lorenzo Mentaschi, Michalis Vousdoukas, Evangelos Voukouvalas, Ludovica Sartini, Luc Feyen, Giovanni Besio, and Lorenzo Alfieri
Hydrol. Earth Syst. Sci., 20, 3527–3547, https://doi.org/10.5194/hess-20-3527-2016, https://doi.org/10.5194/hess-20-3527-2016, 2016
Short summary
Short summary
The climate is subject to variations which must be considered
studying the intensity and frequency of extreme events.
We introduce in this paper a new methodology
for the study of variable extremes, which consists in detecting
the pattern of variability of a time series, and applying these patterns
to the analysis of the extreme events.
This technique comes with advantages with respect to the previous ones
in terms of accuracy, simplicity, and robustness.
Davide Zanchettin, Myriam Khodri, Claudia Timmreck, Matthew Toohey, Anja Schmidt, Edwin P. Gerber, Gabriele Hegerl, Alan Robock, Francesco S. R. Pausata, William T. Ball, Susanne E. Bauer, Slimane Bekki, Sandip S. Dhomse, Allegra N. LeGrande, Graham W. Mann, Lauren Marshall, Michael Mills, Marion Marchand, Ulrike Niemeier, Virginie Poulain, Eugene Rozanov, Angelo Rubino, Andrea Stenke, Kostas Tsigaridis, and Fiona Tummon
Geosci. Model Dev., 9, 2701–2719, https://doi.org/10.5194/gmd-9-2701-2016, https://doi.org/10.5194/gmd-9-2701-2016, 2016
Short summary
Short summary
Simulating volcanically-forced climate variability is a challenging task for climate models. The Model Intercomparison Project on the climatic response to volcanic forcing (VolMIP) – an endorsed contribution to CMIP6 – defines a protocol for idealized volcanic-perturbation experiments to improve comparability of results across different climate models. This paper illustrates the design of VolMIP's experiments and describes the aerosol forcing input datasets to be used.
Michalis I. Vousdoukas, Evangelos Voukouvalas, Lorenzo Mentaschi, Francesco Dottori, Alessio Giardino, Dimitrios Bouziotas, Alessandra Bianchi, Peter Salamon, and Luc Feyen
Nat. Hazards Earth Syst. Sci., 16, 1841–1853, https://doi.org/10.5194/nhess-16-1841-2016, https://doi.org/10.5194/nhess-16-1841-2016, 2016
Short summary
Short summary
Coastal flooding has severe socioeconomic impacts that are projected to increase under the changing climate. The present contribution reports on efforts towards a new methodology for mapping coastal flood hazard at European scale, combining the contribution of waves, improved inundation modeling and an open, physics-based framework which can be constantly upgraded whenever new and more accurate data become available.
Georg Umgiesser, Petras Zemlys, Ali Erturk, Arturas Razinkova-Baziukas, Jovita Mėžinė, and Christian Ferrarin
Ocean Sci., 12, 391–402, https://doi.org/10.5194/os-12-391-2016, https://doi.org/10.5194/os-12-391-2016, 2016
Short summary
Short summary
The paper explores the importance of physical forcing on the exchange mechanisms and the renewal time in the Curonian Lagoon over 10 years. The influence of ice cover on the exchange rates has been explored. Finally, the influence of water level fluctuations and river discharge has been studied. It has been found that ice cover is surprisingly not very important for changes in renewal time. The single most important factor is river discharge.
F. Raicich
Nat. Hazards Earth Syst. Sci., 15, 527–535, https://doi.org/10.5194/nhess-15-527-2015, https://doi.org/10.5194/nhess-15-527-2015, 2015
Short summary
Short summary
Daily sea level data of the Venice Lagoon observed in the 18th century allow us to obtain a composite the time series of sea level anomalies relative to the mean sea level, spanning 1751--1769 and 1872--2004. From these data the frequency of remarkable storm surges is estimated. They appear to be more frequent in the second half of the 18th century than in the late 19th and 20th centuries. The historical flood on 4 November 1966 turns out to be the most severe during the entire period.
P. Malanotte-Rizzoli, V. Artale, G. L. Borzelli-Eusebi, S. Brenner, A. Crise, M. Gacic, N. Kress, S. Marullo, M. Ribera d'Alcalà, S. Sofianos, T. Tanhua, A. Theocharis, M. Alvarez, Y. Ashkenazy, A. Bergamasco, V. Cardin, S. Carniel, G. Civitarese, F. D'Ortenzio, J. Font, E. Garcia-Ladona, J. M. Garcia-Lafuente, A. Gogou, M. Gregoire, D. Hainbucher, H. Kontoyannis, V. Kovacevic, E. Kraskapoulou, G. Kroskos, A. Incarbona, M. G. Mazzocchi, M. Orlic, E. Ozsoy, A. Pascual, P.-M. Poulain, W. Roether, A. Rubino, K. Schroeder, J. Siokou-Frangou, E. Souvermezoglou, M. Sprovieri, J. Tintoré, and G. Triantafyllou
Ocean Sci., 10, 281–322, https://doi.org/10.5194/os-10-281-2014, https://doi.org/10.5194/os-10-281-2014, 2014
O. Bothe, J. H. Jungclaus, and D. Zanchettin
Clim. Past, 9, 2471–2487, https://doi.org/10.5194/cp-9-2471-2013, https://doi.org/10.5194/cp-9-2471-2013, 2013
M. Reale and P. Lionello
Nat. Hazards Earth Syst. Sci., 13, 1707–1722, https://doi.org/10.5194/nhess-13-1707-2013, https://doi.org/10.5194/nhess-13-1707-2013, 2013
P. Zemlys, C. Ferrarin, G. Umgiesser, S. Gulbinskas, and D. Bellafiore
Ocean Sci., 9, 573–584, https://doi.org/10.5194/os-9-573-2013, https://doi.org/10.5194/os-9-573-2013, 2013
A. Sanna, P. Lionello, and S. Gualdi
Nat. Hazards Earth Syst. Sci., 13, 1567–1577, https://doi.org/10.5194/nhess-13-1567-2013, https://doi.org/10.5194/nhess-13-1567-2013, 2013
H. Mihanović, I. Vilibić, S. Carniel, M. Tudor, A. Russo, A. Bergamasco, N. Bubić, Z. Ljubešić, D. Viličić, A. Boldrin, V. Malačič, M. Celio, C. Comici, and F. Raicich
Ocean Sci., 9, 561–572, https://doi.org/10.5194/os-9-561-2013, https://doi.org/10.5194/os-9-561-2013, 2013
O. Bothe, J. H. Jungclaus, D. Zanchettin, and E. Zorita
Clim. Past, 9, 1089–1110, https://doi.org/10.5194/cp-9-1089-2013, https://doi.org/10.5194/cp-9-1089-2013, 2013
C. Ferrarin, M. Ghezzo, G. Umgiesser, D. Tagliapietra, E. Camatti, L. Zaggia, and A. Sarretta
Hydrol. Earth Syst. Sci., 17, 1733–1748, https://doi.org/10.5194/hess-17-1733-2013, https://doi.org/10.5194/hess-17-1733-2013, 2013
R. Mel, A. Sterl, and P. Lionello
Nat. Hazards Earth Syst. Sci., 13, 1135–1142, https://doi.org/10.5194/nhess-13-1135-2013, https://doi.org/10.5194/nhess-13-1135-2013, 2013
J. Segschneider, A. Beitsch, C. Timmreck, V. Brovkin, T. Ilyina, J. Jungclaus, S. J. Lorenz, K. D. Six, and D. Zanchettin
Biogeosciences, 10, 669–687, https://doi.org/10.5194/bg-10-669-2013, https://doi.org/10.5194/bg-10-669-2013, 2013
Related subject area
Sea, Ocean and Coastal Hazards
Generating reliable estimates of tropical-cyclone-induced coastal hazards along the Bay of Bengal for current and future climates using synthetic tracks
The role of heat wave events in the occurrence and persistence of thermal stratification in the southern North Sea
Tsunami hazard in Lombok and Bali, Indonesia, due to the Flores back-arc thrust
Real-time coastal flood hazard assessment using DEM-based hydrogeomorphic classifiers
Rapid tsunami force prediction by mode-decomposition-based surrogate modeling
Characteristics of two tsunamis generated by successive Mw 7.4 and Mw 8.1 earthquakes in the Kermadec Islands on 4 March 2021
Mesoscale simulation of typhoon-generated storm surge: methodology and Shanghai case study
Submarine landslide source modeling using the 3D slope stability analysis method for the 2018 Palu, Sulawesi, tsunami
Characteristics and beach safety knowledge of beachgoers on unpatrolled surf beaches in Australia
Robust uncertainty quantification of the volume of tsunami ionospheric holes for the 2011 Tohoku-Oki earthquake: towards low-cost satellite-based tsunami warning systems
Correlation of wind waves and sea level variations on the coast of the seasonally ice-covered Gulf of Finland
The role of morphodynamics in predicting coastal flooding from storms on a dissipative beach with sea level rise conditions
Multilayer modelling of waves generated by explosive subaqueous volcanism
Statistical estimation of spatial wave extremes for tropical cyclones from small data samples: validation of the STM-E approach using long-term synthetic cyclone data for the Caribbean Sea
Development of damage curves for buildings near La Rochelle during storm Xynthia based on insurance claims and hydrodynamic simulations
Investigating the interaction of waves and river discharge during compound flooding at Breede Estuary, South Africa
Compound flood impact of water level and rainfall during tropical cyclone period in a coastal city: The case of Shanghai
Still normal? Near-real-time evaluation of storm surge events in the context of climate change
The influence of infragravity waves on the safety of coastal defences: a case study of the Dutch Wadden Sea
Assessment of potential beach erosion risk and impact of coastal zone development: a case study on Bongpo–Cheonjin Beach
Characteristics and coastal effects of a destructive marine storm in the Gulf of Naples (southern Italy)
Probabilistic, high-resolution tsunami predictions in northern Cascadia by exploiting sequential design for efficient emulation
Towards using state-of-the-art climate models to help constrain estimates of unprecedented UK storm surges
Review article: Extreme marine events revealed by lagoonal sedimentary records in Ghar El Melh during the last 2500 years in the northeast of Tunisia
Exploring the partial use of the Mo.S.E. system as effective adaptation to rising flood frequency of Venice
Variable-resolution building exposure modelling for earthquake and tsunami scenario-based risk assessment: an application case in Lima, Peru
Reconstruction of wind and surge of the 1906 storm tide at the German North Sea Coast
Historical Tsunamis of Taiwan in the Eighteenth Century: the 1781 Jiateng Harbor Flooding and 1782 Tsunami Event
The Mw 7.5 Tadine (Maré, Loyalty Islands) earthquake and related tsunami of 5 December 2018: seismotectonic context and numerical modeling
Storm surge hazard over Bengal delta: A probabilistic-deterministic modelling approach
Tidal flood area mapping in the face of climate change scenarios: case study in a tropical estuary in the Brazilian semi-arid region
Distribution of coastal high water level during extreme events around the UK and Irish coasts
Occurrence of pressure-forced meteotsunami events in the eastern Yellow Sea during 2010–2019
Characteristics of joint heavy precipitation and high sea level events on the Finnish coast in 1961–2020
Tsunami heights and limits in 1945 along the Makran coast estimated from testimony gathered 7 decades later in Gwadar, Pasni and Ormara
Sea-level rise in Venice: historic and future trends (review article)
The prediction of floods in Venice: methods, models and uncertainty (review article)
Venice flooding and sea level: past evolution, present issues, and future projections (introduction to the special issue)
Estimation of the non-exceedance probability of extreme storm surges in South Korea using tidal-gauge data
Towards an efficient storm surge and inundation forecasting system over the Bengal delta: chasing the Supercyclone Amphan
Performance of the Adriatic early warning system during the multi-meteotsunami event of 11–19 May 2020: an assessment using energy banners
Characteristics of building fragility curves for seismic and non-seismic tsunamis: case studies of the 2018 Sunda Strait, 2018 Sulawesi–Palu, and 2004 Indian Ocean tsunamis
Deep uncertainties in shoreline change projections: an extra-probabilistic approach applied to sandy beaches
Tsunami propagation kernel and its applications
A Bayesian network approach to modelling rip-current drownings and shore-break wave injuries
Regional analysis of multivariate compound coastal flooding potential around Europe and environs: sensitivity analysis and spatial patterns
Tsunami damage to ports: cataloguing damage to create fragility functions from the 2011 Tohoku event
Spatially compounded surge events: an example from hurricanes Matthew and Florence
A cross-scale study for compound flooding processes during Hurricane Florence
Reconstruction of flow conditions from 2004 Indian Ocean tsunami deposits at the Phra Thong island using a deep neural network inverse model
Tim Willem Bart Leijnse, Alessio Giardino, Kees Nederhoff, and Sofia Caires
Nat. Hazards Earth Syst. Sci., 22, 1863–1891, https://doi.org/10.5194/nhess-22-1863-2022, https://doi.org/10.5194/nhess-22-1863-2022, 2022
Short summary
Short summary
Deriving reliable estimates of design conditions resulting from tropical cyclones is a challenge of high relevance to coastal engineering. Here, having few historical observations is overcome by using the Tropical Cyclone Wind Statistical Estimation Tool (TCWiSE) to create thousands of synthetic realizations, representative of 1000 years of tropical cyclone activity for the Bay of Bengal. The use of synthetic tracks is shown to provide more reliable wind speed, storm surge and wave estimates.
