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Abstract. Global warming, one of the most serious aspects
of climate change, can be expected to cause rising sea lev-
els. These have in turn been linked to unprecedentedly large
typhoons that can cause flooding of low-lying land, coastal
invasion, seawater flows into rivers and groundwater, ris-
ing river levels, and aberrant tides. To prevent typhoon-
related loss of life and property damage, it is crucial to ac-
curately estimate storm-surge risk. This study therefore de-
velops a statistical model for estimating such surges’ prob-
ability based on surge data pertaining to Typhoon Maemi,
which struck South Korea in 2003. Specifically, estimation
of non-exceedance probability models of the typhoon-related
storm surge was achieved via clustered separated peaks-
over-threshold simulation, while various distribution models
were fitted to the empirical data for investigating the risk
of storm surges reaching particular heights. To explore the
non-exceedance probability of extreme storm surges caused
by typhoons, a threshold algorithm with clustering method-
ology was applied. To enhance the accuracy of such non-
exceedance probability, the surge data were separated into
three different components: predicted water level, observed
water level, and surge. Sea-level data from when Typhoon
Maemi struck were collected from a tidal-gauge station in the
city of Busan, which is vulnerable to typhoon-related disas-
ters due to its geographical characteristics. Fréchet, gamma,
log-normal, generalized Pareto, and Weibull distributions
were fitted to the empirical surge data, and the researchers
compared each one’s performance at explaining the non-
exceedance probability. This established that Weibull distri-
bution was better than any of the other distributions for mod-

elling Typhoon Maemi’s peak total water level. Although this
research was limited to one city on the Korean Peninsula and
one extreme weather event, its approach could be used to re-
liably estimate non-exceedance probabilities in other regions
where tidal-gauge data are available. In practical terms, the
findings of this study and future ones adopting its methodol-
ogy will provide a useful reference for designers of coastal
infrastructure.

1 Introduction

1.1 Climate change and global warming

Climate change, which can directly affect the atmosphere,
oceans, and other planetary features via a variety of pathways
and mechanisms, notably including global warming, also has
secondary consequences for nature and for human society. In
the specific case of global warming, one of the most pro-
foundly negative of these secondary effects is sea-level rise,
which can cause flooding of low-lying land, coastal invasion,
seawater flows into rivers and groundwater, river-level rise,
and tidal aberrations.

Recent research has also reported that, under the influ-
ence of global warming, the intensities and frequencies of ty-
phoons and hurricanes are continuously changing, increasing
these hazards’ potential to negatively affect water resources,
transport facilities, and other infrastructure, as well as natural
systems (Noshadravan et al., 2017). Ke et al. (2018) studied
these new frequencies of storm-induced flooding, with the
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aim of formulating new safety guidelines for flood defence
systems in Shanghai, China. They proposed a methodol-
ogy for estimating new flooding frequencies, which involved
analysing annual water-level data obtained from water-gauge
stations along a river near Shanghai. The authors reported
that a generalized extreme value (GEV) probability distribu-
tion model was the best fit to the empirical data, and this led
them to advocate changes in the recommended height of the
city’s flood wall. However, Ke at al. (2018) only considered
annual maximum water levels when analysing flooding fre-
quencies, which could have led to inaccurate estimation of
the exceedance probability of extreme natural hazards such
as mega-typhoons, which may bring unexpectedly or even
unprecedentedly high water levels. In such circumstances,
the protection of human society calls for highly accurate
forecasting systems, especially as inaccurate estimation of
the risk probability of these hazards can lead to the construc-
tion of facilities in inappropriate locations, thus wasting time
and money and endangering life. Moreover, the combined
effect of sea-level rise and tropical storms is potentially even
more catastrophic than either of these hazards by itself.

1.1.1 Sea-level rise

According to the Intergovernmental Panel on Climate
Change (IPCC, 2007), average global temperature increased
by approximately 0.74 ◦C (i.e. at least 0.56 ◦C and up
to 0.92 ◦C) between 1906 and 2005 (Hwang, 2013). The
IPCC (2007) Fourth Assessment Report (AR4) noted that
since 1961, world mean sea level (MSL) has increased by
around 1.8 mm (i.e. 1.3–2.3 mm) per year; when melting po-
lar ice is taken into account, this figure increases to 3.1 mm
(2.4–3.8 mm). Moreover, the overall area of Arctic ice has
decreased by an average of 2.7 % annually since 1978, and
the amount of snow on mountains has also declined (Kim
and Cho, 2013). These observations have sparked growing
interest in how much sea levels will increase, including re-
search into how changes in the climate can best be coped
with (Radic and Hock, 2011; Schaeffer et al., 2012). Most in-
dustrial facilities on the Korean Peninsula, including plants,
ports, roads, and shipyards, are located near the shore – as
indeed are most residential buildings. These topographical
characteristics make the cities of South Korea especially vul-
nerable to damage caused by sea-level rise and the associated
large socioeconomic losses.

1.1.2 Sea-level rise potentially affecting the city of
Busan, South Korea

Yoon and Kim (2012) investigated 51 years’ worth of sea-
level changes using data from tidal gauges at 17 stations lo-
cated around the Korean Peninsula. They utilized regression
analysis to calculate the general trend in MSL for 1960–2010
at each station and found that around South Korea MSL rose
more quickly than it did globally. The linear rising trend of

Table 1. Largest typhoons to have struck the Korean Peninsula.

Name Date Amount of Max. wind
damage (USD) speed

(10 min. avg.,
m s−1)

Rusa 30 Aug–1 Sep 2002 4.3 billion (first) 41
Maemi 12–13 Sep 2003 3.5 billion (second) 54
Bolaven 25–30 Aug 2012 0.9 billion (third) 53

MSL was relatively small along South Korea’s western coast
(averaging 1.3 mm yr−1) but large on the southern and east-
ern coasts (3.2 and 2.0 mm yr−1, respectively) and very large
around Jeju Island (5.6 mm yr−1, i.e. more than 3 times the
global average).

According to AR4, the rate of sea-level rise may accel-
erate after the 21st century, and this should be taken into
consideration when designing coastal structures if disasters
are to be avoided. Therefore, places most likely to be af-
fected by current and future climate change need more accu-
rate predictions of sea-level variation and surge heights, with
a “surge” being defined as the difference between observed
and predicted sea level. In the present work, Busan, a major
metropolitan area on the southeastern coast of South Korea,
has been used as a case study. According to the calculations
of Yoon and Kim (2012) , the sea level around Busan rose by
an average 1.8 mm yr−1 from 1960 to 2010, i.e. roughly the
same as the global trend over the same period.

1.2 Problem statement

1.2.1 Typhoon trends in South Korea

The Korean Peninsula is bounded by three distinct sea sys-
tems, generally known in English as the Yellow Sea, the Ko-
rea Strait, and the East Sea or Sea of Japan. This character-
istic has often led to severe damage to its coastal regions.
According to the Korea Ocean Observing and Forecasting
System (KOOFS), Typhoon Maemi in September 2003 had
a maximum wind speed of 54 m s−1 (metres per second),
and these strong gusts caused an unexpected storm surge.
This event caused USD 3.5 billion in property damage, as
shown in Table 1. All three of the highest peaks ever recorded
by South Korea’s tidal-gauge stations also occurred in that
month.

The most typhoon-heavy month in South Korea is Au-
gust, followed by July and September, with two-thirds of
all typhoons occurring in July and August. Tables 2 and 3
present statistics about typhoons in South Korea over peri-
ods of 68 and 10 years ending in 2019, respectively, and
Fig. 1 shows the track of Typhoon Maemi from 4–16 Septem-
ber 2003. As can be seen from Fig. 1, Typhoon Maemi passed
into Busan from the southeast, causing direct damage upon
landfall, after which its maximum 10 min sustained wind
speed was 54 m s−1. Typhoon Maemi prompted the insurance
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Figure 1. Track and wind speed of Maemi, 2003. The track of Typhoon Maemi was created by the authors using the base map provided by
ArcGIS.

