Articles | Volume 19, issue 10
https://doi.org/10.5194/nhess-19-2183-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/nhess-19-2183-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Environmental controls on surf zone injuries on high-energy beaches
Bruno Castelle
CORRESPONDING AUTHOR
CNRS, UMR EPOC, Univ. Bordeaux, Pessac, France
UMR EPOC, Univ. Bordeaux, Pessac, France
Tim Scott
Coastal Processes Research Group, School of Biological and Marine
Sciences, University of Plymouth, Plymouth, UK
Rob Brander
School of Biological, Earth and Environmental Sciences, UNSW Sydney, Sydney, Australia
Jak McCarroll
Coastal Processes Research Group, School of Biological and Marine
Sciences, University of Plymouth, Plymouth, UK
Arthur Robinet
Bureau de Recherche en Géologie Minière, Orléans, France
Eric Tellier
INSERM, ISPED, Centre INSERM U1219 Bordeaux Population Health
Research, Univ. Bordeaux, Bordeaux, France
ISPED, Centre INSERM U1219 Bordeaux Population Health
Research, Univ. Bordeaux, Bordeaux, France
Pôle Urgences Adultes, CHU de Bordeaux, SAMU-SMUR, Bordeaux,
France
Elias de Korte
Institute for Marine and Atmospheric Research, Department of Physical Geography, Faculty of Geosciences, Utrecht University, Utrecht, the Netherlands
Bruno Simonnet
Pôle Urgences Adultes, CHU de Bordeaux, SAMU-SMUR, Bordeaux,
France
Louis-Rachid Salmi
INSERM, ISPED, Centre INSERM U1219 Bordeaux Population Health
Research, Univ. Bordeaux, Bordeaux, France
ISPED, Centre INSERM U1219 Bordeaux Population Health
Research, Univ. Bordeaux, Bordeaux, France
Pôle de Santé Publique, CHU de Bordeaux, Service
d'Information Médicale, Bordeaux, France
Related authors
Bruno Castelle, Jeoffrey Dehez, Jean-Philippe Savy, Sylvain Liquet, and David Carayon
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-168, https://doi.org/10.5194/nhess-2024-168, 2024
Preprint under review for NHESS
Short summary
Short summary
This paper introduces two new, simple, physics-based hazard forecast models of rip current and shore-break waves, which are the two primary natural hazards beachgoers expose themselves to in the surf zone. These models, which depend on a limited number of free parameters, accurately predict rip-current and shore-break wave hazard levels, including their modulation by tide elevation and incident wave conditions, opening new perspectives to forecast multiple surf-zone hazards on sandy beaches.
Elias de Korte, Bruno Castelle, and Eric Tellier
Nat. Hazards Earth Syst. Sci., 21, 2075–2091, https://doi.org/10.5194/nhess-21-2075-2021, https://doi.org/10.5194/nhess-21-2075-2021, 2021
Short summary
Short summary
We use a statistical model to address the controls and interactions of environmental (wave, tide, weather, beach morphology) data on surf zone injuries along a sandy coast where shore-break and rip-current hazards co-exist. Although fair but limited predictive life-risk skill is found, the approach provides new insight into the environmental controls, their interactions and their respective contribution to hazard and exposure, with implications for the development of public education messaging.
Bruno Castelle, Jeoffrey Dehez, Jean-Philippe Savy, Sylvain Liquet, and David Carayon
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-168, https://doi.org/10.5194/nhess-2024-168, 2024
Preprint under review for NHESS
Short summary
Short summary
This paper introduces two new, simple, physics-based hazard forecast models of rip current and shore-break waves, which are the two primary natural hazards beachgoers expose themselves to in the surf zone. These models, which depend on a limited number of free parameters, accurately predict rip-current and shore-break wave hazard levels, including their modulation by tide elevation and incident wave conditions, opening new perspectives to forecast multiple surf-zone hazards on sandy beaches.
Christopher Stokes, Timothy Poate, Gerd Masselink, Tim Scott, and Steve Instance
Nat. Hazards Earth Syst. Sci., 24, 4049–4074, https://doi.org/10.5194/nhess-24-4049-2024, https://doi.org/10.5194/nhess-24-4049-2024, 2024
Short summary
Short summary
Currents at beaches with an estuary mouth have rarely been studied before. Using field measurements and computer modelling, we show that surfzone currents can be driven by both estuary flow and rip currents. We show that an estuary mouth beach can have flows reaching 1.5 m s−1 and have a high likelihood of taking bathers out of the surfzone. The river channels on the beach direct the flows, and even though they change position over time, it was possible to predict when peak hazards would occur.
Lea Uebelhoer, William Koon, Mitchell D. Harley, Jasmin C. Lawes, and Robert W. Brander
Nat. Hazards Earth Syst. Sci., 22, 909–926, https://doi.org/10.5194/nhess-22-909-2022, https://doi.org/10.5194/nhess-22-909-2022, 2022
Short summary
Short summary
Beachgoers at unpatrolled Australian beaches were surveyed to gain an understanding of their demographics, beach safety knowledge, and behaviour. Most visited unpatrolled beaches out of convenience and because they wanted to visit a quiet location. Despite being infrequent beachgoers, with poor swimming and hazard identification skills, most intended to enter the water. Authorities should go beyond the
swim between the flagssafety message, as people will always swim at unpatrolled beaches.
Elias de Korte, Bruno Castelle, and Eric Tellier
Nat. Hazards Earth Syst. Sci., 21, 2075–2091, https://doi.org/10.5194/nhess-21-2075-2021, https://doi.org/10.5194/nhess-21-2075-2021, 2021
Short summary
Short summary
We use a statistical model to address the controls and interactions of environmental (wave, tide, weather, beach morphology) data on surf zone injuries along a sandy coast where shore-break and rip-current hazards co-exist. Although fair but limited predictive life-risk skill is found, the approach provides new insight into the environmental controls, their interactions and their respective contribution to hazard and exposure, with implications for the development of public education messaging.
Sebastian J. Pitman, Katie Thompson, Deirdre E. Hart, Kevin Moran, Shari L. Gallop, Robert W. Brander, and Adam Wooler
Nat. Hazards Earth Syst. Sci., 21, 115–128, https://doi.org/10.5194/nhess-21-115-2021, https://doi.org/10.5194/nhess-21-115-2021, 2021
Short summary
Short summary
This study aimed to identify how well beach users could spot rip currents in real time at the beach. It was performed in response to the fact that rip currents are the leading cause of drownings on recreational beaches worldwide. We found that only one in five people were able to spot the rip current, meaning the vast majority would be unable to make good decisions about where it is safe to swim at the beach.
B. Chris Brewster, Richard E. Gould, and Robert W. Brander
Nat. Hazards Earth Syst. Sci., 19, 389–397, https://doi.org/10.5194/nhess-19-389-2019, https://doi.org/10.5194/nhess-19-389-2019, 2019
Short summary
Short summary
Rip currents are the greatest hazard to swimmers at surf beaches, but studies of the percentage of rescues and number of drownings attributable to rip currents have reached varying conclusions. This study uses rescue data reported to the United States Lifesaving Association by surf beach rescuers to show that rip currents are the primary cause of an average of more than 80 % of surf rescues, and to estimate that, they are the primary contributor to over 100 drowning deaths annually in the US.
Chris Houser, Sarah Trimble, Robert Brander, B. Chris Brewster, Greg Dusek, Deborah Jones, and John Kuhn
Nat. Hazards Earth Syst. Sci., 17, 1003–1024, https://doi.org/10.5194/nhess-17-1003-2017, https://doi.org/10.5194/nhess-17-1003-2017, 2017
Short summary
Short summary
Rip currents pose a major global beach hazard. Despite increased social research into beach-goer experience, little is known about levels of rip current knowledge within the general population. This study describes results of an online survey to determine the extent of rip current knowledge across the United States, with the aim of improving and enhancing existing beach safety education materials. Results suggest a need for locally specific and verified rip forecasts and signage.