Wei Chen, Joanna Staneva, Sebastian Grayek, Johannes Schulz-Stellenfleth, and Jens Greinert
Nat. Hazards Earth Syst. Sci., 22, 1683–1698, https://doi.org/10.5194/nhess-22-1683-2022, https://doi.org/10.5194/nhess-22-1683-2022, 2022
Short summary
Short summary
This study links the occurrence and persistence of density stratification in the southern North Sea to the increased number of extreme marine heat waves. The study further identified the role of the cold spells at the early stage of a year to the intensity of thermal stratification in summer. In a broader context, the research will have fundamental significance for further discussion of the secondary effects of heat wave events, such as in ecosystems, fisheries, and sediment dynamics.
Raquel P. Felix, Judith A. Hubbard, Kyle E. Bradley, Karen H. Lythgoe, Linlin Li, and Adam D. Switzer
Nat. Hazards Earth Syst. Sci., 22, 1665–1682, https://doi.org/10.5194/nhess-22-1665-2022, https://doi.org/10.5194/nhess-22-1665-2022, 2022
Short summary
Short summary
The Flores Thrust lies along the north coasts of Bali and Lombok. We model how an earthquake on this fault could trigger a tsunami that would impact the regional capital cities of Mataram and Denpasar. We show that for 3–5 m of slip on the fault (a Mw 7.5–7.9+ earthquake), the cities would experience a wave ca. 1.6–2.7 and ca. 0.6–1.4 m high, arriving in < 9 and ca. 23–27 min, respectively. They would also experience subsidence of 20–40 cm, resulting in long-term exposure to coastal hazards.
Keighobad Jafarzadegan, David F. Muñoz, Hamed Moftakhari, Joseph L. Gutenson, Gaurav Savant, and Hamid Moradkhani
Nat. Hazards Earth Syst. Sci., 22, 1419–1435, https://doi.org/10.5194/nhess-22-1419-2022, https://doi.org/10.5194/nhess-22-1419-2022, 2022
Short summary
Short summary
The high population settled in coastal regions and the potential damage imposed by coastal floods highlight the need for improving coastal flood hazard assessment techniques. This study introduces a topography-based approach for rapid estimation of flood hazard areas in the Savannah River delta. Our validation results demonstrate that, besides the high efficiency of the proposed approach, the estimated areas accurately overlap with reference flood maps.
Kenta Tozato, Shinsuke Takase, Shuji Moriguchi, Kenjiro Terada, Yu Otake, Yo Fukutani, Kazuya Nojima, Masaaki Sakuraba, and Hiromu Yokosu
Nat. Hazards Earth Syst. Sci., 22, 1267–1285, https://doi.org/10.5194/nhess-22-1267-2022, https://doi.org/10.5194/nhess-22-1267-2022, 2022
Short summary
Short summary
This study presents a novel framework for rapid tsunami force predictions through the application of mode-decomposition-based surrogate modeling with 2D–3D coupled numerical simulations. A numerical example is presented to demonstrate the applicability of the proposed framework to one of the tsunami-affected areas during the Great East Japan Earthquake of 2011.
Yuchen Wang, Mohammad Heidarzadeh, Kenji Satake, and Gui Hu
Nat. Hazards Earth Syst. Sci., 22, 1073–1082, https://doi.org/10.5194/nhess-22-1073-2022, https://doi.org/10.5194/nhess-22-1073-2022, 2022
Short summary
Short summary
Tsunami waveforms contain the features of its source, propagation path, and local topography. On 4 March 2021, two tsunamis were generated by earthquakes in the Kermadec Islands, New Zealand, within 2 h. This rare case gives us a valuable opportunity to study the characteristics of two tsunamis. We analyzed the records of two tsunamis at tide gauges with spectral analysis tools. It is found that two tsunamis superpose during the few hours after the arrival of the second tsunami.
Shuyun Dong, Wayne J. Stephenson, Sarah Wakes, Zhongyuan Chen, and Jianzhong Ge
Nat. Hazards Earth Syst. Sci., 22, 931–945, https://doi.org/10.5194/nhess-22-931-2022, https://doi.org/10.5194/nhess-22-931-2022, 2022
Short summary
Short summary
Mesoscale simulation provides a general approach that could be implemented to fulfill the purpose of planning and has relatively low requirements for computation time and data while still providing reasonable accuracy. The method is generally applicable to all coastal cities around the world for examining the effect of future climate change on typhoon-generated storm surge even where historical observed data are inadequate or not available.
Chatuphorn Somphong, Anawat Suppasri, Kwanchai Pakoksung, Tsuyoshi Nagasawa, Yuya Narita, Ryunosuke Tawatari, Shohei Iwai, Yukio Mabuchi, Saneiki Fujita, Shuji Moriguchi, Kenjiro Terada, Cipta Athanasius, and Fumihiko Imamura
Nat. Hazards Earth Syst. Sci., 22, 891–907, https://doi.org/10.5194/nhess-22-891-2022, https://doi.org/10.5194/nhess-22-891-2022, 2022
Short summary
Short summary
The majority of past research used hypothesized landslides to simulate tsunamis, but they were still unable to properly explain the observed data. In this study, submarine landslides were simulated by using a slope-failure-theory-based numerical model for the first time. The findings were verified with post-event field observational data. They indicated the potential presence of submarine landslide sources in the southern part of the bay and were consistent with the observational tsunamis.
Lea Uebelhoer, William Koon, Mitchell D. Harley, Jasmin C. Lawes, and Robert W. Brander
Nat. Hazards Earth Syst. Sci., 22, 909–926, https://doi.org/10.5194/nhess-22-909-2022, https://doi.org/10.5194/nhess-22-909-2022, 2022
Short summary
Short summary
Beachgoers at unpatrolled Australian beaches were surveyed to gain an understanding of their demographics, beach safety knowledge, and behaviour. Most visited unpatrolled beaches out of convenience and because they wanted to visit a quiet location. Despite being infrequent beachgoers, with poor swimming and hazard identification skills, most intended to enter the water. Authorities should go beyond the
swim between the flagssafety message, as people will always swim at unpatrolled beaches.
Ryuichi Kanai, Masashi Kamogawa, Toshiyasu Nagao, Alan Smith, and Serge Guillas
Nat. Hazards Earth Syst. Sci., 22, 849–868, https://doi.org/10.5194/nhess-22-849-2022, https://doi.org/10.5194/nhess-22-849-2022, 2022
Short summary
Short summary
The air pressure created by a tsunami causes a depression in the electron density in the ionosphere. The depression is measured at sparsely distributed, moving GPS satellite locations. We provide an estimate of the volume of the depression. When applied to the 2011 Tohoku-Oki earthquake in Japan, our method can warn of a tsunami event within 15 min of the earthquake, even when using only 5 % of the data. Thus satellite-based warnings could be implemented across the world with our approach.
Milla M. Johansson, Jan-Victor Björkqvist, Jani Särkkä, Ulpu Leijala, and Kimmo K. Kahma
Nat. Hazards Earth Syst. Sci., 22, 813–829, https://doi.org/10.5194/nhess-22-813-2022, https://doi.org/10.5194/nhess-22-813-2022, 2022
Short summary
Short summary
We analysed the correlation of sea level and wind waves at a coastal location in the Gulf of Finland using tide gauge data, wave measurements, and wave simulations. The correlation was positive for southwesterly winds and negative for northeasterly winds. Probabilities of high total water levels (sea level + wave crest) are underestimated if sea level and waves are considered independent. Suitably chosen copula functions can account for the dependence.
