Articles | Volume 20, issue 12
Nat. Hazards Earth Syst. Sci., 20, 3593–3609, 2020
https://doi.org/10.5194/nhess-20-3593-2020
Nat. Hazards Earth Syst. Sci., 20, 3593–3609, 2020
https://doi.org/10.5194/nhess-20-3593-2020

Research article 23 Dec 2020

Research article | 23 Dec 2020

Wave height return periods from combined measurement–model data: a Baltic Sea case study

Jan-Victor Björkqvist et al.

Related authors

Swell hindcast statistics for the Baltic Sea
Jan-Victor Björkqvist, Siim Pärt, Victor Alari, Sander Rikka, Elisa Lindgren, and Laura Tuomi
Ocean Sci. Discuss., https://doi.org/10.5194/os-2021-62,https://doi.org/10.5194/os-2021-62, 2021
Revised manuscript accepted for OS
Short summary
Correlation of wind waves and sea level variations on the coast of the seasonally ice-covered Gulf of Finland
Milla M. Johansson, Jan-Victor Björkqvist, Jani Särkkä, Ulpu Leijala, and Kimmo K. Kahma
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2021-55,https://doi.org/10.5194/nhess-2021-55, 2021
Preprint under review for NHESS
Short summary
Meteotsunami occurrence in the Gulf of Finland over the past century
Havu Pellikka, Terhi K. Laurila, Hanna Boman, Anu Karjalainen, Jan-Victor Björkqvist, and Kimmo K. Kahma
Nat. Hazards Earth Syst. Sci., 20, 2535–2546, https://doi.org/10.5194/nhess-20-2535-2020,https://doi.org/10.5194/nhess-20-2535-2020, 2020
Short summary
The wave spectrum in archipelagos
Jan-Victor Björkqvist, Heidi Pettersson, and Kimmo K. Kahma
Ocean Sci., 15, 1469–1487, https://doi.org/10.5194/os-15-1469-2019,https://doi.org/10.5194/os-15-1469-2019, 2019
Short summary
Combining probability distributions of sea level variations and wave run-up to evaluate coastal flooding risks
Ulpu Leijala, Jan-Victor Björkqvist, Milla M. Johansson, Havu Pellikka, Lauri Laakso, and Kimmo K. Kahma
Nat. Hazards Earth Syst. Sci., 18, 2785–2799, https://doi.org/10.5194/nhess-18-2785-2018,https://doi.org/10.5194/nhess-18-2785-2018, 2018
Short summary

Related subject area

Sea, Ocean and Coastal Hazards
Exploring the partial use of the Mo.S.E. system as effective adaptation to rising flood frequency of Venice
Riccardo A. Mel
Nat. Hazards Earth Syst. Sci., 21, 3629–3644, https://doi.org/10.5194/nhess-21-3629-2021,https://doi.org/10.5194/nhess-21-3629-2021, 2021
Short summary
Variable-resolution building exposure modelling for earthquake and tsunami scenario-based risk assessment: an application case in Lima, Peru
Juan Camilo Gomez-Zapata, Nils Brinckmann, Sven Harig, Raquel Zafrir, Massimiliano Pittore, Fabrice Cotton, and Andrey Babeyko
Nat. Hazards Earth Syst. Sci., 21, 3599–3628, https://doi.org/10.5194/nhess-21-3599-2021,https://doi.org/10.5194/nhess-21-3599-2021, 2021
Short summary
The Mw 7.5 Tadine (Maré, Loyalty Islands) earthquake and related tsunami of 5 December 2018: seismotectonic context and numerical modeling
Jean Roger, Bernard Pelletier, Maxime Duphil, Jérôme Lefèvre, Jérôme Aucan, Pierre Lebellegard, Bruce Thomas, Céline Bachelier, and David Varillon
Nat. Hazards Earth Syst. Sci., 21, 3489–3508, https://doi.org/10.5194/nhess-21-3489-2021,https://doi.org/10.5194/nhess-21-3489-2021, 2021
Short summary
Tidal flood area mapping in the face of climate change scenarios: case study in a tropical estuary in the Brazilian semi-arid region
Paulo Victor N. Araújo, Venerando E. Amaro, Leonlene S. Aguiar, Caio C. Lima, and Alexandre B. Lopes
Nat. Hazards Earth Syst. Sci., 21, 3353–3366, https://doi.org/10.5194/nhess-21-3353-2021,https://doi.org/10.5194/nhess-21-3353-2021, 2021
Short summary
Distribution of coastal high water level during extreme events around the UK and Irish coasts
Julia Rulent, Lucy M. Bricheno, J. A. Mattias Green, Ivan D. Haigh, and Huw Lewis
Nat. Hazards Earth Syst. Sci., 21, 3339–3351, https://doi.org/10.5194/nhess-21-3339-2021,https://doi.org/10.5194/nhess-21-3339-2021, 2021
Short summary

Cited articles

Aarnes, O. J., Breivik, Ø., and Reistad, M.: Wave Extremes in the northeast Atlantic, J. Climate, 25, 1529–1543, https://doi.org/10.1175/JCLI-D-11-00132.1, 2012. a, b, c, d, e
Berg, P., Döscher, R., and Koenigk, T.: Impacts of using spectral nudging on regional climate model RCA4 simulations of the Arctic, Geosci. Model Dev., 6, 849–859, https://doi.org/10.5194/gmd-6-849-2013, 2013. a
Bidlot, J. R., Holmes, D. J., Wittmann, P. A., Lalbeharry, R., and Chen, H. S.:Intercomparison of the performance of operational ocean wave forecasting systems with buoy data, Weather Forecast., 17, 287–310, https://doi.org/10.1175/1520-0434(2002)017<0287:IOTPOO>2.0.CO;2, 2002. a, b
Bitner-Gregersen, E. M. and Magnusson, A. K.: Effect of intrinsic and sampling variability on wave parameters and wave statistics, Ocean Dynam., 64, 1643–1655, https://doi.org/10.1007/s10236-014-0768-8, 2014. a
Björkqvist, J.-V.: Waves in Archipelagos, PhD thesis, FMI Contributions 159, University of Helsinki, Helsinki, Finland, available at: http://hdl.handle.net/10138/308954, last access: 14 December 2020. a
Download
Short summary
Wave observations have a fundamental uncertainty due to the randomness of the sea state. Such scatter is absent in model data, and we tried two methods to best account for this difference when combining measured and modelled wave heights. The results were used to estimate how rare a 2019 storm in the Bothnian Sea was. Both methods were found to have strengths and weaknesses, but our best estimate was that, in the current climate, such a storm might on average repeat about once a century.
Altmetrics
Final-revised paper
Preprint