Table 2. Incidence of typhoons and typhoon landfall in South Korea, 1952–2019, by month.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total

Typhoons, n 29 15 15 45 67 115 245 351 322 238 152 73 1678
Typhoons, avg. 0.54 0.28 0.46 0.83 1.24 2.13 4.54 6.52 5.96 4.41 2.81 1.35 31.07
Landfalls, n 0 0 0 0 1 18 65 70 45 5 0 0 206
Landfalls, avg. 0.0 0.0 0.0 0.0 0.02 0.33 1.2 1.3 0.87 0.09 0.0 0.0 3.81

Table 3. Incidence of typhoons and typhoon landfall in South Korea, 2010–2019, by month.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total

Typhoons, n 4 3 4 5 12 18 33 43 56 34 16 7 235
Typhoons, avg. 0.4 0.3 0.4 0.5 1.2 1.8 3.3 4.3 5.6 3.4 1.6 0.7 23.5
Landfalls, n 0 0 0 0 0 0 3 11 7 5 2 0 28
Landfalls, avg. 0 0 0 0 0 0 0.3 1.1 0.7 0.5 0.2 0 2.8

industry, the South Korean government, and many academic
researchers to recognize the importance of advance planning
and preparations for such storms, as well as for other types
of natural disasters.

1.2.2 Tidal-gauge stations in South Korea

Effective measures for reducing the damage caused by future
typhoons, especially the design and re-design of waterfront
infrastructure, will require accurate prediction of storm-surge

height. When Typhoon Maemi struck the Korean Peninsula
in 2003, South Korea was operating 17 tidal-gauge stations,
of which 8 had been collecting data for 30 years or more.
They were located on the western (n= 5), southern (n= 10),
and eastern coasts (n= 2).

This study focuses on the 15 tidal-gauge stations located
on the southern and western coasts (Fig. 2). The reason for
excluding the remaining two stations is that the majority of
typhoons do not arrive from the east or make landfall on
that coast. The hourly tidal data for this study have been
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Figure 2. Locations of the 15 tidal-gauge stations on the western and southern coasts of South Korea as of 2003. The locations of tidal-gauge
stations were created by the authors using the base map provided by ArcGIS.

provided by the Korea Hydrographic and Oceanographic
Agency (KHOA, 2019) and are used with that agency’s per-
mission.

1.2.3 Highest recorded water levels

The western tidal-gauge stations are located at Incheon,
Gyeongin, Changwon, Gunsan, and Mokpo. These five sta-
tions have operated for different lengths of time, ranging
from 2 to 61 years. Collection of the sea levels observed
hourly by each station throughout their respective periods
of operation revealed the top three sea-level heights at each.
These heights, which are shown in Table 4, are clearly corre-
lated with the dates of arrival of typhoons.

The same approach was applied to the data from the
10 tidal-gauge stations on the south coast, as shown in Ta-
bles 5 and 6.

1.2.4 Tidal-gauge station at the city of Busan in South
Korea

One of the focal tidal-gauge stations has observation records
covering more than half a century. It is located on the south
coast at Busan, South Korea’s second-largest city. Thanks
to its location near the sea, Busan’s international trade has

Table 4. The three highest water levels recorded at each tidal-gauge
station on South Korea’s west coast.

Location Years Top Dates and times of peaks
of data three (GMT+9)

peaks
(cm)

Incheon 18
987 24 Jul 2013, 10:00
981 8 Sep 2002, 06:00
980 27 Oct 2003, 18:00

Gyeonin 2
993 30 Sep 2015, 19:00
987 29 Sep 2015, 18:00
986 29 Oct 2015, 18:00

Janghang 14
798 30 Sep 2015, 17:00
796 11 Oct 2014, 17:00
794 29 Sep 2015, 16:00

Gunsan 37
805 19 Aug 1997, 04:00
799 21 Aug 1997, 05:00
797 31 Aug 2000, 05:00

Mokpo 61
544 4 Jul 2004, 04:00
544 6 Jul 2004, 05:00
538 16 Nov 2012, 16:00
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Table 5. The three highest water levels recorded at 9 of the 10 tidal-
gauge stations on South Korea’s south coast.

Location Years of Top Dates/times of peaks
data three (GMT+9)

peaks
(cm)

Port of New Busan 5
221 18 Sep 2012, 10:00
219 17 Sep 2012, 09:00
219 11 Aug 2014, 21:00

Gadeok 40
252 17 Sep 2012, 10:00
246 17 Sep 2012, 09:00
246 16 Jul 1987, 00:00

Masan 37
265 17 Sep 2012, 10:00
264 17 Sep 2012, 11:00
244 29 Aug 2004, 21:00

Ulsan 55
133 19 Aug 2004, 08:00
120 12 Sep 2003, 21:00
129 17 Sep 2012, 20:00

Tongyeong 41
426 12 Sep 2003, 21:00
357 12 Sep 2012, 10:00
356 12 Sep 2003, 20:00

Samcheonpo 2
352 30 Aug 2015, 22:00
350 28 Oct 2015, 09:00
350 27 Nov 2015, 10:00

Geoje 11
270 17 Sep 2012, 09:00
259 17 Sep 2012, 10:00
255 4 Jan 2006, 09:00

Gwangyang 6
479 17 Sep 2012, 10:00
443 17 Sep 2012, 11:00
441 1 Aug 2014, 22:00

Yeosu 52
440 18 Aug 1966, 23:00
430 14 Sep 1966, 21:00
129 17 Aug 1966, 22:00

Table 6. The three highest water levels recorded at the tidal-gauge
station in Busan, South Korea.

Years Top Dates/times of peaks
of data three (GMT+9)

peaks
(cm)

Busan 54
211 12 Sep 2003, 21:00
190 12 Sep 2003, 20:00
188 12 Sep 2003, 12:00

boomed, and as a consequence it now boasts the largest port
in South Korea. The Nakdong, the longest and widest river
in South Korea, also passes through it. Due to these geo-
graphical characteristics, Busan has been very vulnerable to
natural disasters, and the importance of accurately predicting
the characteristics of future storms is increasingly recognized
by its government and other stakeholders. The top three sea-
level heights at the tidal-gauge station there are shown in Ta-

Figure 3. Mean sea-level fluctuations in Busan, South Korea, 1962–
2019 (KHOA, 2019).

Table 7. Kolmogorov–Smirnov normality test of sea-level fluctua-
tion data from the Busan tidal-gauge station.

Statistic Degrees of Significance Pearson
freedom (df) correlation

Sea-level fluctuation 0.084 473 352 0.200 0.96

ble 6. As this table indicates, all of the top three water heights
recorded in the long history of this station occurred during
Typhoon Maemi’s passage through the area.

KHOA makes hourly observations of water height at the
Busan tidal-gauge station, and the annual means presented in
this paper have been calculated from that hourly data. As can
be seen in Fig. 3, plotting MSL for each year confirms that
short-term water-level variation merely masks the long-term
trend of sea-level increase. Therefore, on the assumption that
MSL variation was a function of time, a linear regression was
performed, with the resulting coefficient of slope indicating
the rate of increase (Yoon and Kim, 2012). The data utilized
to estimate MSL for the tidal-gauge station in Busan were
provided by KHOA, which performed quality control on the
data before releasing it to us. Additionally, however, a nor-
mality test was performed, and the results (as shown in Ta-
ble 7) indicated that the hourly sea-level data followed a nor-
mal distribution at a significance> 0.05. The Kolmogorov–
Smirnov normality test was adopted as it is well suited to
datasets containing more than 30 items.

As can be seen in Fig. 3, the average rate of increase in
MSL at Busan’s tidal-gauge station from 1962 to 2019 was
2.4 mm yr−1, yielding a difference of 16.31 cm between the
beginning and the end of that period. This finding is broadly
in line with the Yoon and Kim (2012) finding that the rate
of MSL increase around the Korean Peninsula as a whole
between 1960 and 2010 was about 2.9 mm yr−1. In addi-
tion, linear-regression analysis of the sea-level fluctuation
data for 1965–2019 was utilized to discern the MSL trend.
The significance level of 0.000 (< 0.05) obtained via analy-
sis of variance (ANOVA; Table 8) indicates that the regres-
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Table 8. Linear-regression coefficients and sea-level fluctuations at the Busan tidal-gauge station.