Jairo E. Cueto, Luis J. Otero Díaz, Silvio R. Ospino-Ortiz, and Alec Torres-Freyermuth
Nat. Hazards Earth Syst. Sci., 22, 713–728, https://doi.org/10.5194/nhess-22-713-2022, https://doi.org/10.5194/nhess-22-713-2022, 2022
Short summary
Short summary
We investigate the importance of morphodynamics on flooding estimation during storms with sea level rise conditions on a microtidal beach. XBeach and SWAN were the numerical models used to test several case studies. The results indicate that numerical modeling of flooding should be approached by considering morphodynamics; ignoring them can underestimate flooding by ~ 15 %. Moreover, beach erosion and flooding are intensified by sea level rise and high tides in ~ 69 % and ~ 65 %, respectively.
Matthew W. Hayward, Colin N. Whittaker, Emily M. Lane, William L. Power, Stéphane Popinet, and James D. L. White
Nat. Hazards Earth Syst. Sci., 22, 617–637, https://doi.org/10.5194/nhess-22-617-2022, https://doi.org/10.5194/nhess-22-617-2022, 2022
Short summary
Short summary
Volcanic eruptions can produce tsunamis through multiple mechanisms. We present validation cases for a numerical method used in simulating waves caused by submarine explosions: a laboratory flume experiment and waves generated by explosions at field scale. We then demonstrate the use of the scheme for simulating analogous volcanic eruptions, illustrating the resulting wavefield. We show that this scheme models such dispersive sources more proficiently than standard tsunami models.
Ryota Wada, Jeremy Rohmer, Yann Krien, and Philip Jonathan
Nat. Hazards Earth Syst. Sci., 22, 431–444, https://doi.org/10.5194/nhess-22-431-2022, https://doi.org/10.5194/nhess-22-431-2022, 2022
Short summary
Short summary
Characterizing extreme wave environments caused by tropical cyclones in the Caribbean Sea near Guadeloupe is difficult because cyclones rarely pass near the location of interest. STM-E (space-time maxima and exposure) model utilizes wave data during cyclones on a spatial neighbourhood. Long-duration wave data generated from a database of synthetic tropical cyclones are used to evaluate the performance of STM-E. Results indicate STM-E provides estimates with small bias and realistic uncertainty.
Manuel Andres Diaz Loaiza, Jeremy D. Bricker, Remi Meynadier, Trang Minh Duong, Rosh Ranasinghe, and Sebastiaan N. Jonkman
Nat. Hazards Earth Syst. Sci., 22, 345–360, https://doi.org/10.5194/nhess-22-345-2022, https://doi.org/10.5194/nhess-22-345-2022, 2022
Short summary
Short summary
Extratropical cyclones are one of the major causes of coastal floods in Europe and the world. Understanding the development process and the flooding of storm Xynthia, together with the damages that occurred during the storm, can help to forecast future losses due to other similar storms. In the present paper, an analysis of shallow water variables (flood depth, velocity, etc.) or coastal variables (significant wave height, energy flux, etc.) is done in order to develop damage curves.
Sunna Kupfer, Sara Santamaria-Aguilar, Lara van Niekerk, Melanie Lück-Vogel, and Athanasios T. Vafeidis
Nat. Hazards Earth Syst. Sci., 22, 187–205, https://doi.org/10.5194/nhess-22-187-2022, https://doi.org/10.5194/nhess-22-187-2022, 2022
Short summary
Short summary
In coastal regions, flooding can occur from combined tides, storms, river discharge, and waves. Effects of waves are commonly neglected when assessing flooding, although these may strongly contribute to extreme water levels. We find that waves combined with tides and river discharge at Breede Estuary, South Africa, increased flood extent and depth and caused earlier flooding than when waves were neglected. This highlights the need to consider all major flood drivers in future flood assessments.
Hanqing Xu, Zhan Tian, Laixiang Sun, Qinghua Ye, Elisa Ragno, Jeremy Bricker, Ganquan Mao, Jinkai Tan, Jun Wang, Qian Ke, Shuai Wang, and Ralf Toumi
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-26, https://doi.org/10.5194/nhess-2022-26, 2022
Revised manuscript accepted for NHESS
Short summary
Short summary
Taking a hydrodynamic model and copula methodology to set up joint distribution of peak water level and inland rainfall during the TC period, and to calculate the marginal contribution of the individual drivers. It indicates the relative sea level rise has significantly amplified the peak water level. The astronomic tide is the leading driver, followed by the contribution of storm surge.
Xin Liu, Insa Meinke, and Ralf Weisse
Nat. Hazards Earth Syst. Sci., 22, 97–116, https://doi.org/10.5194/nhess-22-97-2022, https://doi.org/10.5194/nhess-22-97-2022, 2022
Short summary
Short summary
Storm surges represent a threat to low-lying coastal areas. In the aftermath of severe events, it is often discussed whether the events were unusual. Such information is not readily available from observations but needs contextualization with long-term statistics. An approach that provides such information in near real time was developed and implemented for the German coast. It is shown that information useful for public and scientific debates can be provided in near real time.
Christopher H. Lashley, Sebastiaan N. Jonkman, Jentsje van der Meer, Jeremy D. Bricker, and Vincent Vuik
Nat. Hazards Earth Syst. Sci., 22, 1–22, https://doi.org/10.5194/nhess-22-1-2022, https://doi.org/10.5194/nhess-22-1-2022, 2022
Short summary
Short summary
Many coastlines around the world have shallow foreshores (e.g. salt marshes and mudflats) that reduce storm waves and the risk of coastal flooding. However, most of the studies that tried to quantify this effect have excluded the influence of very long waves, which often dominate in shallow water. Our newly developed framework addresses this oversight and suggests that safety along these coastlines may be overestimated, since these very long waves are largely neglected in flood risk assessments.
Changbin Lim, Tae Kon Kim, Sahong Lee, Yoon Jeong Yeon, and Jung Lyul Lee
Nat. Hazards Earth Syst. Sci., 21, 3827–3842, https://doi.org/10.5194/nhess-21-3827-2021, https://doi.org/10.5194/nhess-21-3827-2021, 2021
Short summary
Short summary
This study aimed to quantitatively assess erosion risk. Methods for assessing each potential were proposed, and the corresponding erosion risk was calculated by introducing a combined potential erosion risk curve presenting the erosion consequence. In addition the method for verifying the risk was examined for the east coast of South Korea. We believe that our study makes a significant contribution to the literature and plays a key role in identifying methods that prevent erosion.
Gaia Mattei, Diana Di Luccio, Guido Benassai, Giorgio Anfuso, Giorgio Budillon, and Pietro Aucelli
Nat. Hazards Earth Syst. Sci., 21, 3809–3825, https://doi.org/10.5194/nhess-21-3809-2021, https://doi.org/10.5194/nhess-21-3809-2021, 2021
Short summary
Short summary
This study examines the characteristics of a destructive marine storm in the strongly inhabited coastal area of the Gulf of Naples, along the Italian coast of the Tyrrhenian Sea, which is highly vulnerable to marine storms due to the accelerated relative sea level rise trend and the increased anthropogenic impact on the coastal area. Finally, a first assessment of the return period of this event was evaluated using local press reports on damage to urban furniture and port infrastructures.
Dimitra M. Salmanidou, Joakim Beck, Peter Pazak, and Serge Guillas
Nat. Hazards Earth Syst. Sci., 21, 3789–3807, https://doi.org/10.5194/nhess-21-3789-2021, https://doi.org/10.5194/nhess-21-3789-2021, 2021
Short summary
Short summary
The potential of large-magnitude earthquakes in Cascadia poses a significant threat over a populous region of North America. We use statistical emulation to assess the probabilistic tsunami hazard from such events in the region of the city of Victoria, British Columbia. The emulators are built following a sequential design approach for information gain over the input space. To predict the hazard at coastal locations of the region, two families of potential seabed deformation are considered.
Tom Howard and Simon David Paul Williams
Nat. Hazards Earth Syst. Sci., 21, 3693–3712, https://doi.org/10.5194/nhess-21-3693-2021, https://doi.org/10.5194/nhess-21-3693-2021, 2021
Short summary
Short summary
We use a computer model to simulate storm surges around the coast of the United Kingdom. The model is based on the physics of the atmosphere and oceans. We hope that this will help us to better quantify extreme events: even bigger than those that have been seen in the tide gauge record. Our model simulates events which are comparable to the catastrophic 1953 storm surge. Model simulations have the potential to reduce the uncertainty in inferences of the most extreme surge return levels.
Balkis Samah Kohila, Laurent Dezileau, Soumaya Boussetta, Tarek Melki, and Nejib Kallel
Nat. Hazards Earth Syst. Sci., 21, 3645–3661, https://doi.org/10.5194/nhess-21-3645-2021, https://doi.org/10.5194/nhess-21-3645-2021, 2021
Short summary
Short summary
The Tunisian coast has been historically affected by extreme marine submersion events resulting from storms or tsunamis. To establish adaptation and mitigation strategies, it is essential to study these events in terms of spatial and temporal variability. Using a geological archive (sediment cores and surface sediments) retrieved from this coastal area of Tunisia, we present a reconstruction of past marine submersion events over the last 2500 years.
Riccardo A. Mel
Nat. Hazards Earth Syst. Sci., 21, 3629–3644, https://doi.org/10.5194/nhess-21-3629-2021, https://doi.org/10.5194/nhess-21-3629-2021, 2021
Short summary
Short summary
The present study investigates the hydrodynamics of the Venice lagoon if a partial use of the Mo.S.E. system (i.e. by closing the Lido inlet only) will be adopted.
A linear relationship is obtained between the seaward tidal amplitude and the reduction of the sea level peak at Venice, Burano, and Chioggia. Tidal period and wind have been accounted for. Two-thirds of the flood events can be effectively mitigated by such an operation under relative sea level rise scenarios up to +0.4 m.
Juan Camilo Gomez-Zapata, Nils Brinckmann, Sven Harig, Raquel Zafrir, Massimiliano Pittore, Fabrice Cotton, and Andrey Babeyko
Nat. Hazards Earth Syst. Sci., 21, 3599–3628, https://doi.org/10.5194/nhess-21-3599-2021, https://doi.org/10.5194/nhess-21-3599-2021, 2021
Short summary
Short summary
We present variable-resolution boundaries based on central Voronoi tessellations (CVTs) to spatially aggregate building exposure models and physical vulnerability assessment. Their geo-cell sizes are inversely proportional to underlying distributions that account for the combination between hazard intensities and exposure proxies. We explore their efficiency and associated uncertainties in risk–loss estimations and mapping from decoupled scenario-based earthquakes and tsunamis in Lima, Peru.