Related subject area
Sea, Ocean and Coastal Hazards
Changing sea level, changing shorelines: integration of remote-sensing observations at the Terschelling barrier island
Regional modelling of extreme sea levels induced by hurricanes
New insights into combined surfzone, embayment, and estuarine bathing hazards
Dynamic projections of extreme sea levels for western Europe based on ocean and wind-wave modelling
Brief communication: From modelling to reality – flood modelling gaps highlighted by a recent severe storm surge event along the German Baltic Sea coast
Inundation and evacuation of shoreline populations during landslide-triggered tsunamis: an integrated numerical and statistical hazard assessment
Rapid simulation of wave runup on morphologically diverse, reef-lined coasts with the BEWARE-2 (Broad-range Estimator of Wave Attack in Reef Environments) meta-process model
A brief history of tsunamis in the Vanuatu Arc
Tsunami inundation and vulnerability analysis on the Makran coast, Pakistan
Influence of data source and copula statistics on estimates of compound flood extremes in a river mouth environment
Volcano tsunamis and their effects on moored vessel safety: the 2022 Tonga event
Modelling tsunami initial conditions due to rapid coseismic seafloor displacement: efficient numerical integration and a tool to build unit source databases
Review Article: A Comprehensive Review of Compound Flooding Literature with a Focus on Coastal and Estuarine Regions
Estuarine hurricane wind can intensify surge-dominated extreme water level in shallow and converging coastal systems
Revisiting regression methods for estimating long-term trends in sea surface temperature
Global application of a regional frequency analysis to extreme sea levels
Tsunami hazard assessment in the South China Sea based on geodetic locking of the Manila subduction zone
The impact of long-term changes in ocean waves and storm surge on coastal shoreline change: a case study of Bass Strait and south-east Australia
Brief communication: Implications of outstanding solitons for the occurrence of rogue waves at two additional sites in the North Sea
A systemic and comprehensive assessment of coastal hazard changes: method and application to France and its overseas territories
Simulating sea level extremes from synthetic low-pressure systems
Nonlinear processes in tsunami simulations for the Peruvian coast with focus on Lima and Callao
The potential of global coastal flood risk reduction using various DRR measures
Thresholds for estuarine compound flooding using a combined hydrodynamic–statistical modelling approach
Nearshore tsunami amplitudes across the Maldives archipelago due to worst-case seismic scenarios in the Indian Ocean
Evidence of Middle Holocene landslide-generated tsunamis recorded in lake sediments from Saqqaq, West Greenland
Investigation of historical severe storms and storm tides in the German Bight with century reanalysis data
Proposal for a new meteotsunami intensity index
Total water levels along the South Atlantic Bight during three along-shelf propagating tropical cyclones: relative contributions of storm surge and wave runup
Validated probabilistic approach to estimate flood direct impacts on the population and assets on European coastlines
Hurricane Irma: an unprecedented event over the last 3700 years? Geomorphological changes and sedimentological record in Codrington Lagoon, Barbuda
Bayesian extreme value analysis of extreme sea levels along the German Baltic coast using historical information
Storm characteristics influence nitrogen removal in an urban estuarine environment
A new European coastal flood database for low–medium intensity events
Boulder transport and wave height of a seventeenth-century South China Sea tsunami on Penghu Islands, Taiwan
A wave-resolving modeling study of rip current variability, rip hazard, and swimmer escape strategies on an embayed beach
Human displacements from Tropical Cyclone Idai attributable to climate change
Three decades of coastal subsidence in the slow-moving Nice Côte d'Azur Airport area (France) revealed by InSAR (interferometric synthetic-aperture radar): insights into the deformation mechanism
Modelling extreme water levels using intertidal topography and bathymetry derived from multispectral satellite images
Regional assessment of extreme sea levels and associated coastal flooding along the German Baltic Sea coast
Joint probability analysis of storm surges and waves caused by tropical cyclones for the estimation of protection standard: a case study on the eastern coast of the Leizhou Peninsula and the island of Hainan in China
Meteotsunami in the United Kingdom: the hidden hazard
Climate-induced storminess forces major increases in future storm surge hazard in the South China Sea region
Assessing Typhoon Soulik-induced morphodynamics over the Mokpo coastal region in South Korea based on a geospatial approach
Bayesian hierarchical modelling of sea-level extremes in the Finnish coastal region
Assessing the coastal hazard of Medicane Ianos through ensemble modelling
A predictive equation for wave setup using genetic programming
Contribution of solitons to enhanced rogue wave occurrence in shallow depths: a case study in the southern North Sea
Compound flood events: analysing the joint occurrence of extreme river discharge events and storm surges in northern and central Europe
Improvements to the detection and analysis of external surges in the North Sea
Benedikt Aschenneller, Roelof Rietbroek, and Daphne van der Wal
Nat. Hazards Earth Syst. Sci., 24, 4145–4177, https://doi.org/10.5194/nhess-24-4145-2024, https://doi.org/10.5194/nhess-24-4145-2024, 2024
Short summary
Short summary
Shorelines retreat or advance in response to sea level changes, subsidence or uplift of the ground, and morphological processes (sedimentation and erosion). We show that the geometrical influence of each of these drivers on shoreline movements can be quantified by combining different remote sensing observations, including radar altimetry, lidar and optical satellite images. The focus here is to illustrate the uncertainties of these observations by comparing datasets that cover similar processes.
Alisée A. Chaigneau, Melisa Menéndez, Marta Ramírez-Pérez, and Alexandra Toimil
Nat. Hazards Earth Syst. Sci., 24, 4109–4131, https://doi.org/10.5194/nhess-24-4109-2024, https://doi.org/10.5194/nhess-24-4109-2024, 2024
Short summary
Short summary
Tropical cyclones drive extreme sea levels, causing large storm surges due to low atmospheric pressure and strong winds. This study explores factors affecting the numerical modelling of storm surges induced by hurricanes in the tropical Atlantic. Two ocean models are compared and used for sensitivity experiments. ERA5 atmospheric reanalysis forcing generally improves surge estimates compared to parametric wind models. Including ocean circulations reduces errors in surge estimates in some areas.
Christopher Stokes, Timothy Poate, Gerd Masselink, Tim Scott, and Steve Instance
Nat. Hazards Earth Syst. Sci., 24, 4049–4074, https://doi.org/10.5194/nhess-24-4049-2024, https://doi.org/10.5194/nhess-24-4049-2024, 2024
Short summary
Short summary
Currents at beaches with an estuary mouth have rarely been studied before. Using field measurements and computer modelling, we show that surfzone currents can be driven by both estuary flow and rip currents. We show that an estuary mouth beach can have flows reaching 1.5 m s−1 and have a high likelihood of taking bathers out of the surfzone. The river channels on the beach direct the flows, and even though they change position over time, it was possible to predict when peak hazards would occur.
Alisée A. Chaigneau, Angélique Melet, Aurore Voldoire, Maialen Irazoqui Apecechea, Guillaume Reffray, Stéphane Law-Chune, and Lotfi Aouf
Nat. Hazards Earth Syst. Sci., 24, 4031–4048, https://doi.org/10.5194/nhess-24-4031-2024, https://doi.org/10.5194/nhess-24-4031-2024, 2024
Short summary
Short summary
Climate-change-induced sea level rise increases the frequency of extreme sea levels. We analyze projected changes in extreme sea levels for western European coasts produced with high-resolution models (∼ 6 km). Unlike commonly used coarse-scale global climate models, this approach allows us to simulate key processes driving coastal sea level variations, such as long-term sea level rise, tides, storm surges induced by low atmospheric surface pressure and winds, waves, and their interactions.
Joshua Kiesel, Claudia Wolff, and Marvin Lorenz
Nat. Hazards Earth Syst. Sci., 24, 3841–3849, https://doi.org/10.5194/nhess-24-3841-2024, https://doi.org/10.5194/nhess-24-3841-2024, 2024
Short summary
Short summary
In October 2023, one of the strongest storm surges on record hit the southwestern Baltic Sea coast, causing severe impacts in the German federal state of Schleswig-Holstein, including dike failures. Recent studies on coastal flooding from the same region align well with the October 2023 surge, with differences in peak water levels of less than 30 cm. This rare coincidence is used to assess current capabilities and limitations of coastal flood modelling and derive key areas for future research.
Emmie Malika Bonilauri, Catherine Aaron, Matteo Cerminara, Raphaël Paris, Tomaso Esposti Ongaro, Benedetta Calusi, Domenico Mangione, and Andrew John Lang Harris
Nat. Hazards Earth Syst. Sci., 24, 3789–3813, https://doi.org/10.5194/nhess-24-3789-2024, https://doi.org/10.5194/nhess-24-3789-2024, 2024
Short summary
Short summary
Currently on the island of Stromboli, only 4 min of warning time is available for a locally generated tsunami. We combined tsunami simulations and human exposure to complete a risk analysis. We linked the predicted inundation area and the tsunami warning signals to assess the hazard posed by future tsunamis and to design escape routes to reach safe areas and to optimise evacuation times. Such products can be used by civil protection agencies on Stromboli.
Robert McCall, Curt Storlazzi, Floortje Roelvink, Stuart G. Pearson, Roel de Goede, and José A. Á. Antolínez
Nat. Hazards Earth Syst. Sci., 24, 3597–3625, https://doi.org/10.5194/nhess-24-3597-2024, https://doi.org/10.5194/nhess-24-3597-2024, 2024
Short summary
Short summary
Accurate predictions of wave-driven flooding are essential to manage risk on low-lying, reef-lined coasts. Models to provide this information are, however, computationally expensive. We present and validate a modeling system that simulates flood drivers on diverse and complex reef-lined coasts as competently as a full-physics model but at a fraction of the computational cost to run. This development paves the way for application in large-scale early-warning systems and flood risk assessments.