Non-standardized coefficients Standardized t Significance

Coefficients Standard beta probability
B error (p value)

(Constant) −422.23 35.022 0.887 −12.06 0.00
Sea-level fluctuations 0.246 0.018 13.97 0.00

Table 9. Summary of the analysis of variance results and sea-level fluctuations at the Busan tidal-gauge station.

Model Sum of df Mean F Significance Adjusted
squares squares level (Sig.) R2

Regression 830 446 354.04 41 20 254 789.12 32 109.38 0.000 0.74
Residual 298 566 787.86 473 310 630.81

Total 1 129 013 141.90 473 351

sion model of sea-level fluctuations was significant. Its cor-
relation coefficient (0.96) also indicated a strong positive re-
lationship between sea-level rise and recentness. The coef-
ficient of determination (R2) was utilized to describe how
well the model explained the collected data. The closer R2

is to 1, the better the model can predict the linear trend: here
it was 0.74, as shown in Table 9. This means that the linear-
regression model explained 74 % of the sea-level variation.
While this result suggests that the linear-regression analysis
for sea-level fluctuation at the tidal-gauge station in Busan is
reliable, such results may not be generalizable because varia-
tion in the data could have been due to several factors, includ-
ing geological variation and modification of gauge points.

1.2.5 Relationship between sea level and typhoons

When a storm occurs, surge height tends to increase, and
these larger surges can cause natural disasters such as floods.
In this study, before calculating the height of a surge, we took
account of the dates and times when the three greatest sea-
level heights were observed, as well the dates and times when
typhoons occurred. These data are presented side by side in
Table 10.

As Table 10 indicates, the top three recorded sea levels at
each south coast tidal-gauge station corresponded with the
occurrence of typhoons in 20 out of 30 cases. Moreover, the
dates and times of the three highest sea levels observed dur-
ing all 57 years’ worth of data from Busan all coincided with
Typhoon Maemi passing out of the area.

As well as USD 3.5 billion in property damage, Typhoon
Maemi caused 135 casualties in Busan and nearby cities (Na-
tional Typhoon Center, 2011). However, other typhoons –
notably including Thelma, Samba, and Megi – also caused
considerable damage, as shown in Table 1.

2 Literature review

2.1 Prior studies of Typhoon Maemi

Most previous studies devoted to avoiding or reducing nat-
ural disaster damage in South Korea have focused on storm
characteristics, such as storm track, rainfall, radius, and wind
field data. Their typical approach has been to create synthetic
storms that can be utilized to predict real storm paths and es-
timate the extent of the damage they would cause.

Kang (2005) investigated the inundation and overflow
caused by Typhoon Maemi at one location near the coast,
using a site survey and interviews with residents, and found
that the storm surge increased water levels by 80 %. Using
a numerical model, Hur et al. (2006) estimated storm surges
at several points in the Busan area caused by the most se-
rious typhoons, including Sarah, Thelma, and Maemi. Hav-
ing established that Maemi was accompanied by the highest
storm surge, they then simulated storm surges as a means
of investigating the tidal characteristics of Busan’s coast and
created virtual typhoons to compare against the actual tracks
of Sarah, Thelma, and Maemi. When these virtual typhoons
followed the track of Typhoon Maemi, their simulated storm
surges were higher than the ones produced by those that fol-
lowed the other two tracks.

Lee et al. (2008), using atmospheric-pressure and wind
profiles of Typhoon Maemi, introduced a multi-nesting grid
model to simulate storm surges. To check its performance,
they used numerical methods for tidal calibration and to as-
sess the influence of open-boundary conditions and typhoon
paths. This yielded two key findings. First, the location of a
typhoon’s centre was the most critical factor when calculat-
ing storm surges. Second, the track of the typhoon was a sec-
ondary, but still important, factor in storm-surge prediction.
However, the research of Lee et al. (2008) was limited by the
fact that only recorded storm tracks were used, meaning that
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Table 10. Relationship between sea level and typhoons on the south
coast of South Korea.

Location Years Peak Date Typhoon
(cm) (GMT+9)

Busan 54
211 12 Sep 2003, 21:00 Maemi
190 12 Sep 2003, 20:00 Maemi
188 12 Sep 2003, 12:00 Maemi

Port of New Busan 5
221 18 Sep 2012, 10:00 Sanba
219 17 Sep 2012, 09:00 Sanba
215 18 Sep 2012, 22:00 Sanba

Gadeok 40
252 17 Sep 2012, 10:00 Sanba
246 17 Sep 2012, 09:00 Sanba
246 16 Jul 1987, 00:00 Thelma

Masan 37
265 17 Sep 2012, 10:00 Sanba
264 17 Sep 2012, 11:00 NA
244 29 Aug 2004, 21:00 NA

Ulsan 55
133 19 Aug 2004, 08:00 Megi
120 12 Sep 2003, 21:00 Maemi
129 17 Sep 2012, 20:00 Sanba

Tongyeong 41
426 12 Sep 2003, 21:00 Maemi
357 12 Sep 2012, 10:00 Sanba
356 12 Sep 2003, 20:00 Maemi

Samcheonpo 2
352 30 Aug 2015, 22:00 NA
350 28 Oct 2015, 09:00 NA
350 27 Nov 2015, 10:00 NA

Geoje 11
270 17 Sep 2012, 09:00 Sanba
259 17 Sep 2012, 10:00 Sanba
255 4 Jan 2006, 09:00 NA

Gwangyang 6
479 17 Sep 2012, 10:00 Sanba
443 17 Sep 2012, 11:00 Sanba
441 1 Aug 2014, 22:00 NA

Yeosu 52
440 18 Aug 1966, 23:00 NA
430 14 Sep 1966, 21:00 NA
129 17 Aug 1966, 22:00 NA

NA stands for not available.

their simulations could not calculate storm surges from any
other possible tracks. Similarly, Chun et al. (2008) simulated
the storm surge of Typhoon Maemi using a numerical model,
combined with moving boundary conditions to explain wave
run-up, but using data from the coastal area of Masan: a city
near Busan that was also damaged by the storm. The inun-
dation area and depth predicted by the model of Chun et
al. (2008) were reasonably well correlated with the actual
area and depth arrived at via a site survey. Lastly, Kim and
Suh (2018) created 25 000 random storms by modifying an
automatic storm-generation tool, the Tropical Cyclone Risk
Model, and then simulated surge elevations for each of them.
The tracks of these simulated storms had similar patterns to
those of actual typhoons in South Korea.

However, while past research on Typhoon Maemi has used
such input data as tidal-gauge data, atmospheric pressure,
wind fields, typhoon radius, storm speed, latitude, and lon-
gitude, tidal-gauge data has not been used for estimating

the exceedance probabilities of storm surges. For instance,
Kim and Suh (2018) did not perform surge modelling or fre-
quency analysis in the time domain, and although the numer-
ical models of Chun et al. (2008) provided valuable predic-
tions of inundation area and depth, they did not take account
of tidal fluctuation, which if combined with increased water
levels would have yielded different results.

Using insurance data from when Typhoon Maemi made
landfall on the Korean Peninsula, Yum et al. (2021) presented
vulnerability functions linked to typhoon-induced high wind
speeds. Specifically, the authors used insurance data to calcu-
late separate damage ratios for residential, commercial, and
industrial buildings and four damage states adopted from an
insurance company and a government agency to construct
vulnerability curves. The mean-squared error and maximum-
likelihood estimation (MLE) were used to ascertain which
curves most reliably explained the exceedance probability of
the damage linked to particular wind speeds. Making novel
use of a binomial method based on MLE, which is usually
used to determine the extent of earthquake damage, the same
study found that such an approach explained the extent of the
damage caused by high winds on the Korean Peninsula more
reliably than other existing methods, such as the theoretical
probability method.