Elke M. I. Meyer, Ralf Weisse, Iris Grabemann, Birger Tinz, and Robert Scholz
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2021-325, https://doi.org/10.5194/nhess-2021-325, 2021
Revised manuscript accepted for NHESS
Short summary
Short summary
The severe storm tide of 13.03.1906 is still one of the most severe storm events for the region of the East Frisian coast. Water levels from this event are considered for designing dike lines. For the first time, we investigate this event with a hydrodynamic model by forcing with atmospheric data from 147 ensemble members from century reanalysis projects and a manual reconstruction of the synoptic situation. Water levels were notably high due to a coincidence of high spring tides and high surge.
Tien-Chi Liu, Tso-Ren Wu, and Shu-Kun Hsu
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2021-346, https://doi.org/10.5194/nhess-2021-346, 2021
Revised manuscript under review for NHESS
Short summary
Short summary
The findings from historical reports and numerical studies suggest the 1781 Jiateng Harbor Flooding and the 1782 Tsunami should be two independent incidents. Local tsunamis generated in southwest Taiwan could be responsible for the 1781 Jiateng Harbor Flooding while the existence of the 1782 Tsunami remains doubtful. Together with the documents of a storm event on 22 May 1782, the possibility that the significant water level of the 1782 Tsunami caused by storm surges could not be ignored.
Jean Roger, Bernard Pelletier, Maxime Duphil, Jérôme Lefèvre, Jérôme Aucan, Pierre Lebellegard, Bruce Thomas, Céline Bachelier, and David Varillon
Nat. Hazards Earth Syst. Sci., 21, 3489–3508, https://doi.org/10.5194/nhess-21-3489-2021, https://doi.org/10.5194/nhess-21-3489-2021, 2021
Short summary
Short summary
This study deals with the 5 December 2018 tsunami in New Caledonia and Vanuatu (southwestern Pacific) triggered by a Mw 7.5 earthquake that occurred southeast of Maré, Loyalty Islands, and was widely felt in the region. Numerical modeling results of the tsunami using a non-uniform and a uniform slip model compared to real tide gauge records and observations are globally well correlated for the uniform slip model, especially in far-field locations.
Md Jamal Uddin Khan, Fabien Durand, Kerry Emanuel, Yann Krien, Laurent Testut, and A. K. M. Saiful Islam
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2021-329, https://doi.org/10.5194/nhess-2021-329, 2021
Revised manuscript accepted for NHESS
Short summary
Short summary
Storm-surge induced coastal inundation constitutes a substantial threat to lives and properties along the vast coastline of the Bengal delta. We present here a robust probabilistic estimate of the storm surge hazard from a combination of numerical storm and storm-surge modelling. The estimated water level extremes vary with well-defined regional patterns. Our assessment shows that one-tenth of the coastal population in the Bengal delta is exposed to a once in a 50-year flooding.
Paulo Victor N. Araújo, Venerando E. Amaro, Leonlene S. Aguiar, Caio C. Lima, and Alexandre B. Lopes
Nat. Hazards Earth Syst. Sci., 21, 3353–3366, https://doi.org/10.5194/nhess-21-3353-2021, https://doi.org/10.5194/nhess-21-3353-2021, 2021
Short summary
Short summary
The approach of this work is a tidal flood risk mapping methodology for climate change scenarios in a semi-arid region with a strong environmental and social appeal. The study area has been suffering severe consequences from flooding by tides in recent years. High-geodetic-precision data, together with tidal return period statistics and data from current sea level rise scenarios, were used. This case study can serve as a basis for future management actions and as a model to be copied.
Julia Rulent, Lucy M. Bricheno, J. A. Mattias Green, Ivan D. Haigh, and Huw Lewis
Nat. Hazards Earth Syst. Sci., 21, 3339–3351, https://doi.org/10.5194/nhess-21-3339-2021, https://doi.org/10.5194/nhess-21-3339-2021, 2021
Short summary
Short summary
High coastal total water levels (TWLs) can lead to flooding and hazardous conditions for coastal communities and environment. In this research we are using numerical models to study the interactions between the three main components of the TWL (waves, tides, and surges) on UK and Irish coasts during winter 2013/14. The main finding of this research is that extreme waves and surges can indeed happen together, even at high tide, but they often occurred simultaneously 2–3 h before high tide.
Myung-Seok Kim, Seung-Buhm Woo, Hyunmin Eom, and Sung Hyup You
Nat. Hazards Earth Syst. Sci., 21, 3323–3337, https://doi.org/10.5194/nhess-21-3323-2021, https://doi.org/10.5194/nhess-21-3323-2021, 2021
Short summary
Short summary
We present spatial and temporal trends of meteotsunami occurrence in the eastern Yellow Sea over the past decade (2010–2019). Also, the improved meteotsunami monitoring/warning system was proposed based on occurrence characteristics of an air pressure disturbance and meteotsunami on the classified meteotsunami events. The guidance regarding the operation period, potential hot spot, and risk level of the meteotsunamis will be helpful to monitoring/warning system operators.
Mika Rantanen, Kirsti Jylhä, Jani Särkkä, Jani Räihä, and Ulpu Leijala
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2021-314, https://doi.org/10.5194/nhess-2021-314, 2021
Revised manuscript not accepted
Short summary
Short summary
Using sea level and precipitation observations, we analysed the meteorological characteristics of days when heavy precipitation and high sea level occur simultaneously in Finland. We found that around 5 % of all heavy precipitation and high sea level events on the Finnish coast are so called compound events when they both occur simultaneously, and these events were associated with close passages of mid-latitude cyclones. Our results act as a basis for compound flooding research in Finland.
Hira Ashfaq Lodhi, Shoaib Ahmed, and Haider Hasan
Nat. Hazards Earth Syst. Sci., 21, 3085–3096, https://doi.org/10.5194/nhess-21-3085-2021, https://doi.org/10.5194/nhess-21-3085-2021, 2021
Short summary
Short summary
The study summarizes historical accounts, eyewitness accounts and newspaper items to report the impact of the 1945 tsunami along the Makran coast of Pakistan. A field survey conducted in Gwadar, Pasni and Ormara quantifies inundation parameters in the three cities, using the landmarks reported in eyewitness accounts and newspaper items. The quantification of runup and inundation extents is based either on the field survey or on old maps.
Davide Zanchettin, Sara Bruni, Fabio Raicich, Piero Lionello, Fanny Adloff, Alexey Androsov, Fabrizio Antonioli, Vincenzo Artale, Eugenio Carminati, Christian Ferrarin, Vera Fofonova, Robert J. Nicholls, Sara Rubinetti, Angelo Rubino, Gianmaria Sannino, Giorgio Spada, Rémi Thiéblemont, Michael Tsimplis, Georg Umgiesser, Stefano Vignudelli, Guy Wöppelmann, and Susanna Zerbini
Nat. Hazards Earth Syst. Sci., 21, 2643–2678, https://doi.org/10.5194/nhess-21-2643-2021, https://doi.org/10.5194/nhess-21-2643-2021, 2021
Short summary
Short summary
Relative sea level in Venice rose by about 2.5 mm/year in the past 150 years due to the combined effect of subsidence and mean sea-level rise. We estimate the likely range of mean sea-level rise in Venice by 2100 due to climate changes to be between about 10 and 110 cm, with an improbable yet possible high-end scenario of about 170 cm. Projections of subsidence are not available, but historical evidence demonstrates that they can increase the hazard posed by climatically induced sea-level rise.
Georg Umgiesser, Marco Bajo, Christian Ferrarin, Andrea Cucco, Piero Lionello, Davide Zanchettin, Alvise Papa, Alessandro Tosoni, Maurizio Ferla, Elisa Coraci, Sara Morucci, Franco Crosato, Andrea Bonometto, Andrea Valentini, Mirko Orlić, Ivan D. Haigh, Jacob Woge Nielsen, Xavier Bertin, André Bustorff Fortunato, Begoña Pérez Gómez, Enrique Alvarez Fanjul, Denis Paradis, Didier Jourdan, Audrey Pasquet, Baptiste Mourre, Joaquín Tintoré, and Robert J. Nicholls
Nat. Hazards Earth Syst. Sci., 21, 2679–2704, https://doi.org/10.5194/nhess-21-2679-2021, https://doi.org/10.5194/nhess-21-2679-2021, 2021
Short summary
Short summary
The city of Venice relies crucially on a good storm surge forecast to protect its population and cultural heritage. In this paper, we provide a state-of-the-art review of storm surge forecasting, starting from examples in Europe and focusing on the Adriatic Sea and the Lagoon of Venice. We discuss the physics of storm surge, as well as the particular aspects of Venice and new techniques in storm surge modeling. We also give recommendations on what a future forecasting system should look like.
Piero Lionello, Robert J. Nicholls, Georg Umgiesser, and Davide Zanchettin
Nat. Hazards Earth Syst. Sci., 21, 2633–2641, https://doi.org/10.5194/nhess-21-2633-2021, https://doi.org/10.5194/nhess-21-2633-2021, 2021
Short summary
Short summary
Venice is an iconic place, and a paradigm of huge historical and cultural value is at risk. The threat posed by floods has dramatically increased in recent decades and is expected to continue to grow – and even accelerate – through this century. There is a need to better understand the future evolution of the relative sea level and its extremes and to develop adaptive planning strategies appropriate for present uncertainty, which might not be substantially reduced in the near future.
Sang-Guk Yum, Hsi-Hsien Wei, and Sung-Hwan Jang
Nat. Hazards Earth Syst. Sci., 21, 2611–2631, https://doi.org/10.5194/nhess-21-2611-2021, https://doi.org/10.5194/nhess-21-2611-2021, 2021
Short summary
Short summary
Developed statistical models to predict the non-exceedance probability of extreme storm surge-induced typhoons. Various probability distribution models were applied to find the best fitting to empirical storm-surge data.
Md. Jamal Uddin Khan, Fabien Durand, Xavier Bertin, Laurent Testut, Yann Krien, A. K. M. Saiful Islam, Marc Pezerat, and Sazzad Hossain
Nat. Hazards Earth Syst. Sci., 21, 2523–2541, https://doi.org/10.5194/nhess-21-2523-2021, https://doi.org/10.5194/nhess-21-2523-2021, 2021
Short summary
Short summary
The Bay of Bengal is well known for some of the deadliest cyclones in history. At the same time, storm surge forecasting in this region is physically involved and computationally costly. Here we show a proof of concept of a real-time, computationally efficient, and physically consistent forecasting system with an application to the recent Supercyclone Amphan. While challenges remain, our study paves the path forward to the improvement of the quality of localized forecast and disaster management.