Jean H. M. Roger and Bernard Pelletier
Nat. Hazards Earth Syst. Sci., 24, 3461–3478, https://doi.org/10.5194/nhess-24-3461-2024, https://doi.org/10.5194/nhess-24-3461-2024, 2024
Short summary
Short summary
We present a catalogue of tsunamis that occurred in the Vanuatu Arc. It has been built based on the analysis of existing catalogues, historical documents, and sea-level data from five coastal tide gauges. Since 1863, 100 tsunamis of local, regional, or far-field origins have been listed; 15 of them show maximum wave amplitudes and/or run-up heights of above 1 m, and 8 are between 0.3 and 1 m. Details are provided for particular events, including debated events or events with no known origin(s).
Rashid Haider, Sajid Ali, Gösta Hoffmann, and Klaus Reicherter
Nat. Hazards Earth Syst. Sci., 24, 3279–3290, https://doi.org/10.5194/nhess-24-3279-2024, https://doi.org/10.5194/nhess-24-3279-2024, 2024
Short summary
Short summary
The coastlines bordering the Arabian Sea have yielded various tsunamites reflecting its high hazard potential and recurrences. My PhD project aims at the estimation and zonation of the hazards and risks associated with. This publication is a continuation of the previous publication (Haider et al., 2023), which focused on hazard estimation through a multi-proxy approach. This part of the study estimates the risk potential through integrated tsunami inundation analysis.
Kévin Dubois, Morten Andreas Dahl Larsen, Martin Drews, Erik Nilsson, and Anna Rutgersson
Nat. Hazards Earth Syst. Sci., 24, 3245–3265, https://doi.org/10.5194/nhess-24-3245-2024, https://doi.org/10.5194/nhess-24-3245-2024, 2024
Short summary
Short summary
Both extreme river discharge and storm surges can interact at the coast and lead to flooding. However, it is difficult to predict flood levels during such compound events because they are rare and complex. Here, we focus on the quantification of uncertainties and investigate the sources of limitations while carrying out such analyses at Halmstad, Sweden. Based on a sensitivity analysis, we emphasize that both the choice of data source and statistical methodology influence the results.
Sergio Padilla, Íñigo Aniel-Quiroga, Rachid Omira, Mauricio González, Jihwan Kim, and Maria A. Baptista
Nat. Hazards Earth Syst. Sci., 24, 3095–3113, https://doi.org/10.5194/nhess-24-3095-2024, https://doi.org/10.5194/nhess-24-3095-2024, 2024
Short summary
Short summary
The eruption of the Hunga Tonga–Hunga Ha'apai volcano in January 2022 triggered a global phenomenon, including an atmospheric wave and a volcano-meteorological tsunami (VMT). The tsunami, reaching as far as Callao, Peru, 10 000 km away, caused significant coastal impacts. This study delves into understanding these effects, particularly on vessel mooring safety. The findings underscore the importance of enhancing early warning systems and preparing port authorities for managing such rare events.
Alice Abbate, José M. González Vida, Manuel J. Castro Díaz, Fabrizio Romano, Hafize Başak Bayraktar, Andrey Babeyko, and Stefano Lorito
Nat. Hazards Earth Syst. Sci., 24, 2773–2791, https://doi.org/10.5194/nhess-24-2773-2024, https://doi.org/10.5194/nhess-24-2773-2024, 2024
Short summary
Short summary
Modelling tsunami generation due to a rapid submarine earthquake is a complex problem. Under a variety of realistic conditions in a subduction zone, we propose and test an efficient solution to this problem: a tool that can compute the generation of any potential tsunami in any ocean in the world. In the future, we will explore solutions that would also allow us to model tsunami generation by slower (time-dependent) seafloor displacement.
Joshua Green, Ivan Haigh, Niall Quinn, Jeff Neal, Thomas Wahl, Melissa Wood, Dirk Eilander, Marleen de Ruiter, Philip Ward, and Paula Camus
EGUsphere, https://doi.org/10.5194/egusphere-2024-2247, https://doi.org/10.5194/egusphere-2024-2247, 2024
Short summary
Short summary
Compound flooding, involving the combination or successive occurrence of two or more flood drivers, can amplify flood impacts in coastal/estuarine regions. This paper reviews the practices, trends, methodologies, applications, and findings of coastal compound flooding literature at regional to global scales. We explore the types of compound flood events, their mechanistic processes, and the range of terminology. Lastly, this review highlights knowledge gaps and implications for future practices.
Mithun Deb, James J. Benedict, Ning Sun, Zhaoqing Yang, Robert D. Hetland, David Judi, and Taiping Wang
Nat. Hazards Earth Syst. Sci., 24, 2461–2479, https://doi.org/10.5194/nhess-24-2461-2024, https://doi.org/10.5194/nhess-24-2461-2024, 2024
Short summary
Short summary
We coupled earth system, hydrology, and hydrodynamic models to generate plausible and physically consistent ensembles of hurricane events and their associated water levels from the open coast to tidal rivers of Delaware Bay and River. Our results show that the hurricane landfall locations and the estuarine wind can significantly amplify the extreme surge in a shallow and converging system, especially when the wind direction aligns with the surge propagation direction.
Ming-Huei Chang, Yen-Chen Huang, Yu-Hsin Cheng, Chuen-Teyr Terng, Jinyi Chen, and Jyh Cherng Jan
Nat. Hazards Earth Syst. Sci., 24, 2481–2494, https://doi.org/10.5194/nhess-24-2481-2024, https://doi.org/10.5194/nhess-24-2481-2024, 2024
Short summary
Short summary
Monitoring the long-term trends in sea surface warming is crucial for informed decision-making and adaptation. This study offers a comprehensive examination of prevalent trend extraction methods. We identify the least-squares regression as suitable for general tasks yet highlight the need to address seasonal signal-induced bias, i.e., the phase–distance imbalance. Our developed method, evaluated using simulated and real data, is unbiased and better than the conventional SST anomaly method.
Thomas P. Collings, Niall D. Quinn, Ivan D. Haigh, Joshua Green, Izzy Probyn, Hamish Wilkinson, Sanne Muis, William V. Sweet, and Paul D. Bates
Nat. Hazards Earth Syst. Sci., 24, 2403–2423, https://doi.org/10.5194/nhess-24-2403-2024, https://doi.org/10.5194/nhess-24-2403-2024, 2024
Short summary
Short summary
Coastal areas are at risk of flooding from rising sea levels and extreme weather events. This study applies a new approach to estimating the likelihood of coastal flooding around the world. The method uses data from observations and computer models to create a detailed map of where these coastal floods might occur. The approach can predict flooding in areas for which there are few or no data available. The results can be used to help prepare for and prevent this type of flooding.
Guangsheng Zhao and Xiaojing Niu
Nat. Hazards Earth Syst. Sci., 24, 2303–2313, https://doi.org/10.5194/nhess-24-2303-2024, https://doi.org/10.5194/nhess-24-2303-2024, 2024
Short summary
Short summary
The purpose of this study is to estimate the spatial distribution of the tsunami hazard in the South China Sea from the Manila subduction zone. The plate motion data are used to invert the degree of locking on the fault plane. The degree of locking is used to estimate the maximum possible magnitude of earthquakes and describe the slip distribution. A spatial distribution map of the 1000-year return period tsunami wave height in the South China Sea was obtained by tsunami hazard assessment.
Mandana Ghanavati, Ian R. Young, Ebru Kirezci, and Jin Liu
Nat. Hazards Earth Syst. Sci., 24, 2175–2190, https://doi.org/10.5194/nhess-24-2175-2024, https://doi.org/10.5194/nhess-24-2175-2024, 2024
Short summary
Short summary
The paper examines the changes in shoreline position of the coast of south-east Australia over a 26-year period to determine whether changes are consistent with observed changes in ocean wave and storm surge climate. The results show that in regions where there have been significant changes in wave energy flux or wave direction, there have also been changes in shoreline position consistent with non-equilibrium longshore drift.
Ina Teutsch, Ralf Weisse, and Sander Wahls
Nat. Hazards Earth Syst. Sci., 24, 2065–2069, https://doi.org/10.5194/nhess-24-2065-2024, https://doi.org/10.5194/nhess-24-2065-2024, 2024
Short summary
Short summary
We investigate buoy and radar measurement data from shallow depths in the southern North Sea. We analyze the role of solitons for the occurrence of rogue waves. This is done by computing the nonlinear soliton spectrum of each time series. In a previous study that considered a single measurement site, we found a connection between the shape of the soliton spectrum and the occurrence of rogue waves. In this study, results for two additional sites are reported.