2.2 Return period estimates for Hurricane Sandy

While no prior research has estimated return periods for ty-
phoons, some studies have done so for hurricanes. For ex-
ample, Talke et al. (2014) used tidal-gauge data to study the
storm-surge hazard in New York Harbor over a 37-year pe-
riod and found that its pattern underwent long-term changes
due to sea-level rise caused in part by climate change. How-
ever, Talke et al. (2014) did not estimate a specific return
period for Hurricane Sandy, which struck the United States
in 2012.

Lin et al. (2010), on the other hand, did estimate the return
periods of storm surges related to tropical cyclones in the
New York City area, with that for Sandy in Lower Manhat-
tan being 500 years within a 95 % CI (confidence interval),
i.e. approximately 400–700 years. Lin et al. (2012) later con-
ducted a similar analysis using computational fluid dynamics
Monte Carlo simulations that took account of the random-
ness of the tidal-phase angle. This approach yielded a return
period of 1000 years with a 90 % CI (750–1050 years). The
former study can be considered the less accurate of the two
because it did not consider different surge height possibilities
at different time windows within the tidal cycle.

Hall and Sobel (2013) developed an alternative method
to estimate Sandy return periods, based on the insight that
this storm’s track could have been the primary reason for the
damage it caused in Lower Manhattan and other parts of the
city. Specifically, they argued that Sandy’s perpendicular im-
pact angle with respect to the shore as it passed to the south
of Manhattan’s port was of critical importance, based on an
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analysis of the tracks of other hurricanes of similar intensity.
They estimated the return period for Sandy’s water level to
be 714 years within a 95 % CI (435–1429 years).

Zervas (2013) estimated the return periods for extreme
events using monthly mean water-level data from the
US National Oceanographic and Atmospheric Administra-
tion, recorded at the tidal-gauge station in Battery Park,
New York. Using GEV distribution and MLE, Zervas cal-
culated that the return period for Sandy’s peak water level
was 3500 years, but sensitivity analysis suggested that the
estimated results were probably inaccurate, given the GEV
fit’s sensitivity to the range of years used. Once Sandy was
excluded, the return period was 60 000 years. This difference
in results suggests that GEV distribution of the yearly maxi-
mum water level is not a realistic method for estimating ex-
treme events in the New York Harbor area.

Building on her own past research, Lopeman (2015) – the
first researcher to estimate Sandy’s return period using tidal-
gauge data – proposed that a clustered separated peaks-over-
threshold (POT) method (CSPS) should be used and that tide
fluctuation, surge, and sea-level rise should all be dealt with
separately because out of these three phenomena only surge
is truly random. This approach led Lopeman to calculate the
return period as 103 years with a 95 % CI (38–452 years).

Zhu et al. (2017) explored recovery plans pertaining to
two New York City disasters, Hurricane Irene and Hurricane
Sandy, using data-driven city-wide spatial modelling. They
used resilience quantification and logistic modelling to de-
lineate neighbourhood tabulation areas, which were smaller
units than other researchers had previously used and enabled
the collection of more highly detailed data. They also intro-
duced the concept of “loss of resilience” to reveal patterns
of recovery from these two hurricanes, again based on their
smaller spatial units. Moran’s I was utilized to confirm that
loss of resilience was strongly correlated not only with spa-
tial characteristics but also with socioeconomic characteris-
tics and factors like the location of transport systems. How-
ever, given the particularity of such factors, the results of Zhu
et al. (2017) might not be generalizable beyond New York
City, and they made no attempt to predict future extreme
events’ severity or frequency.

The sharp differences in the results of the past studies cited
above are due to wide variations in both the data they used
and their assumptions. The present study therefore applies all
of the methods used in previous studies of Hurricane Sandy’s
return period to estimate that of Typhoon Maemi and in the
process establishes a new model.

2.3 Extreme value statistics

2.3.1 Prior studies of extreme natural hazards

Bermúdez et al. (2019) studied flood drivers in coastal and
riverine areas as part of their approach to quantifying flood
hazards, using 2D shallow-water models to compute the cor-

relation between extreme events and flood drivers. They also
adopted ordinary least-squares regression analysis to con-
struct a 10 000-year time series and computed water levels’
exceedance probabilities for comparison. However, the pos-
sibility of river discharges, sea-wave trends, and tidal fluctu-
ations were not considered in their study.

The wrecking of wind farms by extreme windstorms is
of considerable concern in the North Sea region, which is
home to 38 such farms belonging to five different coun-
tries. According to the Monte Carlo simulation-based risk-
management study of Buchana and McSharry (2019), the to-
tal asset value of these wind farms is EUR 35 billion. It used
a log-logistic damage function and Weibull probability distri-
bution to assess the risks posed to wind farms in that region
by extreme strong wind and exceedance probability to pre-
dict the extent of financial loss from such damage in terms
of solvency capital requirement (SCR). The same study also
simulated the results of various climate change scenarios,
and the results confirmed that higher wind speed and higher
storm frequency were correlated with rises in SCR: a finding
that could be expected to help emergency planners, investors,
and insurers reduce their asset losses.

According to a study by Catalano et al. (2019) of high-
impact extratropical cyclones (ETCs) on the northeastern
coast of the Unites States, limited data caused by these
storms’ rarity made it difficult to predict the damage they
would cause or analyse their frequency. To overcome this,
they utilized 1505 years’ worth of simulations derived from
a long coupled model, GFDL FLOR, to estimate these ex-
treme events’ exceedance probabilities and compared the re-
sults against those of short-term time series estimation. This
not only revealed that the former was more useful for sta-
tistical analysis of ETCs’ key characteristics – which they
defined as maximum wind speed, lowest pressure, and surge
height – but also that the use of a short time series risked
biassing estimates of ETCs’ return levels upwards (i.e. un-
derestimating their actual frequency). While these results re-
garding return levels and time series were valuable, Catalano
et al. (2019) did not distinguish between the cold season and
the warm season of each year, which could also have led to
biased results.

A joint-probability methodology was used to analyse ex-
treme water heights and surges on China’s coast by Chen
et al. (2019). They obtained the sea-level data from nine
gauge stations, and utilized 35 years’ worth of simulation
data with a Gumbell distribution and a Gumbell–Hougaard
copula. The three major sampling methods proposed in the
study were structural-response, wave-dominated, and surge-
dominated sampling. The first was utilized to assess struc-
tures’ performance in response to waves and surges. Joint-
probability analysis revealed that such performances were
correlated with extreme weather events in the target region
and that such correlations became closer when wave motion
was stronger. In addition, based on their finding that joint
exceedance probability tended to overestimate return periods
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for certain water levels, Chen et al. (2019) recommended that
offshore defence facility designers use joint-probability den-
sity to estimate return levels of extreme wave heights. How-
ever, while their study provided a useful methodology, partic-
ularly with regard to sampling methods and probability mod-
elling of return periods and structural performance, they only
looked at China’s coast, and therefore their findings are un-
likely to be generalizable to the Korean Peninsula.

Davies et al. (2017) proposed a framework for probabil-
ity modelling of coastal storm surges, especially during non-
stationary extreme storms and tested it using the El Niño–
Southern Oscillation (ENSO) on the east coast of Aus-
tralia. Importantly, they applied their framework to ENSO
and seasonality separately. This is because while ENSO af-
fects storm-wave direction, mean sea level, and storm fre-
quency, seasonality is mostly related to storm-surge height,
storm-surge duration, and total water height. This separation
has the advantage of allowing all storm variables of non-
stationary events to be modelled, regardless of their marginal
distribution. Specifically, Davies et al. (2017) applied non-
parametric distribution to storm-wave direction and steep-
ness and parametric distribution to duration and surge using
mixture-generalized extreme value probability modelling,
which they argued was more useful than standard models
like generalized Pareto distribution (GPD). They said this
was because the statistical threshold in an extreme mixture
model can be integrated into the analysis, whereas a GPD
model should be given an unbiased threshold: if it is low,
too many normal data may be included. Accordingly, they
utilized bootstrapping for the confidence interval to show
the uncertainty of the non-stationary aspects of the extreme
events. They also added a Bayesian method to provide wider
confidence intervals with less bias. Their findings are mainly
beneficial to overcoming the challenges of GPD threshold
selection; however, robust testing of their approach will re-
quire that it be applied to a wider range of abnormal climate
phenomena.