Iva Tojčić, Cléa Denamiel, and Ivica Vilibić
Nat. Hazards Earth Syst. Sci., 21, 2427–2446, https://doi.org/10.5194/nhess-21-2427-2021, https://doi.org/10.5194/nhess-21-2427-2021, 2021
Short summary
Short summary
This study quantifies the performance of the Croatian meteotsunami early warning system (CMeEWS) composed of a network of air pressure and sea level observations developed in order to help coastal communities prepare for extreme events. The system would have triggered the warnings for most of the observed events but also set off some false alarms if it was operational during the multi-meteotsunami event of 11–19 May 2020 in the eastern Adriatic. Further development of the system is planned.
Elisa Lahcene, Ioanna Ioannou, Anawat Suppasri, Kwanchai Pakoksung, Ryan Paulik, Syamsidik Syamsidik, Frederic Bouchette, and Fumihiko Imamura
Nat. Hazards Earth Syst. Sci., 21, 2313–2344, https://doi.org/10.5194/nhess-21-2313-2021, https://doi.org/10.5194/nhess-21-2313-2021, 2021
Short summary
Short summary
In Indonesia, tsunamis represent a significant risk to coastal communities and buildings. Therefore, it is fundamental to deeply understand the tsunami source impact on buildings and infrastructure. This work provides a novel understanding of the relationship between wave period, ground shaking, liquefaction events, and potential building damage using tsunami fragility curves. This study represents the first investigation of colossal impacts increasing building damage.
Rémi Thiéblemont, Gonéri Le Cozannet, Jérémy Rohmer, Alexandra Toimil, Moisés Álvarez-Cuesta, and Iñigo J. Losada
Nat. Hazards Earth Syst. Sci., 21, 2257–2276, https://doi.org/10.5194/nhess-21-2257-2021, https://doi.org/10.5194/nhess-21-2257-2021, 2021
Short summary
Short summary
Sea level rise and its acceleration are projected to aggravate coastal erosion over the 21st century. Resulting shoreline projections are deeply uncertain, however, which constitutes a major challenge for coastal planning and management. Our work presents a new extra-probabilistic framework to develop future shoreline projections and shows that deep uncertainties could be drastically reduced by better constraining sea level projections and improving coastal impact models.
Takenori Shimozono
Nat. Hazards Earth Syst. Sci., 21, 2093–2108, https://doi.org/10.5194/nhess-21-2093-2021, https://doi.org/10.5194/nhess-21-2093-2021, 2021
Short summary
Short summary
Tsunamis are a major threat to low-lying coastal communities. Suddenly generated from their sources in deep water, tsunamis occasionally undergo tremendous amplification in shallow water. There is a need for efficient ways of predicting coastal tsunami transformation during different disaster management phases. The study proposed a novel and rigorous method based on kernel convolution for fast prediction of onshore tsunami waveforms from the observed/simulated wave data away from the coast.
Elias de Korte, Bruno Castelle, and Eric Tellier
Nat. Hazards Earth Syst. Sci., 21, 2075–2091, https://doi.org/10.5194/nhess-21-2075-2021, https://doi.org/10.5194/nhess-21-2075-2021, 2021
Short summary
Short summary
We use a statistical model to address the controls and interactions of environmental (wave, tide, weather, beach morphology) data on surf zone injuries along a sandy coast where shore-break and rip-current hazards co-exist. Although fair but limited predictive life-risk skill is found, the approach provides new insight into the environmental controls, their interactions and their respective contribution to hazard and exposure, with implications for the development of public education messaging.
Paula Camus, Ivan D. Haigh, Ahmed A. Nasr, Thomas Wahl, Stephen E. Darby, and Robert J. Nicholls
Nat. Hazards Earth Syst. Sci., 21, 2021–2040, https://doi.org/10.5194/nhess-21-2021-2021, https://doi.org/10.5194/nhess-21-2021-2021, 2021
Short summary
Short summary
In coastal regions, floods can arise through concurrent drivers, such as precipitation, river discharge, storm surge, and waves, which exacerbate the impact. In this study, we identify hotspots of compound flooding along the southern coast of the North Atlantic Ocean and the northern coast of the Mediterranean Sea. This regional assessment can be considered a screening tool for coastal management that provides information about which areas are more predisposed to experience compound flooding.
Constance Ting Chua, Adam D. Switzer, Anawat Suppasri, Linlin Li, Kwanchai Pakoksung, David Lallemant, Susanna F. Jenkins, Ingrid Charvet, Terence Chua, Amanda Cheong, and Nigel Winspear
Nat. Hazards Earth Syst. Sci., 21, 1887–1908, https://doi.org/10.5194/nhess-21-1887-2021, https://doi.org/10.5194/nhess-21-1887-2021, 2021
Short summary
Short summary
Port industries are extremely vulnerable to coastal hazards such as tsunamis. Despite their pivotal role in local and global economies, there has been little attention paid to tsunami impacts on port industries. For the first time, tsunami damage data are being extensively collected for port structures and catalogued into a database. The study also provides fragility curves which describe the probability of damage exceedance for different port industries given different tsunami intensities.
Scott Curtis, Kelley DePolt, Jamie Kruse, Anuradha Mukherji, Jennifer Helgeson, Ausmita Ghosh, and Philip Van Wagoner
Nat. Hazards Earth Syst. Sci., 21, 1759–1767, https://doi.org/10.5194/nhess-21-1759-2021, https://doi.org/10.5194/nhess-21-1759-2021, 2021
Short summary
Short summary
Storm surge flooding can challenge rescue and recovery operations, especially over large estuaries and populated barrier islands. Understanding the relationship between storm and tidal characteristics and surge timing is important for proper resourcing prior to an event. Here we compare the concurrency of maximum observed surge and areal extent of effective hazard operations for hurricanes Matthew and Florence in eastern North Carolina, USA. Matthew was a more spatially compounded surge event.
Fei Ye, Wei Huang, Yinglong J. Zhang, Saeed Moghimi, Edward Myers, Shachak Pe'eri, and Hao-Cheng Yu
Nat. Hazards Earth Syst. Sci., 21, 1703–1719, https://doi.org/10.5194/nhess-21-1703-2021, https://doi.org/10.5194/nhess-21-1703-2021, 2021
Short summary
Short summary
Compound flooding is caused by multiple mechanisms contributing to elevated water level simultaneously, which poses higher risks than conventional floods. This study uses a holistic approach to simulate the processes on a wide range of spatial and temporal scales that contributed to the compound flooding during Hurricane Florence in 2018. Sensitivity tests are used to isolate the contribution from each mechanism and identify the region experiencing compound effects, thus supporting management.
Rimali Mitra, Hajime Naruse, and Shigehiro Fujino
Nat. Hazards Earth Syst. Sci., 21, 1667–1683, https://doi.org/10.5194/nhess-21-1667-2021, https://doi.org/10.5194/nhess-21-1667-2021, 2021
Short summary
Short summary
A case study on the 2004 Indian Ocean tsunami was conducted at the Phra Thong island, Thailand, using a deep neural network (DNN) inverse model. The model estimated tsunami characteristics from the deposits at Phra Thong island. The uncertainty quantification of the result was evaluated. The predicted flow conditions and the depositional characteristics were compared with the reported observed values. This DNN model can serve as an essential tool for tsunami hazard mitigation at coastal cities.
Cited articles
Androulidakis, Y. S., Kombiadou, K. D., Makris, C. V., Baltikas, V. N., and
Krestenitis, Y. N.: Storm surges in the Mediterranean Sea: Variability and
trends under future climatic conditions, Dynam. Atmos. Oceans, 71,
56–82, 2015.
Annali: Annali Idrologici 1936, Elaborazioni e studi, Ufficio Idrografico del Magistrato alla Acque Venezia, Rome, Italy, 1941.
Arns, A., Wahl, T., Wolff, C., Vafeidis, A. T., Haigh, I. D., Woodworth, P.,
Niehüser, S., and Jensen, J..: Non-linear interaction modulates global
extreme sea levels, coastal flood exposure, and impacts, Nat. Commun.,
11, 1–9, 2020.
Bajo, M., Zampato, L., Umgiesser, G., Cucco, A., and Canestrelli, P.: A
finite element operational model for storm surge prediction in Venice,
Estuar. Coast. Shelf S., 75, 236–249, 2007.
Bajo, M., Međugorac, I., Umgiesser, G., and Orlić, M.: Storm surge and
seiche modelling in the Adriatic Sea and the impact of data assimilation,
Q. J. Roy. Meteor. Soc., 145, 2070–2084, 2019.
Bamber, J. L. and Aspinall, W. P.: An expert judgement assessment of future
sea-level rise from the ice sheets, Nat. Clim. Change, 3, 424–427,
2013.
Bargagli, A., Carillo, A., Pisacane, G., Ruti, P. M., Struglia, M. V., and
Tartaglione, N.: An Integrated Forecast System over the Mediterranean Basin:
Extreme Surge Prediction in the Northern Adriatic Sea, Mon. Weather Rev.,
130, 1317–1332, 2002.
Barriopedro, D., García-Herrera, R., Lionello, P.. and Pino, C.: A
discussion of the links between solar variability and high-storm-surge
events in Venice, J. Geophys. Res.-Atmos., 115, D13101, https://doi.org/10.1029/2009JD013114, 2010.
Battistin, D. and Canestrelli, P.:1872–2004 La serie storica delle maree a
Venezia, Venice, Italy: Istituzione Centro Previsioni e Segnalazioni Maree.
available at: https://www.comune.venezia.it/sites/default/files/publicCPSM2/pubblicazioni/La_serie_storica_delle_maree_a_Venezia_1872-2004_web_ridotto.pdf (last access: 29 July 2021), 2006.
Bertotti, L. and Cavaleri, L.: Coastal set-up and wave breaking, Oceanol.
Acta, 8, 237–242, 1985.
Bertotti, L., Bidlot, J.-R., Buizza, R., Cavaleri, L., and Janousek,
M.: Deterministic and ensemble-based prediction of Adriatic Sea sirocco
storms leading to “acqua alta” in Venice, Q. J. Roy. Meteor. Soc.,
137, 1446–1466, 2011.