Marc Igigabel, Marissa Yates, Michalis Vousdoukas, and Youssef Diab
Nat. Hazards Earth Syst. Sci., 24, 1951–1974, https://doi.org/10.5194/nhess-24-1951-2024, https://doi.org/10.5194/nhess-24-1951-2024, 2024
Short summary
Short summary
Changes in sea levels alone do not determine the evolution of coastal hazards. Coastal hazard changes should be assessed using additional factors describing geomorphological configurations, metocean event types (storms, cyclones, long swells, and tsunamis), and the marine environment (e.g., coral reef state and sea ice extent). The assessment completed here, at regional scale including the coasts of mainland and overseas France, highlights significant differences in hazard changes.
Jani Särkkä, Jani Räihä, Mika Rantanen, and Matti Kämäräinen
Nat. Hazards Earth Syst. Sci., 24, 1835–1842, https://doi.org/10.5194/nhess-24-1835-2024, https://doi.org/10.5194/nhess-24-1835-2024, 2024
Short summary
Short summary
We study the relationship between tracks of low-pressure systems and related sea level extremes. We perform the studies by introducing a method to simulate sea levels using synthetic low-pressure systems. We test the method using sites located along the Baltic Sea coast. We find high extremes, where the sea level extreme reaches up to 3.5 m. In addition, we add the maximal value of the mean level of the Baltic Sea (1 m), leading to a sea level of 4.5 m.
Alexey Androsov, Sven Harig, Natalia Zamora, Kim Knauer, and Natalja Rakowsky
Nat. Hazards Earth Syst. Sci., 24, 1635–1656, https://doi.org/10.5194/nhess-24-1635-2024, https://doi.org/10.5194/nhess-24-1635-2024, 2024
Short summary
Short summary
Two numerical codes are used in a comparative analysis of the calculation of the tsunami wave due to an earthquake along the Peruvian coast. The comparison primarily evaluates the flow velocity fields in flooded areas. The relative importance of the various parts of the equations is determined, focusing on the nonlinear terms. The influence of the nonlinearity on the degree and volume of flooding, flow velocity, and small-scale fluctuations is determined.
Eric Mortensen, Timothy Tiggeloven, Toon Haer, Bas van Bemmel, Dewi Le Bars, Sanne Muis, Dirk Eilander, Frederiek Sperna Weiland, Arno Bouwman, Willem Ligtvoet, and Philip J. Ward
Nat. Hazards Earth Syst. Sci., 24, 1381–1400, https://doi.org/10.5194/nhess-24-1381-2024, https://doi.org/10.5194/nhess-24-1381-2024, 2024
Short summary
Short summary
Current levels of coastal flood risk are projected to increase in coming decades due to various reasons, e.g. sea-level rise, land subsidence, and coastal urbanization: action is needed to minimize this future risk. We evaluate dykes and coastal levees, foreshore vegetation, zoning restrictions, and dry-proofing on a global scale to estimate what levels of risk reductions are possible. We demonstrate that there are several potential adaptation pathways forward for certain areas of the world.
Charlotte Lyddon, Nguyen Chien, Grigorios Vasilopoulos, Michael Ridgill, Sogol Moradian, Agnieszka Olbert, Thomas Coulthard, Andrew Barkwith, and Peter Robins
Nat. Hazards Earth Syst. Sci., 24, 973–997, https://doi.org/10.5194/nhess-24-973-2024, https://doi.org/10.5194/nhess-24-973-2024, 2024
Short summary
Short summary
Recent storms in the UK, like Storm Ciara in 2020, show how vulnerable estuaries are to the combined effect of sea level and river discharge. We show the combinations of sea levels and river discharges that cause flooding in the Conwy estuary, N Wales. The results showed flooding was amplified under moderate conditions in the middle estuary and elsewhere sea state or river flow dominated the hazard. Combined sea and river thresholds can improve prediction and early warning of compound flooding.
Shuaib Rasheed, Simon C. Warder, Yves Plancherel, and Matthew D. Piggott
Nat. Hazards Earth Syst. Sci., 24, 737–755, https://doi.org/10.5194/nhess-24-737-2024, https://doi.org/10.5194/nhess-24-737-2024, 2024
Short summary
Short summary
Here we use a high-resolution bathymetry dataset of the Maldives archipelago, as well as corresponding high numerical model resolution, to carry out a scenario-based tsunami hazard assessment for the entire Maldives archipelago to investigate the potential impact of plausible far-field tsunamis across the Indian Ocean at the island scale. The results indicate that several factors contribute to mitigating and amplifying tsunami waves at the island scale.
Niels J. Korsgaard, Kristian Svennevig, Anne S. Søndergaard, Gregor Luetzenburg, Mimmi Oksman, and Nicolaj K. Larsen
Nat. Hazards Earth Syst. Sci., 24, 757–772, https://doi.org/10.5194/nhess-24-757-2024, https://doi.org/10.5194/nhess-24-757-2024, 2024
Short summary
Short summary
A tsunami wave will leave evidence of erosion and deposition in coastal lakes, making it possible to determine the runup height and when it occurred. Here, we use four lakes now located at elevations of 19–91 m a.s.l. close to the settlement of Saqqaq, West Greenland, to show that at least two giant tsunamis occurred 7300–7600 years ago with runup heights larger than 40 m. We infer that any tsunamis from at least nine giga-scale landslides must have happened 8500–10 000 years ago.
Elke Magda Inge Meyer and Lidia Gaslikova
Nat. Hazards Earth Syst. Sci., 24, 481–499, https://doi.org/10.5194/nhess-24-481-2024, https://doi.org/10.5194/nhess-24-481-2024, 2024
Short summary
Short summary
Storm tides for eight extreme historical storms in the German Bight are modelled using sets of slightly varying atmospheric conditions from the century reanalyses. Comparisons with the water level observations from the gauges Norderney, Cuxhaven and Husum show that single members of the reanalyses are suitable for the reconstruction of extreme storms. Storms with more northerly tracks show less variability within a set and have more potential for accurate reconstruction of extreme water levels.
Clare Lewis, Tim Smyth, Jess Neumann, and Hannah Cloke
Nat. Hazards Earth Syst. Sci., 24, 121–131, https://doi.org/10.5194/nhess-24-121-2024, https://doi.org/10.5194/nhess-24-121-2024, 2024
Short summary
Short summary
Meteotsunami are the result of atmospheric disturbances and can impact coastlines causing injury, loss of life, and damage to assets. This paper introduces a novel intensity index to allow for the quantification of these events at the shoreline. This has the potential to assist in the field of natural hazard assessment. It was trialled in the UK but designed for global applicability and to become a widely accepted standard in coastal planning, meteotsunami forecasting, and early warning systems.
Chu-En Hsu, Katherine A. Serafin, Xiao Yu, Christie A. Hegermiller, John C. Warner, and Maitane Olabarrieta
Nat. Hazards Earth Syst. Sci., 23, 3895–3912, https://doi.org/10.5194/nhess-23-3895-2023, https://doi.org/10.5194/nhess-23-3895-2023, 2023
Short summary
Short summary
Total water levels (TWLs) induced by tropical cyclones (TCs) are among the leading hazards faced by coastal communities. Using numerical models, we examined how TWL components (surge and wave runup) along the South Atlantic Bight varied during hurricanes Matthew (2016), Dorian (2019), and Isaias (2020). Peak surge and peak wave runup were dominated by wind speeds and relative positions to TCs. The exceedance time of TWLs was controlled by normalized distances to TC and TC translation speeds.
Enrico Duo, Juan Montes, Marine Le Gal, Tomás Fernández-Montblanc, Paolo Ciavola, and Clara Armaroli
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-197, https://doi.org/10.5194/nhess-2023-197, 2023
Revised manuscript accepted for NHESS
Short summary
Short summary
The present work, developed within the EU H2020 European Coastal Flood Awareness System ECFAS project, presents an approach used to estimate coastal flood direct impacts on population, buildings, and roads along the European coasts. The findings demonstrate that the ECFAS Impact approach offers valuable estimates for affected populations, reliable damage assessments for buildings and roads, and improved accuracy compared to traditional grid-based approaches.
Maude Biguenet, Eric Chaumillon, Pierre Sabatier, Antoine Bastien, Emeline Geba, Fabien Arnaud, Thibault Coulombier, and Nathalie Feuillet
Nat. Hazards Earth Syst. Sci., 23, 3761–3788, https://doi.org/10.5194/nhess-23-3761-2023, https://doi.org/10.5194/nhess-23-3761-2023, 2023
Short summary
Short summary
This work documents the impact of Hurricane Irma (2017) on the Codrington barrier and lagoon on Barbuda Island. Irma caused two wide breaches in the sandy barrier, which remained unopened for 250 years. The thick and extensive sand sheet at the top of the lagoon fill was attributed to Irma. This unique deposit in a 3700-year record confirms Irma's exceptional character. This case study illustrates the consequences of high-intensity hurricanes in low-lying islands in a global warming context.