Similar research was conducted by Fawcett and Wal-
shaw (2016), who developed a methodology for estimat-
ing the return levels of extreme events such as sea surges
and high winds of particular speeds, with the wider aim of
informing practical applications such as design codes for
coastal structures. They reported that two of the most pop-
ular existing methods for doing so, block maxima (BM) and
POT, both have shortcomings and concluded that a Bayesian
approach would be more accurate. Specifically, they argued
that BM and POT methods tend to waste valuable data and
that considering all exceedance via accurate estimation of the
extremal index (reflecting uncertainty’s natural behaviour)
could compensate for this disadvantage. They further pro-
posed that the seasonal variations should be taken into con-
sideration with the all exceedance data, where possible.

In response to Japanese government interest in unexpected
flooding caused by extreme storm surges during typhoons
and other high-wind events, Hisamatsu et al. (2020) simu-

lated typhoons as a means of predicting the cost of the dam-
age they would cause in Tokyo Bay, which is very vulnera-
ble to such events due to its geographic and socio-economic
characteristics. Using stochastic approaches, they modelled
future typhoons over a 10 000-year period and calculated
flooding using a numerical surge model based on the prob-
ability of historical typhoons. These flooding calculations, in
turn, were utilized to create a storm-surge inundation map,
representing exceedance probabilities derived from stochas-
tic hazard calculations pertaining to 1000 typhoons. Next, the
completed map was overlaid on government-provided values
of Tokyo Bay’s buildings and other infrastructural elements
to assess the spatial extent and distribution of the likely dam-
age. The results showed that Chiba and Kanagawa would be
the most damaged areas and would suffer financial losses of
JPY 158.4 billion and 91.5 billion, respectively, with an ex-
ceedance probability of 0.005 (as commonly used to estimate
damage in the insurance industry). However, the real estate
values they used were 2 decades out of date at the time their
study was conducted, meaning that further validation of their
approach will be needed.

Another effort to estimate return periods was made by
McInnes et al. (2016), who created a stochastic dataset on all
cyclones that occurred near Samoa from 1969 to 2009. That
dataset was utilized to model storm tides using an analytic
cyclone model and a hydrodynamic model, which also took
into account prevailing climate phenomena such as La Niña
and El Niño when estimating return periods. The authors
found that tropical cyclones’ tracks could be affected by
La Niña and El Niño and, more specifically, that the fre-
quency of cyclones and storm tides during El Niño was con-
sistent across all seasons, whereas La Niña conditions make
their frequency considerably lower in the La Niña season.
Additionally, McInnes et al. (2016) proposed that sea-level
rise had a more significant influence on storm tides than fu-
ture tropical cyclones did, based on their finding that future
cyclones’ frequency would be reduced as the intensity of fu-
ture cyclones increased. Lastly, they found that the likelihood
of a storm tide exceeding a 1 % annual exceedance proba-
bility (i.e. a once a century tide) was 6 % along the entire
coastline of Samoa. However, other effects such as sea-level
fluctuations and meteorological factors were not included in
their calculations.

Silva-González et al. (2017) studied threshold estimation
for analysis of extreme wave heights in the Gulf of Mex-
ico and argued that appropriate thresholds for this purpose
should consider exceedances. They applied the Hill estimator
method, an automated threshold-selection method, and the
square-error method for threshold estimation in hydrolog-
ical, coastal engineering, and financial scenarios with very
limited data and found that the square-error method had the
most advantages because it did not consider any prior pa-
rameters that could affect thresholds. The authors went on to
propose improvements to that method, i.e. the addition of dif-
ferences between quantiles of the observed samples and me-
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dian quantiles from GPD-aided simulation. When GPD was
utilized to estimate observed samples, it effectively prevented
convergence problems with the maximum-likelihood method
when only small amounts of data were available. The key
advantage of the approach of Silva-González et al. (2017) is
that the choice of a threshold can be made without reliance
on any subjective criteria. Additionally, no particular choice
of marginal probability distribution is required to estimate
a threshold. However, to be of practical value, their method
will need to incorporate more meteorological factors.

Lastly, the Wahl et al. (2015) study of the exceedance
probabilities of a large number of synthetic and a small
number of actual storm-surge scenarios utilized four steps:
parameterizing the observed data, fitting different distribu-
tion models to the time series, Monte Carlo simulation, and
recreating synthetic storm-surge scenarios. Specifically, pro-
jected 40 and 80 cm sea-level rises were used as the basis
for investigating the effects of climate change on flooding
in northern Germany. Realistic joint exceedance probabili-
ties were used for all parameters with copula models, and
the exceedance probabilities of storm surges were obtained
from the bivariate exceedance probability method with two
parameters, i.e. the highest total water level with the tidal
fluctuations and intensity. The findings of Wahl et al. (2015)
indicated that extremely high water levels would cause sub-
stantial damage over a short time period, whereas relatively
small storm surges could inflict similar levels of damage but
over a much longer period. However, like various other stud-
ies cited above, Wahl et al. (2015) did not take seasonal vari-
ation into account.

2.3.2 Generalized extreme value distribution

Extreme events are hard to predict because data points are
so few, and predicting their probability is particularly diffi-
cult due to their asymptotic nature. Extreme value probabil-
ity theory deals with how to find outlier information, such
as maximum or minimum data values, during extreme situa-
tions. Examining the tail events in a probability distribution
is very challenging. However, it is considered very important
by civil engineers and insurers due to their need to cope with
low-probability, high-consequence events. For example, the
designs and insurance policies of bridges, breakwaters, dams,
and industrial plants located near shorelines or other flood-
prone areas should account for the probability, however low,
of major flooding. Various probability models for the study
of extreme events could potentially be used in the present re-
search, given that its main topic is the extreme high water
levels caused by typhoons. Extreme value theories can be di-
vided into two groups, according to how they are defined. In
the first, the entire interval of interest is divided into a number
of subintervals. The maximum value from each subinterval is
identified as the extreme value, and following this the entirety
of these extreme values converge into a GEV distribution. In
the second group, values that exceed a certain threshold are

identified as extreme and converge to a GPD. The following
two subsections discuss the BM and POT methods as illus-
trations of these two groups, respectively (Coles, 2001).

Block maxima method

The BM approach relies on the distribution of the maximum
extreme values in the following equation,

Mn =max {X1, . . ., Xn} , (1)

where the Xn series, comprising independent and identically
random variables, occurs in order of maximum extreme val-
ues, n is the number of observations in a year, and Mn is the
annual maximum.

Data is divided into blocks of specific time periods, with
the highest values within each block collectively serving as
a sample of extreme values. One limitation of this method
is the possibility of losing important extreme value data be-
cause only the single largest value in each block is accounted
for, and thus the second-largest datum in one block could be
larger than the highest datum in another.