Camuffo, D. and Sturaro, G.: Use of proxy-documentary and instrumental data
to assess the risk factors leading to sea flooding in Venice, Global Planet.
Change, 40, 93–103, 2004.
Canestrelli, P., Mandich, M., Pirazzoli, P. A., and Tomasin, A.: Wind,
Depressions and Seiche: Tidal Perturbations in Venice (1951–2000), Venice,
Italy: Istituzione Centro Previsioni e Segnalazioni Maree, available at:
https://www.comune.venezia.it/sites/default/files/publicCPSM2/pubblicazioni/Venti_depressioni_e_sesse.pdf (last access: 29 July 2021), 2001.
Caporin, M. and Fontini, F.: Damages Evaluation, Periodic Floods, and Local
Sea Level Rise: The Case of Venice, Italy, Handbook of Environmental and
Sustainable Finance, Academic Press, 93–110, https://doi.org/10.1016/C2014-0-05175-1, 2016.
Cavaleri, L., Bertotti, L., Buizza, R., Buzzi, A., Masato, V., Umgiesser, G.,
and Zampieri, M.: Predictability of extreme meteo-oceanographic events in
the Adriatic Sea, Q. J. Roy. Meteor. Soc., 136, 400–413, 2010.
Cavaleri, L., Bajo, M., Barbariol, F., Bastianini, M., Benetazzo,
A.,Bertotti, L., Chiggiato, J., Davolio, S., Ferrarin, C., Magnusson, L.,
Papa, A., Pezzutto, P., Pomaro, A., and Umgiesser, G.: The October 29, 2018
storm in Northern Italy – an exceptional event and its modeling, Prog.
Oceanogr., 178, 102178, https://doi.org/10.1016/j.pocean.2019.102178, 2019.
Cavaleri, L., Bajo, M., Barbariol, F., Bastianini, M., Benetazzo, A.,
Bertotti, L., Chiggiato, J., Ferrarin, C., Trincardi, F., and Umgiesser,
G.: The 2019 flooding of Venice and its implications for future predictions,
Oceanography, 33, 42–49, 2020.
Cerovečki, I., Orlić, M., and Hendershott, M. C.: Adriatic
seiche decay and energy loss to the Mediterranean, Deep-Sea Res. Pt.
I, 44, 2007–2029, 1997.
Chiodo, G., Oehrlein, J., Polvani, L. M., Fyfe, J. C., and Smith, A. K.:
Insignificant influence of the 11-year solar cycle on the North Atlantic
Oscillation, Nat. Geosci., 12, 94–99, 2019.
Città di Venezia:
Acque alte eccezionali, [data set], available at: https://www.comune.venezia.it/content/le-acque-alte-eccezionali, last access: 30 September 2020.
Clette, F., Svalgaard, L., Vaquero, J. M., and Cliver, E. W.: Revisiting the
sunspot number, Space Sci. Rev., 186, 35–103, 2014.
Codiga, D. L.: Unified tidal analysis and prediction using the UTide Matlab
functions. Graduate School of Oceanography, Technical Report, University of Rhode Island
Narragansett, RI, 2011.
Conte, D. and Lionello, P.: Characteristics of large positive and negative
surges in the Mediterranean Sea and their attenuation in future climate
scenarios, Global Planet. Change, 111, 159–173, 2013.
Copernicus Climate Data Store: ERA5 hourly data on single levels from 1979 to present, available at: https://cds.climate.copernicus.eu/, last access: 1 August 2021.
CPSM: Istituzione Centro Previsioni e Segnalazioni Maree, Historical archive of tides in Venice 1983–2018, available at: https://www.comune.venezia.it/content/le-acque-alte-eccezionali, last access: 4 August 2019.
De Zolt, S., Lionello, P., Nuhu, A., and Tomasin, A.: The disastrous storm of 4 November 1966 on Italy, Nat. Hazards Earth Syst. Sci., 6, 861–879, https://doi.org/10.5194/nhess-6-861-2006, 2006.
Dorigo, L.: Le osservazioni mareografiche in Laguna di Venezia, Ist. Veneto Sc., Lett. Arti, Commissione di studio dei provvedimenti per la conservazione e difesa della Laguna e della città di Venezia, Rapporti preliminari, vol. I, 11–38, 1961a.
Dorigo, L.: Maree eccezionali registrate a Venezia Punta della Salute, Periodo 1867–1960, Ist. Veneto Sc., Lett. Arti, Commissione di studio dei provvedimenti per la conservazione e difesa della Laguna e della città di Venezia, Rapporti preliminari, vol. I, 39–69, 1961b.
Dorigo, L.: Le alte maree eccezionali a Venezia, Ufficio Idrografico del Magistrato alle Acque, Publ. N. 156, Venice, 1968.
Enzi, S. and Camuffo, D.: Documentary sources of the sea surges in Venice
from ad 787 to 1867, Nat. Hazards, 12, 225–287, 1995.
Fagherazzi, S., Fosser, G., D'Alpaos, L., and D'Odorico, P.: Climatic
oscillations influence the flooding of Venice, Geophys. Res.
Lett., 32, L19710, https://doi.org/10.1029/2005GL023758, 2005.
Ferrarin, C., Tomasin, A., Bajo, M., Petrizzo, A., and Umgiesser, G.: Tidal
changes in a heavily modified coastal wetland, Cont. Shelf Res., 101, 22–33, 2015.
Ferrarin, C., Maicu, F., and Umgiesser, G.: The effect of lagoons on Adriatic
Sea tidal dynamics, Ocean Model., 119, 57–71, 2017.
Ferrarin, C., Bajo, M., Benetazzo, A., Cavaleri, L., Chiggiato, J., Davison,
S., Davolio, S., Lionello, P. Orlić, M., and Umgiesser, G.: Local and
large-scale controls of the exceptional Venice floods of November 2019,
Prog. Oceanogr., 197, 102628, https://doi.org/10.1016/j.pocean.2021.102628, 2021.
Flaounas, E., Kelemen, F. D., Wernli, H., Gaertner, M. A.,
Reale, M., Sanchez-Gomez, E., Lionello, P., Calmanti, S.,
Podrascanin, Z., Somot, S., Akhtar, N., Romera, R., and Conte, D.:
Assessment of an ensemble of ocean–atmosphere coupled and uncoupled
regional climate models to reproduce the climatology of Mediterranean
cyclones, Clim. Dynam., 51, 1023–1040, 2018.
Franco, P., jefti ć, L., Malanotte Rizzoli, P., Orlić, M., and
Purga, N.: Descriptive Model of the Northern Adriatic, Oceanol. Acta, 5,
11 pp., 1982.
Garrido-Perez, J. M., Ordóñez, C., Barriopedro, D.,
García-Herrera, R., and Paredes, D.: Impact of weather regimes on wind
power variability in western Europe, Appl. Energ., 264, 114731, 2020.
Godlewski, G., Caporalini, L., and Deuss, B.: “Acqua Alta” and the need for the Mo.S.E. project, TU Delft, student research project report, available at: http://resolver.tudelft.nl/uuid:ea34a719-79c1-4c6e-b886-e0d92407bc9d (last access: 1 August 2021), 2020.
Gregory, J. M., Griffies, S. M., Hughes, C. W., Lowe, J. A., Church, J. A.,
Fukimori, I., Gomez, N., Kopp, R.E., Landerer, F., Le Cozannet, G., Ponte,
R. M., Stammer, D., Tamisiea, M. E., and van de Wal, R. S.: Concepts and
terminology for sea level: Mean, variability and change, both local and
global, Surv. Geophys., 40, 1251–1289, 2019.
Hendershott, M. C. and Speranza, A.: Co-oscillating tides in long, narrow
bays; the Taylor problem revisited, Deep-Sea Res. Oceanogr. Abstr,
18, 959–980, 1971.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., and Schepers, D.:
The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146,
1999–2049, 2020.
Holton, J. R.: An Introduction to Dynamic Meteorology, Fourth Edition, Elsevier, Amsterdam, 535 pp., 2004.
Horsburgh, K. J. and Wilson, C.: Tide-surge interaction and its role in the
distribution of surge residuals in the North Sea, J. Geophys. Res.-Oceans,
112, C08003, https://doi.org/10.1029/2006JC004033, 2007.
ISPRA: Rapporto 01-2008; Rapporto 05-2010; Rapporto 01-2012; Rapporto 01-2013; Rapporto 02-2018, available at: http://www.venezia.isprambiente.it/bollettino#Analisi eventi di marea (last access: 12 August 2019), 2008–2018.
ISPRA – Istituto Superiore per la Protezione e la Ricerca Ambientale: Punta della Salute tide gauge data, [data set], available at: https://www.venezia.isprambiente.it/index.php?folder_id=20&stazione_id=129&tipo_dati_id=1&view=year, last access: 1 August 2021.
ISPRA, CPSM and CNR-ISMAR: Un mese di alte maree eccezionali. Dinamica e
anomalia dell'evento del 12 novembre 2019, available at: https://www.comune.venezia.it/content/le-acque-alte-eccezionali, last access: 30 September 2020.
Jackson, L. P. and Jevrejeva, S.: A probabilistic approach to 21st century
regional sea-level projections using RCP and High-end scenarios, Global
Planet. Change, 146, 179–189, 2016.
Janeković, I. and Kuzmić, M.: Numerical simulation of the Adriatic Sea principal tidal constituents, Ann. Geophys., 23, 3207–3218, https://doi.org/10.5194/angeo-23-3207-2005, 2005.
Jansa, A., Alpert, P., Arbogast, P., Buzzi, A., Ivancan-Picek, B., Kotroni, V., Llasat, M. C., Ramis, C., Richard, E., Romero, R., and Speranza, A.: MEDEX: a general overview, Nat. Hazards Earth Syst. Sci., 14, 1965–1984, https://doi.org/10.5194/nhess-14-1965-2014, 2014.
Jevrejeva, S., Jackson, L. P., Riva, R. E. M., Grinsted, A., and Moore, J.
C.:Coastal sea level rise with warming above 2 ∘C, P. Natl.
Acad. Sci. USA, 113, 13342–13347, 2016.
Jordà, G., Gomis, D., and Marcos, M.: Comment on “Storm surge frequency
reduction in Venice under climate change” by Troccoli et al., Clim. Change,
113, 1081–1087, 2012.
JRC – Joint Research Centre: Extreme Sea level – RCP45, [data set], available at: http://data.europa.eu/89h/e9e42344-119d-479e-9bc7-57400d12a8a2 (last access: 1 August 2021), 2021a.