Leigh Richard MacPherson, Arne Arns, Svenja Fischer, Fernando Javier Méndez, and Jürgen Jensen
Nat. Hazards Earth Syst. Sci., 23, 3685–3701, https://doi.org/10.5194/nhess-23-3685-2023, https://doi.org/10.5194/nhess-23-3685-2023, 2023
Short summary
Short summary
Efficient adaptation planning for coastal flooding caused by extreme sea levels requires accurate assessments of the underlying hazard. Tide-gauge data alone are often insufficient for providing the desired accuracy but may be supplemented with historical information. We estimate extreme sea levels along the German Baltic coast and show that relying solely on tide-gauge data leads to underestimations. Incorporating historical information leads to improved estimates with reduced uncertainties.
Anne Margaret H. Smiley, Suzanne P. Thompson, Nathan S. Hall, and Michael F. Piehler
Nat. Hazards Earth Syst. Sci., 23, 3635–3649, https://doi.org/10.5194/nhess-23-3635-2023, https://doi.org/10.5194/nhess-23-3635-2023, 2023
Short summary
Short summary
Floodwaters can deliver reactive nitrogen to sensitive aquatic systems and diminish water quality. We assessed the nitrogen removal capabilities of flooded habitats and urban landscapes. Differences in processing rates across land cover treatments and between nutrient treatments suggest that abundance and spatial distributions of habitats, as well as storm characteristics, influence landscape-scale nitrogen removal. Results have important implications for coastal development and climate change.
Marine Le Gal, Tomás Fernández-Montblanc, Enrico Duo, Juan Montes Perez, Paulo Cabrita, Paola Souto Ceccon, Véra Gastal, Paolo Ciavola, and Clara Armaroli
Nat. Hazards Earth Syst. Sci., 23, 3585–3602, https://doi.org/10.5194/nhess-23-3585-2023, https://doi.org/10.5194/nhess-23-3585-2023, 2023
Short summary
Short summary
Assessing coastal hazards is crucial to mitigate flooding disasters. In this regard, coastal flood databases are valuable tools. This paper describes a new coastal flood map catalogue covering the entire European coastline, as well as the methodology to build it and its accuracy. The catalogue focuses on frequent extreme events and relies on synthetic scenarios estimated from local storm conditions. Flood-prone areas and regions sensitive to storm duration and water level peak were identified.
Neng-Ti Yu, Cheng-Hao Lu, I-Chin Yen, Jia-Hong Chen, Jiun-Yee Yen, and Shyh-Jeng Chyi
Nat. Hazards Earth Syst. Sci., 23, 3525–3542, https://doi.org/10.5194/nhess-23-3525-2023, https://doi.org/10.5194/nhess-23-3525-2023, 2023
Short summary
Short summary
A paleotsunami deposit of cliff-top basalt debris was identified on the Penghu Islands in the southern Taiwan Strait and related to the 1661 earthquake in southwest Taiwan. A minimum wave height of 3.2 m is estimated to have rotated the biggest boulder for over 30 m landwards onto the cliff top at 2.5 m a.s.l. The event must have been huge compared to the 1994 M 6.4 earthquake with the ensuing 0.4 m high tsunami in the same area, validating the intimidating tsunami risks in the South China Sea.
Ye Yuan, Huaiwei Yang, Fujiang Yu, Yi Gao, Benxia Li, and Chuang Xing
Nat. Hazards Earth Syst. Sci., 23, 3487–3507, https://doi.org/10.5194/nhess-23-3487-2023, https://doi.org/10.5194/nhess-23-3487-2023, 2023
Short summary
Short summary
Rip currents are narrow jets of offshore-directed flow that originated in the surf zone, which can take swimmers of all ability levels into deeper water unawares. In this study, a 1 m fine-resolution wave-resolving model was configured to study rip current variability and the optimal swimmer escape strategies. Multiple factors contribute to the survival of swimmers. However, for weak-to-moderate rip and longshore currents, swimming onshore consistently seems to be the most successful strategy.
Benedikt Mester, Thomas Vogt, Seth Bryant, Christian Otto, Katja Frieler, and Jacob Schewe
Nat. Hazards Earth Syst. Sci., 23, 3467–3485, https://doi.org/10.5194/nhess-23-3467-2023, https://doi.org/10.5194/nhess-23-3467-2023, 2023
Short summary
Short summary
In 2019, Cyclone Idai displaced more than 478 000 people in Mozambique. In our study, we use coastal flood modeling and satellite imagery to construct a counterfactual cyclone event without the effects of climate change. We show that 12 600–14 900 displacements can be attributed to sea level rise and the intensification of storm wind speeds due to global warming. Our impact attribution study is the first one on human displacement and one of very few for a low-income country.
Olivier Cavalié, Frédéric Cappa, and Béatrice Pinel-Puysségur
Nat. Hazards Earth Syst. Sci., 23, 3235–3246, https://doi.org/10.5194/nhess-23-3235-2023, https://doi.org/10.5194/nhess-23-3235-2023, 2023
Short summary
Short summary
Coastal areas are fragile ecosystems that face multiple hazards. In this study, we measured the downward motion of the Nice Côte d'Azur Airport (France) that was built on reclaimed area and found that it has subsided from 16 mm yr-1 in the 1990s to 8 mm yr-1 today. A continuous remote monitoring of the platform will provide key data for a detailed investigation of future subsidence maps, and this contribution will help to evaluate the potential failure of part of the airport platform.
Wagner L. L. Costa, Karin R. Bryan, and Giovanni Coco
Nat. Hazards Earth Syst. Sci., 23, 3125–3146, https://doi.org/10.5194/nhess-23-3125-2023, https://doi.org/10.5194/nhess-23-3125-2023, 2023
Short summary
Short summary
For predicting flooding events at the coast, topo-bathymetric data are essential. However, elevation data can be unavailable. To tackle this issue, recent efforts have centred on the use of satellite-derived topography (SDT) and bathymetry (SDB). This work is aimed at evaluating their accuracy and use for flooding prediction in enclosed estuaries. Results show that the use of SDT and SDB in numerical modelling can produce similar predictions when compared to the surveyed elevation data.
Joshua Kiesel, Marvin Lorenz, Marcel König, Ulf Gräwe, and Athanasios T. Vafeidis
Nat. Hazards Earth Syst. Sci., 23, 2961–2985, https://doi.org/10.5194/nhess-23-2961-2023, https://doi.org/10.5194/nhess-23-2961-2023, 2023
Short summary
Short summary
Among the Baltic Sea littoral states, Germany is anticipated to experience considerable damage as a result of increased coastal flooding due to sea-level rise (SLR). Here we apply a new modelling framework to simulate how flooding along the German Baltic Sea coast may change until 2100 if dikes are not upgraded. We find that the study region is highly exposed to flooding, and we emphasise the importance of current plans to update coastal protection in the future.
Zhang Haixia, Cheng Meng, and Fang Weihua
Nat. Hazards Earth Syst. Sci., 23, 2697–2717, https://doi.org/10.5194/nhess-23-2697-2023, https://doi.org/10.5194/nhess-23-2697-2023, 2023
Short summary
Short summary
Simultaneous storm surge and waves can cause great damage due to cascading effects. Quantitative joint probability analysis is critical to determine their optimal protection design values. The joint probability of the surge and wave for the eastern coasts of Leizhou Peninsula and Hainan are estimated with a Gumbel copula based on 62 years of numerically simulated data, and the optimal design values under various joint return periods are derived using the non-linear programming method.
Clare Lewis, Tim Smyth, David Williams, Jess Neumann, and Hannah Cloke
Nat. Hazards Earth Syst. Sci., 23, 2531–2546, https://doi.org/10.5194/nhess-23-2531-2023, https://doi.org/10.5194/nhess-23-2531-2023, 2023
Short summary
Short summary
Meteotsunami are globally occurring water waves initiated by atmospheric disturbances. Previous research has suggested that in the UK, meteotsunami are a rare phenomenon and tend to occur in the summer months. This article presents a revised and updated catalogue of 98 meteotsunami that occurred between 1750 and 2022. Results also demonstrate a larger percentage of winter events and a geographical pattern highlighting the
hotspotregions that experience these events.