Peaks-over-threshold method

The POT method can address the above-mentioned limita-
tions of BM, insofar as it can gather all the data points that
exceed a certain prescribed threshold and use limited data
more efficiently because it relies on relatively large or high
values instead of the largest or highest ones. All values above
the threshold – known as exceedances – can be explained by
the differentiated tail data distribution. The basic function of
this threshold is to assort the larger or higher values from
all data, and the set of exceedances constitutes the sample
of extreme values. This means that although POT can cap-
ture potentially important extreme values even when they oc-
cur close to each other, selecting a threshold that will yield
the best description of the extreme data can be challenging
(Bommier, 2014); i.e. if it is set too high, key extreme val-
ues might be lost, but if it is set too low, values that are not
really extreme may be included unnecessarily. Determining
appropriate threshold values thus tends to require significant
trial and error, and various studies have proposed methods
for optimizing such values (Lopeman et al., 2015; Pickands,
1975; Scarrott and Macdonald, 2012). Pickands (1975), for
instance, suggested that independent time series that exceed
high enough thresholds would follow GPD asymptotically,
thus avoiding the inherent drawbacks of BM. The distribu-
tion function F of exceedance can be computed as

Fθ (x)= P {X− θ ≤ x|X > θ} , x ≥ 0, (2)

where θ is the threshold and X is a random variable.
Fu,meanwhile, can be defined by conditional probabilities

Fθ (x)=

{
F(θ+x)−F(θ)

1−F(θ) if x ≥ 0
0 else

. (3)
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According to Bommier (2014), the distribution of ex-
ceedances (Y1, . . . ,Ynθ ) can be generalized by GPD with
the following assumption: when Y =X− θ for X > θ , and
X1, . . . ,Xn, Yj =Xi − θ can be described with i, which is
the j th exceedance, i = 1, . . . , nθ .

The GPD can be expressed as

Gx(x;ξ,σ,θ)=

 1−
(

1+ ξ (x−θ)
σ

)1/ξ
ξ 6= 0

1− exp
(
−
(x−θ)
σ

)
ξ = 0,

(4)

with x being independent and identically random variables,
σ the scale, ξ the shape, and θ the threshold. All values above
θ are considered tail data (extreme values). The probabil-
ity of exceedance over a threshold when calculating a return
level that is exceeded once every N years (N -year return pe-
riods xN ) is calculated as follows:

P {X > x|X > θ} =

[
1+ ξ

(
x− θ

σ

)]−1/ξ

. (5)

If the exceedances above the threshold are rare events λ (as
measured by number of observations per year), we can ex-
pect P(X > θ) to follow Poisson distribution. The mean of
exceedance per unit of time (γ̂ ) describes that distribution.

P(X > θ)=
γ

λ
(6)

In other words, γ can be estimated by dividing the number
of exceedances by the number of years in the observation
period.

Combining the POT and Poisson processes with GPD al-
lows us to describe the conditional probability of the extreme
values that exceed the designated threshold, as per Eq. (7)
(Lopeman et al., 2015):

P(A|B)=
P(A∩B)

P (B)
. (7)

In addition, when Bayes’ theorem is applied to the role of
GPD in conditional probability, we can rewrite Eq. (7) as fol-
lows:

GX(x)=
P(θ < X < x)

P (X > θ)
. (8)

3 Research methods

The objective of this study is to estimate the probability of
the risk, for each year, of typhoon-induced high water lev-
els in Busan. To that end, it adapts Lopeman et al.’s (2015)
CSPS, which provides statistical analysis of extreme values
in long time series of natural phenomena. As such, CSPS can
provide useful guidance to those tasked with preparing for
natural disasters on the Korean Peninsula and perhaps on its
southern coast in particular. The findings from this research

Figure 4. General approach and workflow.

are therefore expected to provide a viable method of pre-
dicting economic losses associated with typhoons and corre-
sponding models for managing emergency situations arising
from natural disasters that can be used by South Korea’s gov-
ernment agencies, insurance companies, and construction in-
dustry. Although this study focuses on a specific city-region,
its proposed probabilistic methodologies should also be ap-
plicable to other coastal regions in South Korea and around
the world.

To explore the non-exceedance probability of storm
surges, this study utilized tidal-gauge data from the city of
Busan, collected when Typhoon Maemi struck it in 2003.
As shown in Fig. 4, we proceeded according to several
steps. First, the observed tidal-gauge data were utilized to
calculate the predicted water level through harmonic anal-
ysis and then the storm surge height, which is the differ-
ence between observed and predicted water height. Second,
threshold and clustering techniques were applied to select
data meaningful to the non-exceedance probabilities of ex-
treme storm surges. Third, the extreme values were sepa-
rated into cold-season and warm-season categories to boost
the reliability of our probability distribution model. Fourth,
the maximum-likelihood method was used to estimate non-
exceedance probability. Finally, various probability models
were built, and the one that best fit the empirical data was
identified.

3.1 Data processing

3.1.1 Storm-surge data collection method

To determine the height of surges from publicly available
KHOA data, it was first necessary to predict sea levels. Equa-
tion (9) explains the interrelationship of observed water level,
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predicted water level, tidal-fluctuation height, and residual
(surge) at time ti ,

Yi =Xi + Si, (9)

where i = 1, 2, . . . , n, n is the time series of the input dataset,
Xi is the predicted water height at ti , Yi is the observed water
height at ti , and Si is the surge height.

3.1.2 Separation of tidal-gauge data via harmonic
analysis

A standard harmonic analysis was performed to calculate
predicted sea-level height based on hourly tidal-gauge data.
First, this technique was used to estimate the tidal compo-
nents of all seawater-level data, allowing residuals to be iso-
lated so that surge data could be calculated once sea-level
rise had been estimated. Second, the estimated constituents
were used to predict tidal fluctuations in the years simulated
via Monte Carlo. Then, the TideHarmonics package in R
(Stephenson, 2017) was used to estimate tidal components,
as detailed below.

Given a time series Y (t) of total water levels, with t de-
noting time in hours, the tidal component with M harmonic
constituents is computed as

Ŷ (t)= Z+

M∑
m=1

Am cos
( π

180
(ωmt −ψm)

)
, (10)

where ωm is the angular frequency of the mth component
in degrees per hour. The 2M + 1 parameters to be estimated
are the amplitudes Am, the phase lag ψm in degrees, and the
MSL Z.

To account for long astronomical cycles (LACs), nodal-
correction functions for both the amplitude and phase are
used. With these corrections, the tidal component takes the
following form:

ŶLAC(t)= Z+

M∑
m=1

Hmfm(t)cos
( π

180
(ωmt − gm

+um(t)+Vm)) , (11)

where fm(t) and um(t) represent the nodal corrections for
the amplitude and phase, respectively. In this new formula-
tion, the amplitude and phase parameters to be estimated are
denoted by Hm and gm (in degrees). Finally, Vm is the refer-
ence signal, by which the phase lag gm is calculated and set
to refer to the origin t = 0.

The summation term in ŶLAC(t) can alternatively be writ-
ten as follows:

M∑
m=1

βm,1fm(t) · cos
( π

180
(ωmt + um(t)+Vm)

)
+

M∑
m=1

βm,2fm(t) · sin
( π

180
(ωmt + um(t)+Vm)

)
, (12)

Figure 5. Observed (green), predicted (blue), and residual (red) wa-
ter levels at Busan during Typhoon Maemi.

where βm,1 =Hm cos(gm) and βm,2 =Hm sin(gm). What is
gained from this new representation is a linear function with
respect to the parameters βm,1 and βm,2 that need to be es-
timated, and hence linear regression can be used. Given the
large time span covered by the data, M = 60 harmonic tidal
constituents were estimated, and a constant mean sea level Z
was assumed across all years of available data.

3.1.3 Observed, predicted, and residual water levels

Because observed sea level usually differs from predicted sea
level, Fig. 5 depicts the former (as calculated through har-
monic analysis) in blue. Predicted sea levels are shown in
green, and surge height is shown in red. As the figure indi-
cates, the highest overall water level coincided with the high-
est surge during Typhoon Maemi, i.e. at 21:00 GMT+9 on
12 September 2003. Given a total water height of 211 cm, the
surge height was calculated as 73.35 cm. The unexpectedly
large height of the surge induced by Typhoon Maemi caused
USD 3.5 billion in property damage and many causalities in
Busan, as mentioned in Table 1.

