Articles | Volume 21, issue 8
https://doi.org/10.5194/nhess-21-2611-2021
https://doi.org/10.5194/nhess-21-2611-2021
Research article
 | 
26 Aug 2021
Research article |  | 26 Aug 2021

Estimation of the non-exceedance probability of extreme storm surges in South Korea using tidal-gauge data

Sang-Guk Yum, Hsi-Hsien Wei, and Sung-Hwan Jang

Related authors

Landslide Hazard Microzonation Using a Hybrid Integrated Approach to Reduce Disaster Risk: A Case Study of Jecheon, South Korea
Jae-Joon Lee, Manik Das Adhikari, Moon-Soo Song, and Sang-Guk Yum
EGUsphere, https://doi.org/10.5194/egusphere-2025-1169,https://doi.org/10.5194/egusphere-2025-1169, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Prediction of the volume of shallow landslides due to rainfall using data-driven models
Jérémie Tuganishuri, Chan-Young Yune, Gihong Kim, Seung Woo Lee, Manik Das Adhikari, and Sang-Guk Yum
Nat. Hazards Earth Syst. Sci., 25, 1481–1499, https://doi.org/10.5194/nhess-25-1481-2025,https://doi.org/10.5194/nhess-25-1481-2025, 2025
Short summary
Assessing Typhoon Soulik-induced morphodynamics over the Mokpo coastal region in South Korea based on a geospatial approach
Sang-Guk Yum, Moon-Soo Song, and Manik Das Adhikari
Nat. Hazards Earth Syst. Sci., 23, 2449–2474, https://doi.org/10.5194/nhess-23-2449-2023,https://doi.org/10.5194/nhess-23-2449-2023, 2023
Short summary
Prediction of landslide induced debris’ severity using machine learning algorithms: a case of South Korea
Tuganishuri Jérémie, Chan-Young Yune, Gihong Kim, Seung Woo Lee, Manik Adhikari, and Sang-Guk Yum
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-73,https://doi.org/10.5194/nhess-2023-73, 2023
Manuscript not accepted for further review
Short summary
Development of black ice prediction model using GIS-based multi-sensor model validation
Seok Bum Hong, Hong Sik Yun, Sang Guk Yum, Seung Yeop Ryu, In Seong Jeong, and Jisung Kim
Nat. Hazards Earth Syst. Sci., 22, 3435–3459, https://doi.org/10.5194/nhess-22-3435-2022,https://doi.org/10.5194/nhess-22-3435-2022, 2022
Short summary

Related subject area

Sea, Ocean and Coastal Hazards
Development of a wind-based storm surge model for the German Bight
Laura Schaffer, Andreas Boesch, Johanna Baehr, and Tim Kruschke
Nat. Hazards Earth Syst. Sci., 25, 2081–2096, https://doi.org/10.5194/nhess-25-2081-2025,https://doi.org/10.5194/nhess-25-2081-2025, 2025
Short summary
Advancing nearshore and onshore tsunami hazard approximation with machine learning surrogates
Naveen Ragu Ramalingam, Kendra Johnson, Marco Pagani, and Mario L. V. Martina
Nat. Hazards Earth Syst. Sci., 25, 1655–1679, https://doi.org/10.5194/nhess-25-1655-2025,https://doi.org/10.5194/nhess-25-1655-2025, 2025
Short summary
Untangling the waves: decomposing extreme sea levels in a non-tidal basin, the Baltic Sea
Marvin Lorenz, Katri Viigand, and Ulf Gräwe
Nat. Hazards Earth Syst. Sci., 25, 1439–1458, https://doi.org/10.5194/nhess-25-1439-2025,https://doi.org/10.5194/nhess-25-1439-2025, 2025
Short summary
Accelerating compound flood risk assessments through active learning: A case study of Charleston County (USA)
Lucas Terlinden-Ruhl, Anaïs Couasnon, Dirk Eilander, Gijs G. Hendrickx, Patricia Mares-Nasarre, and José A. Á. Antolínez
Nat. Hazards Earth Syst. Sci., 25, 1353–1375, https://doi.org/10.5194/nhess-25-1353-2025,https://doi.org/10.5194/nhess-25-1353-2025, 2025
Short summary
Tsunami detection methods for ocean-bottom pressure gauges
Cesare Angeli, Alberto Armigliato, Martina Zanetti, Filippo Zaniboni, Fabrizio Romano, Hafize Başak Bayraktar, and Stefano Lorito
Nat. Hazards Earth Syst. Sci., 25, 1169–1185, https://doi.org/10.5194/nhess-25-1169-2025,https://doi.org/10.5194/nhess-25-1169-2025, 2025
Short summary

Cited articles

Bardsley, E.: The Weibull distribution as an extreme value model for transformed annual maxima, J. Hydrol., 58, 57–63, 2019. 
Bermúdez, M., Cea, L., and Sopelana, J.: Quantifying the role of individual flood drivers and their correlations in flooding of coastal river reaches, Stoch. Environ. Res. Risk A., 33, 1851–1861, 2019. 
Bommier, E.: Peaks-Over-Threshold Modelling of Environmental Data, Department of Mathematics, Uppsala University, Uppsala, 2014. 
Buchana, P. and McSharry, P. E.: Windstorm risk assessment for offshore wind farms in the North Sea, Wind Energy, 22, 1219–1229, 2019. 
Catalano, A. J., Broccoli, A. J., Kapnick, S. B., and Janoski, T. P.: High-Impact Extratropical Cyclones along the Northeast Coast of the United States in a Long Coupled Climate Model Simulation, J. Climate, 32, 2131–2143, 2019. 
Download
Short summary
Developed statistical models to predict the non-exceedance probability of extreme storm surge-induced typhoons. Various probability distribution models were applied to find the best fitting to empirical storm-surge data.
Share
Altmetrics
Final-revised paper
Preprint