Melissa Wood, Ivan D. Haigh, Quan Quan Le, Hung Nghia Nguyen, Hoang Ba Tran, Stephen E. Darby, Robert Marsh, Nikolaos Skliris, Joël J.-M. Hirschi, Robert J. Nicholls, and Nadia Bloemendaal
Nat. Hazards Earth Syst. Sci., 23, 2475–2504, https://doi.org/10.5194/nhess-23-2475-2023, https://doi.org/10.5194/nhess-23-2475-2023, 2023
Short summary
Short summary
We used a novel database of simulated tropical cyclone tracks to explore whether typhoon-induced storm surges present a future flood risk to low-lying coastal communities around the South China Sea. We found that future climate change is likely to change tropical cyclone behaviour to an extent that this increases the severity and frequency of storm surges to Vietnam, southern China, and Thailand. Consequently, coastal flood defences need to be reviewed for resilience against this future hazard.
Sang-Guk Yum, Moon-Soo Song, and Manik Das Adhikari
Nat. Hazards Earth Syst. Sci., 23, 2449–2474, https://doi.org/10.5194/nhess-23-2449-2023, https://doi.org/10.5194/nhess-23-2449-2023, 2023
Short summary
Short summary
This study performed analysis on typhoon-induced coastal morphodynamics for the Mokpo coast. Wetland vegetation was severely impacted by Typhoon Soulik, with 87.35 % of shoreline transects experiencing seaward migration. This result highlights the fact that sediment resuspension controls the land alteration process over the typhoon period. The land accretion process dominated during the pre- to post-typhoon periods.
Olle Räty, Marko Laine, Ulpu Leijala, Jani Särkkä, and Milla M. Johansson
Nat. Hazards Earth Syst. Sci., 23, 2403–2418, https://doi.org/10.5194/nhess-23-2403-2023, https://doi.org/10.5194/nhess-23-2403-2023, 2023
Short summary
Short summary
We studied annual maximum sea levels in the Finnish coastal region. Our aim was to better quantify the uncertainty in them compared to previous studies. Using four statistical models, we found out that hierarchical models, which shared information on sea-level extremes across Finnish tide gauges, had lower uncertainty in their results in comparison with tide-gauge-specific fits. These models also suggested that the shape of the distribution for extreme sea levels is similar on the Finnish coast.
Christian Ferrarin, Florian Pantillon, Silvio Davolio, Marco Bajo, Mario Marcello Miglietta, Elenio Avolio, Diego S. Carrió, Ioannis Pytharoulis, Claudio Sanchez, Platon Patlakas, Juan Jesús González-Alemán, and Emmanouil Flaounas
Nat. Hazards Earth Syst. Sci., 23, 2273–2287, https://doi.org/10.5194/nhess-23-2273-2023, https://doi.org/10.5194/nhess-23-2273-2023, 2023
Short summary
Short summary
The combined use of meteorological and ocean models enabled the analysis of extreme sea conditions driven by Medicane Ianos, which hit the western coast of Greece on 18 September 2020, flooding and damaging the coast. The large spread associated with the ensemble highlighted the high model uncertainty in simulating such an extreme weather event. The different simulations have been used for outlining hazard scenarios that represent a fundamental component of the coastal risk assessment.
Charline Dalinghaus, Giovanni Coco, and Pablo Higuera
Nat. Hazards Earth Syst. Sci., 23, 2157–2169, https://doi.org/10.5194/nhess-23-2157-2023, https://doi.org/10.5194/nhess-23-2157-2023, 2023
Short summary
Short summary
Wave setup is a critical component of coastal flooding. Consequently, understanding and being able to predict wave setup is vital to protect coastal resources and the population living near the shore. Here, we applied machine learning to improve the accuracy of present predictors of wave setup. The results show that the new predictors outperform existing formulas demonstrating the capability of machine learning models to provide a physically sound description of wave setup.
Ina Teutsch, Markus Brühl, Ralf Weisse, and Sander Wahls
Nat. Hazards Earth Syst. Sci., 23, 2053–2073, https://doi.org/10.5194/nhess-23-2053-2023, https://doi.org/10.5194/nhess-23-2053-2023, 2023
Short summary
Short summary
Rogue waves exceed twice the significant wave height. They occur more often than expected in the shallow waters off Norderney. When applying a nonlinear Fourier transform for the Korteweg–de Vries equation to wave data from Norderney, we found differences in the soliton spectra of time series with and without rogue waves. A strongly outstanding soliton in the spectrum indicated an enhanced probability for rogue waves. We could attribute spectral solitons to the measured rogue waves.
Philipp Heinrich, Stefan Hagemann, Ralf Weisse, Corinna Schrum, Ute Daewel, and Lidia Gaslikova
Nat. Hazards Earth Syst. Sci., 23, 1967–1985, https://doi.org/10.5194/nhess-23-1967-2023, https://doi.org/10.5194/nhess-23-1967-2023, 2023
Short summary
Short summary
High seawater levels co-occurring with high river discharges have the potential to cause destructive flooding. For the past decades, the number of such compound events was larger than expected by pure chance for most of the west-facing coasts in Europe. Additionally rivers with smaller catchments showed higher numbers. In most cases, such events were associated with a large-scale weather pattern characterized by westerly winds and strong rainfall.
Alexander Böhme, Birgit Gerkensmeier, Benedikt Bratz, Clemens Krautwald, Olaf Müller, Nils Goseberg, and Gabriele Gönnert
Nat. Hazards Earth Syst. Sci., 23, 1947–1966, https://doi.org/10.5194/nhess-23-1947-2023, https://doi.org/10.5194/nhess-23-1947-2023, 2023
Short summary
Short summary
External surges in the North Sea are caused by low-pressure cells travelling over the northeast Atlantic. They influence extreme water levels on the German coast and have to be considered in the design process of coastal defence structures. This study collects data about external surges from 1995–2020 and analyses their causes, behaviours and potential trends. External surges often occur less than 72 h apart, enabling a single storm surge to be influenced by more than one external surge.
Cited articles
Aagaard, T. and Vinther, N.: Cross-shore currents in the surf zone: rips or
undertow?, J. Coast. Res., 24, 561–570, 2008.
Aagaard, T., Greenwood, B., and Nielsen, J.: Mean currents and sediment
transport in a rip channel, Mar. Geol., 140, 25–45, 1997.
Almar, R., Castelle, B., Ruessink, B. G., Sénéchal, N., Bonneton,
P., and Marieu, V.: Two- and three-dimensional double-sandbar system behaviour
under intense wave forcing and a meso–macro tidal range, Cont. Shelf Res.,
30, 781–792, 2010.
Angnuureng, D., Almar, R., Sénéchal, N., Castelle, B., Addo, K. A.,
Marieu, V., and Ranasinghe, R.: Shoreline resilience to individual storms and
storm clusters on a meso-macrotidal barred beach, Geomorphology, 290,
265–276, 2017.
Ardhuin, F., Roland, A., Dumas, F., Bennis, A.-C., Sentchev, A., Forget, P.,
Wolf, J., Girard, F., Osuna, P., and Benoit, M.: Numerical wave modeling in
conditions with strong currents: Dissipation, refraction, and relative wind,
J. Phys. Oceanogr., 42, 2101–2120, 2012.
Austin, M., Scott, T., Brown, J., Brown, J. MacMahan, J., Masselink, G., and
Russell, P.: Temporal observations of rip current circulation on a
macro-tidal beach, Cont. Shelf Res., 30, 1149–1165, 2010.
Austin, M. J., Scott, T. M., Russell, P. E., and Masselink, G.: Rip current
prediction: development, validation, and evaluation of an operational tool,
J. Coast. Res., 29, 283–300, 2013.
Austin, M. J., Masselink, G., Scott, T. M., and Russell, P. E.: Water level
controls on macro-tidal rip currents, Cont. Shelf Res., 75, 28–40, 2014.
Balouin, Y., Rey-Valette, H., and Picand, P.-A.: Automatic assessment and
analysis of beach attendance using video images at the lido of Sète
Beach, France, Ocean Coast. Manage., 102, 114–122, 2014.
Battjes, J. A.: Surf similarity, in: Proc. 14th International Conference on
Coastal Engineering, Copenhagen, Denmark, 466–480, 1974.
Beratan, K. K. and Osborne, R. H.: Frequency and demographic aspects in
shallow-water diving accidents in southern California, in:
Shallow-water diving accidents at southern California ocean beaches:
demographic, sedimentologic, medical, legal and management perspectivesm edited by: Osborne, R. H.,
University of Southern California, Los Angeles, CA, USA, 1987.
Bertin, X., de Bakker, A., van Dongeren, A., Coco, G., Andre, G., Ardhuin,
F., Bonneton, P., Bouchette, F., Castelle, B., Crawford, W. C., Davidson,
M., Deen, M., Dodet, G., Guerin, T., Inc, K., Leckler, F., Mcall, R.,
Muller, H., Olabarrieta, M., Roelvink, J. A., Ruessink, B.G., Sous, D.,
Stutzmann, E., and Tissier, M.: Infragravity waves: from driving mechanisms to
impacts, Earth-Sci. Rev., 177, 774–799, 2018.