3.2 Data analysis

3.2.1 Threshold and target-rate selection

At a given annual target rate – i.e. number of storms per
year – the algorithm proposed by Lopeman et al. (2015)
(Fig. 6) computes the threshold such that this rate approxi-
mates the resulting yearly number of “exceedance clusters”,
i.e. consecutive surge observations that lie above the thresh-
old. Hence, rather than choosing an “ideal” threshold accord-
ing to some other criterion, the algorithm simply finds the
threshold that forces a chosen target rate to occur. Accord-
ingly, a study of this kind could set its target rate as the av-
erage rate observed over a given period or as a value that
the researchers find reasonable in light of their knowledge of
historical data for their focal area.
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Figure 6. Threshold-selection flowchart.

Next, the algorithm iteratively updates the threshold to
allow a computationally intensive (but not exhaustive) ex-
ploration of possible threshold values between its minimum
value (i.e. here the minimum observed surge height) and
its maximum value (i.e. maximum observed surge height).
Specifically, it first sets the threshold to 0 cm and then itera-
tively overwrites it according to the following steps.

1. The exceedance clusters produced at a given iteration
and given threshold are identified, and the resulting an-
nual storm rate computed.

2. If the annual storm rate arrived at in step (1) is equal
to (or about equal to) the chosen target, the threshold
from the previous iteration is the final result, and the
algorithm is stopped.

3. If the annual storm rate arrived at in step (1) is not close
to the chosen target, the following steps are taken.

a. If it is smaller than the target rate, then the threshold
from the previous iteration is the final result, and the
algorithm is stopped.

b. If it is larger than the target rate, then a vector col-
lecting the maximum height of the clusters is built
and sorted in descending order. The threshold is
then updated by setting it as equal to the Cth el-
ement of this vector, where C is the integer clos-
est to 54 (i.e. the number of years covered by the
dataset) multiplied by the target rate. This updated
threshold is used in the next iteration of the algo-
rithm, and steps (1) through (3) are repeated.
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Figure 7. Iterative process of threshold selection (1 of 3).

Figure 8. Iterative process of threshold selection (2 of 3).

As shown in Figs. 7–9, the threshold algorithm (Fig. 6)
achieved convergence relatively quickly for all three target
rates selected, with the number of iterations required for con-
vergence ranging from three (with a target rate of 3.0) to five
(with a target rate of 10).

Figure 10 displays six possible thresholds. The first,
31.2 cm, was based on a target rate of 3.5 and 189 clusters
and is shown in red. The dark blue line represents the second
threshold of 30.54 cm, (target rate= 4.0; clusters= 217), the
purple line shows a threshold of 29.56 cm (target rate= 4.5;
clusters= 246), the green line shows a threshold of 29.15 cm
(target rate= 5.0; clusters= 274), the sky blue line shows
a threshold of 28.33 cm (target rate= 6.0; clusters= 324),
and the orange line shows a threshold of 26.53 cm (target
rate= 8.0; clusters= 431).

Figure 9. Iterative process of threshold selection (3 of 3).

Figure 10. Various thresholds considered.

3.2.2 Clustering of the storm-surge data:
interrelationship of target rate, threshold, and
clusters

Figures 7–9 show that, as expected, when the target rate
increases, the threshold decreases, and as the threshold de-
creases, the number of clusters (i.e. storm events) increases.
Conversely, the lower the target rate, the lower the num-
ber of clusters and the higher the threshold. Thus, if the
desired number of storms is three per year, the algorithm
will converge in three iterations and set the threshold level
to 32.01 cm; this results in a total of 164 storm events over
the time span covered by our data. Conversely, if the de-
sired target rate is 10 storms per year, the threshold is signifi-
cantly lower (25.43 cm), and the total number of storm events
more than trebles to 539 clusters (Fig. 10). As can be seen
in Fig. 11, we chose only one maximum value to represent
each cluster. Figures 12–14 show the stages of the clustering
of surges when the target rate is set to 5.0, the threshold is
29.15 cm, and the number of clusters is 274 (though it should
be noted that Fig. 12 indicates only the number of surges, due
to the difficulty of visually representing all surge dates and
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Figure 11. Clustering flowchart.

times from the period 1962–2019). The surge data above the
designated threshold, arrived at via the threshold-selection
method above, are shown in Fig. 12. Here, the data above
the threshold are clustered based on their start and end times,
and again only one maximum value was chosen at each clus-
ter. Figure 14 presents all maxima obtained from a cluster
separately.

3.2.3 Relationship among storm-surge parameters

Storm-surge parameters

Storm surges are characterized by four major parameters:
peak time, peak height, duration, and rise ratio. Peak time
follows a gamma distribution because POT produces a Pois-
son process of exceedance occurrence and the waiting times
between consecutive exceedances in a Poisson process are by
definition exponentially distributed (Lopeman et al., 2015).
For peak times (interarrival times), this study therefore uses
a gamma (exponential) distribution.

On the other hand, for peak height GPD is typically used
because some representation theorem results from extreme
value statistics indicate that if the cluster maxima follow a
Poisson process, then the intensity – in this case, height – of
the cluster peaks follows a GPD distribution (Lopeman et al.,
2015; Zhong et al., 2014). However, a Weibull distribution
has been applied to peak storm-surge heights in this study
because it fits the data better, especially with regard to the
right-hand tail.

Because the rise ratio does not appear to be evenly dis-
tributed along the interval [0, 1], a beta distribution was used
because the rise ratio is by definition between 0 and 1, and
such a distribution is commonly used to model continuous
random variables that occur within that range (Lopeman et
al., 2015).

Duration follows a lognormal distribution, which was used
for the following two reasons previously articulated by Lope-
man et al. (2015). First, it models a continuous random vari-

able, duration, which by definition is positive. And second, it
is quite flexible: as it has two parameters, it can fit the data
better than other distributions with just one, e.g. exponential
distribution.

Parameter interrelationships

Figures 15–17 indicate the lack of any clear relationship be-
tween rise ratio, on the one hand, and either duration or ex-
ceedance, on the other hand. However, peak exceedance and
cluster duration appear to have a linear relationship.

4 Results and analysis

4.1 Storm surge simulation

After finding the threshold that resulted from a given target
rate, we computed interarrival times, rise ratios, peak height,
and cluster duration for each exceedance cluster. These fig-
ures were then grouped by season (the year being divided
for this purpose into a cold season, lasting from 1 Decem-
ber through 31 May, and a warm season, 1 June through
30 November), and such groups were used to estimate the
parameters of the statistical model via MLE. For the rea-
sons given in the previous section, the interarrival times for
each season were fitted with an exponential distribution, the
rise ratios were fitted with a beta distribution, and the peak
heights were fitted with a Weibull distribution in which the
location parameter was equal to the threshold. Detailed de-
scriptions of how we applied each of these methods are pro-
vided in turn below.

4.1.1 Maximum-likelihood estimation

If we assume that an independent and identically distributed
data sample (x1, . . . , xn) is observed from a population with
a distribution of interest parameterized by an unknown vari-
able θ that the researcher wants to estimate, the MLE estima-
tor θ̂MLE is defined as

θ̂MLE (x1, . . ., xn)= argmaxθ0

n∏
i=1
f (xi;θ0) , (13)

where f (·;θ) denotes the probability density function of the
distribution of interest, parameterized by θ0. The distribu-
tions of interest for the data in this study were chosen as
follows.

1. First, Ti ∼ Exponential(λ) was chosen, where Ti de-
notes the interarrival time between the peak of the i−1th
cluster and the peak of the ith cluster. This distributional
assumption is equivalent to assuming that a Poisson pro-
cess governs peak-surge arrivals.

2. Second,8i ∼ Beta(αβ) was chosen, where 8i denotes
the rise ratio of the ith cluster.
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Figure 12. Data from Busan tidal-gauge station before application of any thresholds.

Figure 13. Surges at Busan above a threshold of 29.15 cm before clustering.

3. Third,
∏
i

∼ GPD(ξσθ∗) was chosen, where
∏
i

denotes

the peak surge height of the ith cluster and θ∗ denotes
the selected threshold.

For the exponential distribution and interarrival times, the
exact solutions of the maximization problem stated above
can be derived in closed form. For the GPD distribution and
peak exceedances and the beta distribution and rise ratios,
the problem is solved numerically. A full description of the
MLE algorithm for interarrival times, rise ratios, and peak
exceedances is detailed below.

