Articles | Volume 21, issue 8
https://doi.org/10.5194/nhess-21-2611-2021
https://doi.org/10.5194/nhess-21-2611-2021
Research article
 | 
26 Aug 2021
Research article |  | 26 Aug 2021

Estimation of the non-exceedance probability of extreme storm surges in South Korea using tidal-gauge data

Sang-Guk Yum, Hsi-Hsien Wei, and Sung-Hwan Jang

Related authors

Prediction of volume of shallow landslides due to rainfall using data-driven models
Jérémie Tuganishuri, Chan-Young Yune, Manik Das Adhikari, Seung Woo Lee, Gihong Kim, and Sang-Guk Yum
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-90,https://doi.org/10.5194/nhess-2024-90, 2024
Preprint under review for NHESS
Short summary
Assessing Typhoon Soulik-induced morphodynamics over the Mokpo coastal region in South Korea based on a geospatial approach
Sang-Guk Yum, Moon-Soo Song, and Manik Das Adhikari
Nat. Hazards Earth Syst. Sci., 23, 2449–2474, https://doi.org/10.5194/nhess-23-2449-2023,https://doi.org/10.5194/nhess-23-2449-2023, 2023
Short summary
Prediction of landslide induced debris’ severity using machine learning algorithms: a case of South Korea
Tuganishuri Jérémie, Chan-Young Yune, Gihong Kim, Seung Woo Lee, Manik Adhikari, and Sang-Guk Yum
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-73,https://doi.org/10.5194/nhess-2023-73, 2023
Manuscript not accepted for further review
Short summary
Development of black ice prediction model using GIS-based multi-sensor model validation
Seok Bum Hong, Hong Sik Yun, Sang Guk Yum, Seung Yeop Ryu, In Seong Jeong, and Jisung Kim
Nat. Hazards Earth Syst. Sci., 22, 3435–3459, https://doi.org/10.5194/nhess-22-3435-2022,https://doi.org/10.5194/nhess-22-3435-2022, 2022
Short summary
Strategic framework for natural disaster risk mitigation using deep learning and cost-benefit analysis
Ji-Myong Kim, Sang-Guk Yum, Hyunsoung Park, and Junseo Bae
Nat. Hazards Earth Syst. Sci., 22, 2131–2144, https://doi.org/10.5194/nhess-22-2131-2022,https://doi.org/10.5194/nhess-22-2131-2022, 2022
Short summary

Related subject area

Sea, Ocean and Coastal Hazards
Tsunami hazard assessment in the South China Sea based on geodetic locking of the Manila subduction zone
Guangsheng Zhao and Xiaojing Niu
Nat. Hazards Earth Syst. Sci., 24, 2303–2313, https://doi.org/10.5194/nhess-24-2303-2024,https://doi.org/10.5194/nhess-24-2303-2024, 2024
Short summary
The impact of long-term changes in ocean waves and storm surge on coastal shoreline change: a case study of Bass Strait and south-east Australia
Mandana Ghanavati, Ian R. Young, Ebru Kirezci, and Jin Liu
Nat. Hazards Earth Syst. Sci., 24, 2175–2190, https://doi.org/10.5194/nhess-24-2175-2024,https://doi.org/10.5194/nhess-24-2175-2024, 2024
Short summary
Brief communication: Implications of outstanding solitons for the occurrence of rogue waves at two additional sites in the North Sea
Ina Teutsch, Ralf Weisse, and Sander Wahls
Nat. Hazards Earth Syst. Sci., 24, 2065–2069, https://doi.org/10.5194/nhess-24-2065-2024,https://doi.org/10.5194/nhess-24-2065-2024, 2024
Short summary
A systemic and comprehensive assessment of coastal hazard changes: method and application to France and its overseas territories
Marc Igigabel, Marissa Yates, Michalis Vousdoukas, and Youssef Diab
Nat. Hazards Earth Syst. Sci., 24, 1951–1974, https://doi.org/10.5194/nhess-24-1951-2024,https://doi.org/10.5194/nhess-24-1951-2024, 2024
Short summary
Simulating sea level extremes from synthetic low-pressure systems
Jani Särkkä, Jani Räihä, Mika Rantanen, and Matti Kämäräinen
Nat. Hazards Earth Syst. Sci., 24, 1835–1842, https://doi.org/10.5194/nhess-24-1835-2024,https://doi.org/10.5194/nhess-24-1835-2024, 2024
Short summary

Cited articles

Bardsley, E.: The Weibull distribution as an extreme value model for transformed annual maxima, J. Hydrol., 58, 57–63, 2019. 
Bermúdez, M., Cea, L., and Sopelana, J.: Quantifying the role of individual flood drivers and their correlations in flooding of coastal river reaches, Stoch. Environ. Res. Risk A., 33, 1851–1861, 2019. 
Bommier, E.: Peaks-Over-Threshold Modelling of Environmental Data, Department of Mathematics, Uppsala University, Uppsala, 2014. 
Buchana, P. and McSharry, P. E.: Windstorm risk assessment for offshore wind farms in the North Sea, Wind Energy, 22, 1219–1229, 2019. 
Catalano, A. J., Broccoli, A. J., Kapnick, S. B., and Janoski, T. P.: High-Impact Extratropical Cyclones along the Northeast Coast of the United States in a Long Coupled Climate Model Simulation, J. Climate, 32, 2131–2143, 2019. 
Download
Short summary
Developed statistical models to predict the non-exceedance probability of extreme storm surge-induced typhoons. Various probability distribution models were applied to find the best fitting to empirical storm-surge data.
Altmetrics
Final-revised paper
Preprint