JRC – Joint Research Centre: Extreme Sea level – RCP85, [data set], available at: http://data.europa.eu/89h/a565eea4-5422-4c7d-a000-2e10ae872da7 (last access: 1 August 2021), 2021b.
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Leetmaa, A., Reynolds, B., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang, J., Jenne, R., and Joseph, D.: The NCEP/NCAR 40-Year Reanalysis Project, B. Am. Meteorol. Soc., 77, 437–472, 1996.
Lionello, P.: Oceanographic prediction for the Venetial Littoral, Nuovo
Cimento C.,
18, 245–268, 1995.
Lionello, P., Dalan, F., and Elvini, E.: Cyclones in the Mediterranean
region: the present and the doubled CO2 climate scenarios, Clim. Res.,
22, 147–159, 2002.
Lionello, P.: Extreme storm surges in the Gulf of Venice: Present and future climate, in Flooding and Environmental Challenges for Venice and Its Lagoon: State of Knowledge, edited by: Fletcher, C. A. and Spencer, T., 59–69, Cambridge Univ. Press, New York, 0521840465, 2005
Lionello, P., Nizzero, A., and Elvini, E.: A procedure for estimating wind
waves and storm-surge climate scenarios in a regional basin: The Adriatic
Sea case, Clim. Res., 23, 217–231, 2003.
Lionello, P., Mufato, R., and Tomasin, A.: Sensitivity of free and forced
oscillations of the Adriatic Sea to sea level rise, Clim. Res., 29,
23–39, 2005.
Lionello, P., Bhend, J., Buzzi, A., Della-Marta, P. M., Krichak, S. O.,
Jansa, A., Maheras, P., Sanna, A., Trigo, I. F., and Trigo, R.: Cyclones in
the Mediterranean region: climatology and effects on the environment,
Developments in earth and environmental sciences, Elsevier, 325–372, https://doi.org/10.1016/S1571-9197(06)80009-1,
2006a.
Lionello, P., Sanna, A., Elvini, E., and Mufato, R.: A data assimilation
procedure for operational prediction of storm surge in the northern Adriatic
Sea, Cont. Shelf Res., 26, 539–553, 2006b.
Lionello, P., Boldrin, U., and Giorgi, F.: Future changes in cyclone
climatology over Europe as inferred from a regional climate simulation,
Clim. Dynam., 30, 657–671, 2008.
Lionello, P., Abrantes, F., Congedi, L., Dulac, F., Gacic, M., Gomis, D.,
Goodess, C., Hoff, H., Kutiel, H., Luterbacher, J., Planton, S., Reale, M.,
Schröder, K., Vittoria Struglia, M., Toreti, A., Tsimplis, M., Ulbrich,
U., and Xoplaki, E.: Introduction: Mediterranean Climate—Background Information, in: The Climate of the Mediterranean Region: From the Past to the Future, edited by: Lionello, P., Elsevier Inc., xxxv–xc, https://doi.org/10.1016/B978-0-12-416042-2.00012-4, 2012a.
Lionello, P., Cavaleri, L., Nissen, K. M., Pino, C., Raicich, F., and
Ulbrich, U.: Severe marine storms in the Northern Adriatic: Characteristics
and trends, Phys. Chem. Earth, 40–41, 93–105, 2012b.
Lionello, P., Galati, M. B., and Elvini, E.: Extreme storm surge and wind
wave climate scenario simulations at the Venetian littoral, Phys. Chem.
Earth, 40–41, 86–92, 2012c.
Lionello, P., Trigo, I. F., Gil, V., Liberato, M. L. R., Nissen, K. M.,
Pinto, J. G., Raible, C. C., Reale, M., Tanzarella, A., Trigo, R. M.,
Ulbrich, S., and Ulbrich, U.: Objective climatology of cyclones in the
Mediterranean region: A consensus view among methods with different system
identification and tracking criteria, Tellus A, 68, 29391, https://doi.org/10.3402/tellusa.v68.29391, 2016.
Lionello, P., Conte, D., Marzo, L., and Scarascia, L.: The contrasting
effect of increasing mean sea level and decreasing storminess on the maximum
water level during storms along the coast of the Mediterranean Sea in the
mid 21st century, Global Planet. Change, 151, 80–91, 2017.
Lionello, P., Conte, D., and Reale, M.: The effect of cyclones crossing the Mediterranean region on sea level anomalies on the Mediterranean Sea coast, Nat. Hazards Earth Syst. Sci., 19, 1541–1564, https://doi.org/10.5194/nhess-19-1541-2019, 2019.
Lionello, P., Nicholls, R. J., Umgiesser, G., and Zanchettin, D.: Venice flooding and sea level: past evolution, present issues, and future projections (introduction to the special issue), Nat. Hazards Earth Syst. Sci., 21, 2633–2641, https://doi.org/10.5194/nhess-21-2633-2021, 2021.
Malačič, V., Viezzoli, D., and Cushman-Roisin, B.: Tidal dynamics in
the northern Adriatic Sea, J. Geophys. Res.-Oceans., 105,
26265–26280, 2000.
Manca, B., Mosetti, F., and Zennaro, P.: Analisi spettrale delle sesse
dell'Adriatico, B. Geofis. Teor. Appl., 16, 51–60, 1974.
Marcos, M., Jordà, G., Gomis, D., and Pérez, B.: Changes in storm
surges in southern Europe from a regional model under climate change
scenarios, Global Planet. Change, 77, 116–128, 2011.
Markowsky, P. and Richardson, Y.: Mesoscale Meteorology in Midlatitudes,
Wiley-Blackwell, Chichester, 407 pp., 2010.
Martínez-Asensio, A., Marcos, M., Tsimplis, M. N., Gomis, D., Josey, S.,
and Jordà, G.: Impact of the atmospheric climate modes on Mediterranean
sea level variability, Global Planet. Change, 118, 1–15, 2014.
Martínez-Asensio, A., Tsimplis, M. N., and Calafat, F. M.: Decadal
variability of European sea level extremes in relation to the solar
activity, Geophys. Res. Lett., 43, 11744–11750, 2016.
Mel, R. and Lionello, P.: Storm surge ensemble prediction for the city of
Venice, Weather Forecast., 29, 1044–1057, 2014.
Mel, R., Sterl, A., and Lionello, P.: High resolution climate projection of storm surge at the Venetian coast, Nat. Hazards Earth Syst. Sci., 13, 1135–1142, https://doi.org/10.5194/nhess-13-1135-2013, 2013.
Mel, R., Carniello, L., and D'Alpaos, L.: Dataset of wind setup in a
regulated Venice lagoon, Data in brief, 26, 104386, https://doi.org/10.1016/j.dib.2019.104386, 2019.
Mentaschi, L., Vousdoukas, M., Voukouvalas, E., Sartini, L., Feyen, L., Besio, G., and Alfieri, L.: The transformed-stationary approach: a generic and simplified methodology for non-stationary extreme value analysis, Hydrol. Earth Syst. Sci., 20, 3527–3547, https://doi.org/10.5194/hess-20-3527-2016, 2016.
Mentaschi, L., Vousdoukas, M. I., Voukouvalas, E., Dosio, A., and Feyen, L.:
Global changes of extreme coastal wave energy fluxes triggered by
intensified teleconnection patterns, Geophys. Res. Lett., 44,
2416–2426, 2017.
Međugorac, I., Pasarić, M. and Orlić, M. Two recent storm-surge
episodes in the Adriatic, Int. J. Saf. Secur. Eng., 6, 589–596, https://doi.org/10.2495/SAFE-V6-N3-589-596 2016.
Međugorac, I., Orlić, M., Janeković, I., Pasarić, Z., and
Pasarić, M.: Adriatic storm surges and related cross-basin sea-level
slope, J. Mar. Syst., 181, 79–90, 2018.
Neu, U., Akperov, M. G., Bellenbaum, N., Benestad, R., Blender, R.,
Caballero, R., Cocozza, A., Dacre, H. F., Feng, Y., Fraedrich, K., Grieger,
J., Gulev, S., Hanley, J., Hewson, T., Inatsu, M., Keay, K., Kew, S. F.,
Kindem, I., Leckebusch, G. C., Liberato, M. L. R., Lionello, P., Mokhov, I.
I., Pinto, J. G., Raible, C. C., Reale, M., Rudeva, I., Schuster, M.,
Simmonds, I., Sinclair, M., Sprenger, M., Tilinina, N. D., Trigo, I. F.,
Ulbrich, S., Ulbrich, U., Wang, X. L., and Wernli, H.: Imilast: A community
effort to intercompare extratropical cyclone detection and tracking
algorithms, B. Am. Meteorol. Soc., 94, 529–547, 2013.
Nissen, K. M., Leckebusch, G. C., Pinto, J. G., and Ulbrich, U.:
Mediterranean cyclones and windstorms in a changing climate, Reg.
Environ. Change, 14, 1873–1890, 2014.
NOAA – National Oceanic and Atmospheric Administration – Physical Sciences Laboratory (PSL): NCEP/NCAR reanalysis data, [data set], available at: https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.html, last access: 1 August 2021.
Oppenheimer, M., Glavovic, B., Hinkel, J., Van de Wal, R., Magnan, A. K.,
Abd-Elgawad, A., Cai, R., Cifuentes-Jara, M., Deconto, R. M., and Ghosh, T.:
Sea level rise and implications for low-lying islands, coasts and
communities, IPCC Special Report on the Ocean and Cryosphere in a Changing
Climate, edited by: Pörtner, H.-O., Roberts, D. C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck,K., Alegría, A., Nicolai, M., Okem, A., Petzold, J., Rama, B., and Weyer, N. M., available at: https://www.ipcc.ch/srocc/chapter/chapter-4-sea-level-rise-and-implications-for-low-lying-islands-coasts-and-communities/ (last access: 1 August 2021), 2019.
Orlić, M.: On the frictionless influence of planetary atmospheric waves
on the Adriatic sea level, J. Phys. Oceanogr., 13, 1301–1306, 1983.
Orlić, M.: Anatomy of sea level variability-an example from the
Adriatic, The Ocean Engineering Handbook, CRC Press, Boca Raton, USA, 2001.
Pasarić, M. and Orlić, M.: Long-term meteorological preconditioning
of the North Adriatic coastal floods, Cont. Shelf Res., 21, 263–227,
2001.
Pirazzoli, P. A. and Tomasin, A.: Recent Evolution of Surge-Related Events
in the Northern Adriatic Area, J. Coast. Res., 18, 537–554, 2001.