1. Input:

a. observed interarrival times t1, . . . , tC of the clusters’
surge peaks,

b. observed rise ratios φ1, . . . ,φC,

c. observed peak surge heights γ1, . . . , γC,

d. number of clusters C,

e. threshold rate θ∗.

2. Output: maximum-likelihood estimates of the model pa-
rameters λ̂MLE, α̂MLE, β̂MLE, ξ̂MLE, and σ̂MLE.
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Figure 14. Surges at Busan above a threshold of 29.15 cm after clustering.

Figure 15. Relationship between exceedance and duration.

Figure 16. Relationship between exceedance and rise ratio.

Figure 17. Relationship between duration and rise ratio.

3. Procedure:

a. compute λ̂MLE for the exponential interarrival
rate λ as

λ̂MLE =

(
C∑
c=1

tc

)−1

; (14)

b. compute α̂MLE and β̂MLE for the beta parameters α
and β by numerically solving the following first-
order equations,

C
(
ψ
(
α̂MLE +β̂MLE

)
−ψ

(
α̂MLE

))
+

C∑
c=1

logφi = 0; (15)
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Table 11. Probability distribution parameters of the storm-surge pa-
rameters.

GPD Beta

Season ξ σ α β

Cold 0.02 0.34 3.12 3.45
Warm 0.51 0.33 2.87 1.89

C
(
ψ
(
α̂MLE +β̂MLE

)
−ψ

(
α̂MLE

))
+

C∑
c=1

log(1−φi)= 0, (16)

in which ψ(·) denotes the digamma function;

c. compute ξ̂MLE and σ̂MLE for the GPD parameters ξ
and σ (further details on this estimation can be
found in the documentation provided with the is-
mev package; Heffernan and Stephenson, 2012);

d. return λ̂MLE, α̂MLE, β̂MLE, ξ̂MLE, and σ̂MLE to
step 3(a) above.

Based on our simulations, exceedances of water height
above the designated threshold were computed using MLE
estimates. Table 11 presents the distribution parameters of
the storm-surge parameters that were computed, each using
a different probability model. These distribution parameters
were based on the exceedance above the algorithmically des-
ignated threshold of 29.15 cm mentioned above.

Figure 18 shows the GPD cumulative distribution function
as estimated by MLE, and the empirical distribution func-
tion, with the latter shown as dots. Each dot represents the
observed proportion of exceedances below a certain height in
a given season (blue: cold season; red: warm season), while
the corresponding value on the fitted line of the same sea-
son gives the probability that the exceedances are below that
height per the estimated GPD distribution.

We also fit our empirical data to five different probabil-
ity distribution models – i.e. Fréchet, gamma, GPD, lognor-
mal, and Weibull – as seen in Figs. 19 and 20, using the case
of storm-surge data. Calculation of the mean squared error
between the probability models and the empirical data re-
vealed that the gamma and Weibull distributions had the best
fit to the data for both cold and warm seasons when MLE
was used for estimating parameters of the probability model.
These findings support previous ones by Bardsley (2019) re-
garding the Weibull distribution’s appropriateness to extreme
value estimation. According to Bardsley, such a distribution
could explain enough to enable extrapolation of the degree
beyond the utilized data history, provided that the scale and
shape parameter of the distribution are positive (meaning that
the probability model has a good fit to the data). In the case of
our own research, the shape and scale parameters were 1.87

Figure 18. Non-exceedance probability plot of surge height at a
target rate of 5.0.

Figure 19. Fits of six types of distributions of non-exceedance prob-
ability during the cold season at a target rate of 5.0.

and 5.21, respectively, indicating that the Weibull distribu-
tion model will likely have a good fit to large amounts of
data beyond the dataset we used.

5 Conclusion

Typhoons cause numerous fatalities and immense property
damage, and their frequency has recently been increasing.
Nevertheless, typhoon risk assessments are not yet suffi-
ciently comprehensive enough to estimate either the damage
levels from such events or the probability of their occurrence.
If they are to effectively plan for typhoons, governments and
the insurance industry will need accurate estimates of both.
Prompted by the high levels of damage inflicted by the high
surge during South Korea’s most severe typhoon, Maemi,
this research has estimated the risk of storm surges through
non-exceedance probability using MLE. Specifically, we es-
timated extreme storm surges’ non-exceedance probability in
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Figure 20. Fits of six types of distributions of non-exceedance prob-
ability during the warm season at a target rate of 5.0.

accordance with their water levels, with such levels serving
as references for non-exceedance probability above a cer-
tain threshold. We applied various methodologies to obtain
more reliable thresholds and a threshold-selection algorithm
that utilized target rate and number of clusters to more ac-
curately predict the height threshold. Additionally, we sepa-
rated storm surges into cold-season and warm-season events,
as this allowed for more reliable estimations given their dif-
ferent frequencies in these seasons. Three parameters – ex-
ceedance, rise ratio, and duration – were separated from the
storm surges and compared to ascertain their relationship.
This established that exceedance and duration have a quite
strong linear relationship. In previous research, total water
level was utilized to estimate the possibility of future occur-
rences, but such an approach could lead to inaccurate results
for the reasons mentioned in the Sect. 2. Accordingly, in this
study, we sub-categorized total water levels into predicted,
observed, and surge levels. Once that had been done, surge
level was found to be the main factor influencing damage to
coastal infrastructure, and thus it was the only factor applied
to our estimates of non-exceedance probability.

Based on a quantitative risk assessment for extreme storm
surges in a city on the Korean Peninsula that was severely
damaged by Typhoon Maemi due to its geographical char-
acteristics, this study has proposed a risk-management ap-
proach to such natural hazards based on the non-exceedance
probabilities of extreme storm surges. Various probability
distribution models were tested within this framework to
explore clustering and threshold-selection methods, and the
Weibull distribution was found to have the best fit to our
empirical data. Our results suggest that the use of various
probability models, clustering, and separation of tidal-gauge
data as described above could all benefit the accuracy of nat-
ural hazard return prediction. The present study’s findings
also confirm non-exceedance probability to be a useful, geo-
graphically sensitive tool for government agencies, insurance

companies, and construction companies conducting risk as-
sessments, setting insurance prices, preparing safety guide-
lines, and setting policies aimed at reducing typhoon-related
damage and financial losses.

Although the present research investigated various non-
exceedance probability distributions of typhoon-driven storm
surges, it only used a single extreme event in a specified re-
gion. As such, its findings may not be applicable to other re-
gions, each of which has its own unique weather conditions,
geographic features, and tidal characteristics. Future research
should therefore include tidal and environmental data from a
range of different regions and various extreme events to test
the present study’s findings. Also, various natural hazard in-
dicators and environmental factors such as wind speed, pres-
sure, rainfall, landslides, and distance to waterways may be
useful variables in estimating the exceedance probabilities of
typhoons and other natural hazards and would thus be bene-
ficial to risk assessment and mitigation. In addition, it should
be kept in mind that much of the tidal-gauge data that this
study utilized was from the fairly distant past. Thus, in simi-
lar future studies, efforts should be made to ensure that such
data are reliable, especially in light of climate-change-driven
patterns in sea-level behaviour.

Return periods based on various non-exceedance proba-
bility models should also be considered in future research,
insofar as elaborated return period estimation can be uti-
lized to improve disaster relief and emergency planning ef-
forts. Our comparison of various probability models to find
the best fitting distribution models could be adapted to the
simulation of time series of the past typhoons, and the col-
lected simulated storm-surge time series could then used to
estimate typhoons’ return periods using bootstrapping of the
exceedance data. This would potentially provide more exact
return periods with confidence intervals. Lastly, future work
on return periods should take account of trends in sea-level
change driven by climate change, which already pose a non-
negligible risk to coastal buildings and other infrastructure.
Advanced statistical methods such as Monte Carlo simula-
tions, as well as deep-learning techniques, could be applied
to make typhoon return period estimates even more accurate.
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