Boudière, E., Maisondieu, C., Ardhuin, F., Accensi, M., Pineau-Guillou,
L., and Lepesqueur, J.: A suitable metocean hindcast database for the design of
marine energy converters, Int. J. Mar. Energ., 3–4,
40–52, 2013.
Bradstreet, A., Brander, R., McCarroll, J., Brighton, B., Dominey-Howes, D.,
Drozdzewski, D., Sherker, S., Turner, I., Roberts, A., and MacMahan, J.: Rip
current survival principles: towards consistency, J. Coast. Res., 72, 85–92, 2014.
Brander, R. W.: Field observations on the morphodynamic evolution of a
low-energy rip current system, Mar. Geol., 157, 199–217, 1999.
Brander, R. W. and Scott, T.: Science of the Rip Current Hazard, in: The
Science of Beach Lifeguarding: Principles and Practice, edited by: Tipton, M.,
Wooler, A., and Reilly, T., CRC Press, Boca Raton, 67–86, 2016.
Brander, R. W. and Short, A. D.: Flow kinematics of low-energy rip current
systems, J. Coast. Res., 17, 468–481, 2001.
Brander, R. W., Bradstreet, A., Sherker, S., and MacMahan, J.: Responses of
swimmers caught in rip currents: perspectives on mitigating the global rip
current hazard, International Journal of Aquatic Research and Education, 5,
476–482, 2011.
Brighton, B., Sherker, S., Brander, R., Thompson, M., and Bradstreet, A.: Rip current related drowning deaths and rescues in Australia 2004–2011, Nat. Hazards Earth Syst. Sci., 13, 1069–1075, https://doi.org/10.5194/nhess-13-1069-2013, 2013.
Brumaud, S.: Saison touristique 2015 en Aquitaine – La fréquentation des
hôtels et campings au beau fixe, INSEE Analyses Nouvelle-Aquitaine, available at:
https://www.insee.fr/fr/statistiques/1908387 (last access: 25 September 2019), 2016 (in French).
Bruneau, N., Castelle, B., Bonneton, P., Pedreros, R., Almar, R., Bonneton,
N., Bretel, P., Parisot, J.-P., and Senechal, N.: Field observations of an
evolving rip current on a meso-macrotidal well-developed inner bar and rip
morphology, Cont. Shelf Res., 29, 1650–1662, 2009.
Bruneau, N., Bonneton, P., Castelle, B., and Pedreros, R.: Modeling rip current
circulations and vorticity in a high-energy meso-environment, J. Geophys.
Res.-Oceans, 116, C07026, https://doi.org/10.1029/2010JC006343, 2011.
Butel, R., Dupuis, H., and Bonneton, P.: Spatial variability of wave conditions
on the French Atlantic coast using in situ data, J. Coast. Res.
Special Issue, 36, 96–108, 2002.
Castelle, B., Bonneton, P., Senechal, N., Dupuis, H., Butel, R., and Michel, D.:
Dynamics of wave-induced currents over an alongshore non-uniform
multiple-barred sandy beach on the Aquitanian Coast, France, Cont.
Shelf Res., 26, 113–131, 2006.
Castelle, B., Bonneton, P., Dupuis, H., and Sénéchal, N.: Double bar
beach dynamics on the high-energy meso–macrotidal French Aquitanian Coast:
a review, Mar. Geol., 245, 141–159, 2007.
Castelle, B., Scott, T., Brander, R. W., and McCarroll, R. J.: Rip current
types, circulation and hazard, Earth-Sci. Rev., 163, 1–21, 2016a.
Castelle, B., McCarroll, R. J., Brander, R. W., Scott, T., and Dubarbier, B.:
Modelling the alongshore variability of optimum rip current escape
strategies on a multiple rip-channelled beach, Nat. Hazards, 81, 664–686,
2016b.
Castelle, B., Bujan, S., Ferreira, S., and Dodet, G.: Foredune morphological
changes and beach recovery from the extreme 2013/2014 winter at a
high-energy sandy coast, Mar. Geol., 385, 41–55, 2017.
Castelle, B., Brander, R. W., Tellier, E., Simonnet, B., Scott, T.,
McCarroll, R. J., Campagne, J. M., Cavailhes, T., and Lechevrel, P.: Surf zone hazards and injuries on beaches in SW France, Nat. Hazards, 93, 1317–1335, 2018a.
Castelle, B., Guillot, B., Marieu, V., Chaumillon, E., Hanquiez, V., Bujan,
S., and Poppeschi, C.: Spatial and temporal patterns of shoreline change of a
280-km high-energy disrupted sandy coast from 1950 to 2014: SW France,
Estuar. Coast. Shelf S., 200, 212–223, 2018b.
Chang, S. K., Tominaga, G. T., Wong, J. H., Weldon, E. J., Kaan, K. T., and
Kenneth, T.: Risk factors for water sports-related cervical spine injuries,
J. Trauma, 60, 1041–1046, 2006.
Charles, E., Idier, D., Delecluse, P., Déqué, M., and Le Cozannet, G.:
Climate change impact on waves in the Bay of Biscay, France, Ocean Dynam.,
62, 831–848, 2012.
Dalrymple, R. A., MacMahan, J. H., Reniers, A. J. H. M., and Nelko, V.: Rip
currents, Annu. Rev. Fluid Mech., 43, 551–581, 2011.
Davidson, M. A., Turner, I. L., Splinter, K. D., and Harley, M. D.: Annual
prediction of shoreline erosion and subsequent recovery, Coast.
Eng., 130, 14–25, 2017.
Diehm, R. and Armatas, C.: Surfing: An avenue for socially acceptable
risk-taking, satisfying needs for sensation seeking and experience seeking,
Pers. Indiv. Differ., 36, 663–677, 2004.
Dimmick, S., Brazier, D., Wilson, P., and Anderson, S. E.: Injuries of the spine
sustained whilst surfboard riding, Emerg. Radiol., 20, 25–31, 2013.
Dodet, G., Castelle, B., Masselink, G., Scott, T., Davidson, M., Floc'h, F.,
Jackson, D., and Suanez, S.: Beach recovery from extreme storm activity during
the 2013–14 winter along the Atalantic coast of Europe, Earth Surf.
Proc. Land., 44, 393–401, https://doi.org/10.1002/esp.4500, 2019.
Drozdzewski, D., Shaw, W., Dominey-Howes, D., Brander, R., Walton, T., Gero, A., Sherker, S., Goff, J., and Edwick, B.: Surveying rip current survivors: preliminary insights into the experiences of being caught in rip currents, Nat. Hazards Earth Syst. Sci., 12, 1201–1211, https://doi.org/10.5194/nhess-12-1201-2012, 2012.
Drozdzewski, D., Roberts, A., Dominey-Howes, D., and Brander, R: The experiences
of weak and non-swimmers caught in rip currents at Australian beaches,
Aust. Geogr., 46, 15–32, 2015.
Dupoux, J. E., Bernard-Catinat, G., and Brunel, J. M.: Réactualisation du
traitement d'urgence de la noyade, Bordeaux Méd, 14, 1095–1100, 1981 (in
French).
Dusek, G. and Seim, H.: A probabilistic rip current forecast model, J. Coast. Res., 29, 909–925, 2013.
Gilchrist, J. and Branche, C.: Lifeguard Effectiveness, in: The Science of Beach Lifeguarding, edited by: Tipton, M. and Wooler,
A., CRC Press, Boca Raton, USA, 2016.
Guillen, J., Garcia-Olivares, A., Ojeda, E., Osorio, A., Chic, O., and Gonzalez,
R.: Long-term quantification of beach users using video monitoring, J. Coast. Res., 24, 1612–1619, 2008.
Houser, C., Arnott, R., Ulzhofer, S., and Barrett, G.: Nearshore circulation
over transverse bar and rip morphology with oblique wave forcing, Earth
Surf. Proc. Land., 38, 1269–1279, 2013.
Ibarra, E. M.: The use of webcam images to determine tourist–climate
aptitude: favourable weather types for sun and beach tourism on the Alicante
coast (Spain), Int. J. Biometeorol., 55, 373–385, https://doi.org/10.1007/s00484-010-0347-8, 2011.
Kennedy, D. M., Sherker, S., Brighton, B., Weir, A., and Woodroffe, C. D.: Rocky
coast hazards and public safety: moving beyond the beach in coastal risk
management, Ocean Coast. Manage., 82, 85–94, 2013.