Raicich, F.: Long-term variability of storm surge frequency in the Venice Lagoon: an update thanks to 18th century sea level observations, Nat. Hazards Earth Syst. Sci., 15, 527–535, https://doi.org/10.5194/nhess-15-527-2015, 2015.
Reale, M. and Lionello, P.: Synoptic climatology of winter intense precipitation events along the Mediterranean coasts, Nat. Hazards Earth Syst. Sci., 13, 1707–1722, https://doi.org/10.5194/nhess-13-1707-2013, 2013.
Reale, M., Liberato, M. L. R., Lionello, P., Pinto, J. G., Salon, S., and
Ulbrich, S.: A global climatology of explosive cyclones using a
multi-tracking approach, Tellus A,
71, 1611340, https://doi.org/10.1080/16000870.2019.1611340, 2019.
Reale, M., Cabos, W., Cavicchia, L., Conte, D., Coppola, E., Flaounas, E.,
Giorgi, F., Hochman, A., Li, L., Lionello, P., Podrascanin, Z., Sanchez
Gomez, E., Scoccimarro, E., Sein, D., and Somot, S.: Future projections of
Mediterranean cyclone characteristics using the Med-CORDEX ensemble of
coupled regional climate system models, Clim. Dynam., in review, 2021.
Robinson, A. R., Tomasin, A., and Artegiani, A.: Flooding Venice
phenomenology and prediction of the Adriatic Storm surge, Q. J. Roy.
Meteor. Soc., 99, 688–692, 1973.
Roland, A., Cucco, A., Ferrarin, C., Hsu, T.-W., Liau, J.-M., Ou, S.-H.,
Umgiesser, G., and Zanke, U.: On the development and verification of a 2-D
coupled wave-current model on unstructured meshes, J. Marine Syst., 78,
S244–S254, 2009.
Royal Observatory of Belgium: Sunspot Index and Long-term Solar Observations, available at: https://wwwbis.sidc.be/silso/datafiles, last access: 1 August 2021.
Rusconi, A.: Il Comune Marino a Venezia: ricerche e ipotesi sulle sue variazioni altimetriche e sui fenomeni naturali che le determinano, Min. Lavori Pubblici, Ufficio Idrografico Magistrato alle Acque, Publ. No. 157, Venice, Italy, 1983.
Sarretta, A., Pillon, S., Molinaroli, E., Guerzoni, S., and Fontolan, G.:
Sediment budget in the Lagoon of Venice, Italy, Cont. Shelf Res.,
30, 934–949, https://doi.org/10.1016/j.csr.2009.07.002, 2010.
Šepić, J., Vilibić, I., and Belušić, D.: Source of
the 2007 Ist meteotsunami (Adriatic Sea), J. Geophys. Res. Oceans.,
114, C03016, https://doi.org/10.1029/2008JC005092, 2009.
Thiéblemont, R., Matthes, K., Omrani, N.-E., Kodera, K., and Hansen, F. :
Solar forcing synchronizes decadal North Atlantic climate variability,
Nat. Commun., 6, 8268, https://doi.org/10.1038/ncomms9268, 2015.
Tomasin, A.: The frequency of Adriatic surges and solar activity.: Istituto
Studio Dinamica Grandi Masse (ISDGM-CNR), ISDGM Tech Rep, 194, 1–8, 2002.
Tomasin, A. and Frassetto, R.: Cyclogenesis and forecast of dramatic water
elevations in Venice, Elsevier Oceanography Series, 25, 427–438,
Elsevier, 1979.
Toreti, A., Xoplaki, E., Maraun, D., Kuglitsch, F. G., Wanner, H., and Luterbacher, J.: Characterisation of extreme winter precipitation in Mediterranean coastal sites and associated anomalous atmospheric circulation patterns, Nat. Hazards Earth Syst. Sci., 10, 1037–1050, https://doi.org/10.5194/nhess-10-1037-2010, 2010.
Trigo, I. F. and Davies, T. D.: Meteorological conditions associated with
sea surges in Venice: a 40 year climatology, Int. J.
Climatol., 22, 787–803, 2002.
Trigo, I. F., Davies, T. D., and Bigg, G. R.: Objective climatology of
cyclones in the Mediterranean region, J. Climate, 12, 1685–1696, 1999.
Trigo, I. F., Bigg, G. R., and Davies, T. D.: Climatology of
Cyclogenesis Mechanisms in the Mediterranean, Mon. Weather Rev., 130,
549–569, 2002.
Troccoli, A., Zambon, F., Hodges, K. I., and Marani, M.: Storm surge
frequency reduction in Venice under climate change, Clim. Change, 113,
1065–1079, 2012.
Ulbrich, U., Leckebusch, G. C., and Pinto, J. G.: Extra-tropical cyclones in
the present and future climate: a review, Theor. Appl.
Climatol., 96, 117–131, 2009.
Ulbrich, U., Lionello, P., Belušić, D., Jacobeit, J., Knippertz, P.,
Kuglitsch, F. G., Leckebusch, G. C., Luterbacher, J., Maugeri, M., Maheras,
P., Nissen, K. M., Pavan, V., Pinto, J. G., Saaroni, H., Seubert, S.,
Toreti, A., Xoplaki, E., and Ziv, B.: Climate of the mediterranean: Synoptic
patterns, temperature, precipitation, winds, and their extremes, The
Climate of the Mediterranean Region, https://doi.org/10.1016/B978-0-12-416042-2.00005-7, 301–346, 2012.
Ulbrich, U., Leckebusch, G. C., Grieger, J., Schuster, M., Akperov, M.,
Bardin, M. Y., Feng, Y., Gulev, S., Inatsu, M., Keay, K., Kew, S. F.,
Liberato, M. L. R., Lionello, P., Mokhov, I. I., Neu, U., Pinto, J. G.,
Raible, C. C., Reale, M., Rudeva, I., Simmonds, I., Tilinina, N. D., Trigo,
I. F., Ulbrich, S., Wang, X. L., and Wernli, H.: Are Greenhouse Gas Signals
of Northern Hemisphere winter extra-tropical cyclone activity dependent on
the identification and tracking algorithm?, Meteorol. Z.,
22, 61–68, 2013.
Umgiesser, G., Canu, D. M., Cucco, A., and Solidoro, C.: A finite element
model for the Venice Lagoon. Development, set up, calibration and
validation, J. Marine Syst., 51, 123–145, 2004.
Umgiesser, G., Bajo, M., Ferrarin, C., Cucco, A., Lionello, P., Zanchettin, D., Papa, A., Tosoni, A., Ferla, M., Coraci, E., Morucci, S., Crosato, F., Bonometto, A., Valentini, A., Orlić, M., Haigh, I. D., Nielsen, J. W., Bertin, X., Fortunato, A. B., Pérez Gómez, B., Alvarez Fanjul, E., Paradis, D., Jourdan, D., Pasquet, A., Mourre, B., Tintoré, J., and Nicholls, R. J.: The prediction of floods in Venice: methods, models and uncertainty (review article), Nat. Hazards Earth Syst. Sci., 21, 2679–2704,
https://doi.org/10.5194/nhess-21-2679-2021, 2021.
Vilibić, I. and Šepić, J.: Destructive meteotsunamis along the
eastern Adriatic coast: Overview, Phys. Chem. Earth, Parts A/B/C, 34,
904–917, https://doi.org/10.1016/j.pce.2009.08.004, 2009.
Vousdoukas, M. I., Voukouvalas, E., Annunziato, A., Giardino, A., and Feyen,
L.: Projections of extreme storm surge levels along Europe, Clim. Dynam.,
47, 3171–3190, 2016.
Vousdoukas, M. I., Mentaschi, L., Voukouvalas, E., Verlaan, M., and Feyen,
L.: Extreme sea levels on the rise along Europe's coasts, Earth's Future,
5, 304–323, 2017.
Vousdoukas, M. I., Mentaschi, L., Voukouvalas, E., Verlaan, M., Jevrejeva,
S., Jackson, L. P., and Feyen, L.: Global probabilistic projections of
extreme sea levels show intensification of coastal flood hazard, Nat.
Commun., 9, 2360, https://doi.org/10.1038/s41467-018-04692-w, 2018.
Wilks, D. S.: Statistical methods in the atmospheric sciences, third edition, Academic Press, Oxford, UK , 676 pp., 2011.
Zanchettin, D., Rubino, A., Traverso, P., and Tomasino, M.: Teleconnections
force interannual-to-decadal tidal variability in the Lagoon of Venice
(northern Adriatic), J. Geophys. Res.-Atmos., 114, D07106, https://doi.org/10.1029/2008JD011485, 2009.
Zanchettin, D., Bruni, S., Raicich, F., Lionello, P., Adloff, F., Androsov, A., Antonioli, F., Artale, V., Carminati, E., Ferrarin, C., Fofonova, V., Nicholls, R. J., Rubinetti, S., Rubino, A., Sannino, G., Spada, G., Thiéblemont, R., Tsimplis, M., Umgiesser, G., Vignudelli, S., Wöppelmann, G., and Zerbini, S.: Sea-level rise in Venice: historic and future trends (review article), Nat. Hazards Earth Syst. Sci., 21, 2643–2678, https://doi.org/10.5194/nhess-21-2643-2021, 2021.
Zantedeschi, F.: Intorno alla inondazione accaduta in Venezia nel giorno 15 di gennajo del 1867, Atti r. Ist. Veneto Sc. Lett. Arti, 940–942, 1866–67.
Zappa, G., Shaffrey, L. C., Hodges, K. I., Sansom, P. G., and Stephenson, D.
B.: A multimodel assessment of future projections of North Atlantic and
European extratropical cyclones in the CMIP5 climate models, J. Climate,
26, 5846–5862, 2013.
Zappa, G., Hawcroft, M. K., Shaffrey, L., Black, E., and Brayshaw, D. J.:
Extratropical cyclones and the projected decline of winter Mediterranean
precipitation in the CMIP5 models, Clim. Dynam., 45, 1727–1738, 2015.
Download
- Article
(6948 KB) - Full-text XML
Short summary
In this review we describe the factors leading to the extreme water heights producing the floods of Venice. We discuss the different contributions, their relative importance, and the resulting compound events. We highlight the role of relative sea level rise and the observed past and very likely future increase in extreme water heights, showing that they might be up to 160 % higher at the end of the 21st century than presently.
In this review we describe the factors leading to the extreme water heights producing the floods...
Altmetrics
Final-revised paper
Preprint