Lafon, V., Dupuis, H., Butel, R., Castelle, B., Michel, D., Howa, H., and De
Melo Apoluceno, D.: Morphodynamics of nearshore rhythmic sandbars in a mixed
energy environment (SW France): II. Physical forcing analysis, Estuar.
Coast. Shelf S., 65, 449–462, 2005.
Lascody, R. L.: East central Florida rip current program, Natl. Weather Dig.,
22, 25–30, 1998.
Le Cann, B.: Barotropic tidal dynamics of the Bay of Biscay shelf:
observations, numerical modelling and physical interpretation, Cont. Shelf
Res., 10, 723–758, 1990.
Lorin, J. and Viguier, J.: Hydrosedimentary conditions and present evolution of
Aquitaine Coast, Bull. Inst. Géol. Bassin Aquitaine, 41, 95–108, 1987.
Lowdon, B. J., Pateman, N. A., and Pitman, A. J.: Surfboard-riding injuries, Med.
J. Aust., 2, 613–616, 1983.
Lushine, J. B.: A study of rip current drowning and related weather factors,
Natl. Weather Dig., 16, 15–31, 1991.
MacMahan, J. H., Thornton, E. B., Stanton, T. P., and Reniers, A. J. H. M.:
RIPEX: observations of a rip current system, Mar. Geol., 218, 118–134, 2005.
MacMahan, J. H., Thornton E. B., and Reniers, A. J.: Rip current review, Coast.
Eng., 53, 191–208, 2006.
Masselink, G. an Pattiaratchi, C. B.: Morphological evolution of beach cusps
and associated swash circulation patterns, Mar. Geol., 146, 93–113, 1998.
McCarroll, R. J., Brander, R. W., MacMahan, J. H., Turner, I. L., Reniers,
A. J. H. M., Brown, J. A., Bradstreet, A., and Sherker, S.: Evaluation of
swimmer-based rip current escape strategies, Nat. Hazards, 71, 1821–1846, 2014.
McCarroll, R. J., Castelle, B., Brander, R. W., and Scott, T.: Modelling rip
current flow and bather escape strategies across a transverse bar and rip
channel morphology, Geomorphology, 246, 502–518, 2015.
McCarroll, R. J., Brander, R. W., Scott, T., and Castelle, B.: Bathymetric
controls on rotational surfzone currents, J. Geophys. Res.-Earth, 123, 1295–1316, https://doi.org/10.1029/2017JF004491, 2018.
Menezes, R. A. and Costa, R. V. C.: Resgate e recuperação de 12.037
afogados, J. Bras. Med., 9, 50–64, 1972.
Moran, K. and Weber, J.: Surfing injuries requiring first aid in New Zealand,
2007–2012, Int. J. Aquat. Res. Educ., 7, 192–203, 2013.
Moulton, M., Elgar, S., Raubenheimer, B., Warner, J. C., and Kumar, N.: Rip
currents and alongshore flows in single channels dredged in the surf zone,
J. Geophys. Res.-Oceans, 122, 3799–3816, https://doi.org/10.1002/2016JC012222, 2017a.
Moulton, M., Dusek, G., Elgar, S., and Raubenheimer, B.: Comparison of Rip
Current Hazard Likelihood Forecasts with Observed Rip Current Speeds, Weather
Forecast., 32, 1659–1666, 2017b.
Muller, M. W.: Beach replenishment and surf-zone injuries along the coast of
Delmarva, USA, Ocean Coast. Manage., 151, 127–133, 2018.
Nathanson, A. T.: Surfing Injuries, in: Adventure and Extreme Sports Injuries, edited by: Mei-Dan, O. and Carmont, M., Springer, London, UK, 2013.
NOAA: National Weather Service Weather Fatality, Injury and Damage
Statistics, available at: https://www.weather.gov/hazstat/ (last access: 25 September 2019), 2017.
Pianca, C., Holman, R., and Siegle, E.: Shoreline variability from days to
decades: Results of long-term video imaging, J. Geophys. Res.-Oceans, 120, 2159–2178, https://doi.org/10.1002/2014JC010329, 2015.
Puleo, J. A., Hutschenreuter, K., Cowan, P., Carey, W., Arford-Granholm, M.,
and McKenna, K. K.: Delaware surf zone injuries and associated environmental
conditions, Nat. Hazards, 81, 845–867, 2016.
RNLI: RNLI 2017 Operational Statistics, 13 pp., available at: http://rnli.org (last access: 25 September 2019), 2017.
Robinet, A., Castelle, B., Idier, D., Le Cozannet, G., Déqué, M.,
and Charles, E.: Statistical modeling of interannual shoreline change driven by
North Atlantic climate variability spanning 2000–2014 in the Bay of Biscay,
Geo-Mar. Lett., 36, 479–490. https://doi.org/10.1007/s00367-016-0460-8, 2016.
Robles, L. A.: Cervical spine injuries in ocean bathers: wave-related
accidents, Neurosurgery, 58, 920–923, 2006.
Roelvink, J. A., Reniers, A. J. H. M., van Dongeren, A., de Vries, J. V.,
McCall, R., and Lescinski, J.: Modelling storm impacts on beaches, dunes and
barrier islands, Coast. Eng., 56, 1133–1152, 2009.
Russell, R. J. and McIntire, W. G.: Beach cusps, Geol. Soc. Am. Bull., 76,
307–320, 1965.
Scott, T. M., Russell, P. E., Masselink, G., Austin, M. J., Wills, S., and
Wooler, A.: Rip current hazards on large-tidal beaches in the United
Kingdom, in: Rip Currents: Beach
Safety, Physical Oceanography and Wave Modeling, edited by: Leatherman, S. and Fletemeyer, J., CRC Press, Boca Raton, 225–242, 2011.
Scott, T. M., Masselink, G., Austin, M. J., and Russell, P.: Controls on
macrotidal rip current circulation and hazard, Geomorphology, 214, 198–215,
2014.
Splinter, K. D., Turner, I. L., Davidson, M. A., Barnard, P., Castelle, B.,
and Oltman-Shay, J.: A generalized equilibrium model for predicting daily to
interannual shoreline response, J. Geophys. Res., 119, 1936–1958,
https://doi.org/10.1002/2014JF003106, 2014.
Splinter, K. D., Gonzalez, M. V. G., Oltman-Shay, J., Rutten, J., and Holman,
R.: Observations and modelling of shoreline and multiple sandbar behaviour
on a high-energy meso-tidal beach, Cont. Shelf Res., 159, 33–45,
2018.
Stokes, C., Masselink, G., Revie, M., Scott, T., Purves, D., and Walters, T.: Application of multiple linear regression and Bayesian belief network approaches to model life risk to beach users in the UK, Ocean Coast. Manage., 139, 12–23, 2017.
Tastet, J.-P. and Pontee, N. P.: Morpho-chronology of coastal dunes in
Médoc: e new interpretation of Holocene dunes in Southwestern France,
Geomorphology, 25, 93–109, 1998.
Tolman, H. L.: User manual and system documentation of WAVE – WATCH III version 4.18, NOAA/NWS/NCEP/MMAB Technical Note 316, NOAA/NWS/NCEP/MMAB 194, 282 pp., 2014.
USLA: 2010–2014 National Lifesaving Statistics, available at: http://arc.usla.org/Statistics/current.asp?Statistics=5 (last access: 25 September 2019),
2015.
Villarini, G. and Vecchi, G. A.: Projected Increases in North Atlantic Tropical
Cyclone Intensity from CMIP5 Models, J. Climate, 26, 3231–3240, https://doi.org/10.1175/JCLI-D-12-00441.1, 2013.
West, N.: Beach Use and Behaviors, in: Encyclopedia of
Coastal Science. Encyclopedia of Earth Science Series, edited by: Schwartz, M. L., Springer, Dordrecht, the Netherlands,
2005.
Winter, G., van Dongeren, A. R., de Schipper, M. A., an van Thiel de Vries, J.
S. M.: Rip currents under obliquely incident wind waves and tidal longshore
currents, Coast. Eng., 89, 106–119, 2014.
Williamson, A.: Feasibility study of a water safety data collection for
beaches, J. Sci. Med. Sport., 9, 243–248, 2006.
Wright, L. D. and Short, A. D.: Morphodynamic variability of surf zones and
beaches: a synthesis, Mar. Geol., 56, 93–118, 1984.
Short summary
For the first time we explore the influence of environmental conditions (wave and weather conditions, tide elevation, and beach morphology) on surf zone injuries (e.g. drowning incidents, spine injuries). Serious injuries are caused by the two primary hazards found along high-energy surf beaches: shore-break waves and narrow seaward-flowing rip currents, which have different environmental controls. Results have strong implications for future beach safety management and education of beach users.
For the first time we explore the influence of environmental conditions (wave and weather...
Altmetrics
Final-revised paper
Preprint