Research article 22 Jun 2018
Research article | 22 Jun 2018
A retrospective study of the pre-eruptive unrest on El Hierro (Canary Islands): implications of seismicity and deformation in the short-term volcanic hazard assessment
Stefania Bartolini et al.
Related authors
Laura Becerril, Joan Martí, Stefania Bartolini, and Adelina Geyer
Nat. Hazards Earth Syst. Sci., 17, 1145–1157, https://doi.org/10.5194/nhess-17-1145-2017, https://doi.org/10.5194/nhess-17-1145-2017, 2017
Short summary
Short summary
Lanzarote is an island (Canaries, Spain), that has hosted the largest and longest eruption in the archipelago (Timanfaya 1730–36). It brought severe economic losses and forced local people to migrate. We have developed the first comprehensive hazard assessment for the island. New eruptions will take place close to the last one and will be characterised by Strombolian activity, with ash emission towards the S, medium-length lava flows and hydromagmatic activity only close to the coastal areas.
S. Bartolini, A. Cappello, J. Martí, and C. Del Negro
Nat. Hazards Earth Syst. Sci., 13, 3031–3042, https://doi.org/10.5194/nhess-13-3031-2013, https://doi.org/10.5194/nhess-13-3031-2013, 2013
Laura Becerril, Joan Martí, Stefania Bartolini, and Adelina Geyer
Nat. Hazards Earth Syst. Sci., 17, 1145–1157, https://doi.org/10.5194/nhess-17-1145-2017, https://doi.org/10.5194/nhess-17-1145-2017, 2017
Short summary
Short summary
Lanzarote is an island (Canaries, Spain), that has hosted the largest and longest eruption in the archipelago (Timanfaya 1730–36). It brought severe economic losses and forced local people to migrate. We have developed the first comprehensive hazard assessment for the island. New eruptions will take place close to the last one and will be characterised by Strombolian activity, with ash emission towards the S, medium-length lava flows and hydromagmatic activity only close to the coastal areas.
Donald B. Dingwell, Yan Lavallée, Kai-Uwe Hess, Asher Flaws, Joan Marti, Alexander R. L. Nichols, H. Albert Gilg, and Burkhard Schillinger
Solid Earth, 7, 1383–1393, https://doi.org/10.5194/se-7-1383-2016, https://doi.org/10.5194/se-7-1383-2016, 2016
Short summary
Short summary
Here, we use tomography to reconstructed the pores of erupted pumice and understand the evolution of gas bubbles in magma. Analysis of the pore geometry is used to describe whether the pores where aligned by stretching as ascending magma is pulled apart (pure shear) or sheared like a deck of card (simple shear). We conclude that the latter, simple shear, dominates during magma ascent up to the points where magma fragments to cause an explosion.
S. Bartolini, A. Cappello, J. Martí, and C. Del Negro
Nat. Hazards Earth Syst. Sci., 13, 3031–3042, https://doi.org/10.5194/nhess-13-3031-2013, https://doi.org/10.5194/nhess-13-3031-2013, 2013
Related subject area
Volcanic Hazards
Remote monitoring of seismic swarms and the August 2016 seismic crisis of Brava, Cabo Verde, using array methods
Insights into the recurrent energetic eruptions that drive Awu, among the deadliest volcanoes on Earth
Assessing the impact of explosive eruptions of Fogo volcano (São Miguel, Azores) on the tourism economy
Invited perspectives: The volcanoes of Naples: how can the highest volcanic risk in the world be effectively mitigated?
A volcanic-hazard demonstration exercise to assess and mitigate the impacts of volcanic ash clouds on civil and military aviation
Analysis of properties of the 19 February 2018 volcanic eruption of Mount Sinabung in S5P/TROPOMI and Himawari-8 satellite data
Processes culminating in the 2015 phreatic explosion at Lascar volcano, Chile, evidenced by multiparametric data
Mapping the susceptibility of rain-triggered lahars at Vulcano island (Italy) combining field characterization, geotechnical analysis, and numerical modelling
Statistical theory of probabilistic hazard maps: a probability distribution for the hazard boundary location
Assessing the impact of road segment obstruction on accessibility of critical services in case of a hazard
Exposure-based risk assessment and emergency management associated with the fallout of large clasts at Mount Etna
Structural weakening of the Merapi dome identified by drone photogrammetry after the 2010 eruption
An adaptive semi-Lagrangian advection model for transport of volcanic emissions in the atmosphere
Multi-level emulation of a volcanic ash transport and dispersion model to quantify sensitivity to uncertain parameters
Assessing qualitative long-term volcanic hazards at Lanzarote Island (Canary Islands)
High-resolution modelling of atmospheric dispersion of dense gas using TWODEE-2.1: application to the 1986 Lake Nyos limnic eruption
Examining the impact of lahars on buildings using numerical modelling
Brief communication: Extended chronology of the Cordón Caulle volcanic eruption beyond 2011 reveals toxic impacts
Aerosol properties and meteorological conditions in the city of Buenos Aires, Argentina, during the resuspension of volcanic ash from the Puyehue-Cordón Caulle eruption
Lava flow hazard at Fogo Volcano, Cabo Verde, before and after the 2014–2015 eruption
Factors controlling erosion/deposition phenomena related to lahars at Volcán de Colima, Mexico
The unrest of the San Miguel volcano (El Salvador, Central America): installation of the monitoring network and observed volcano-tectonic ground deformation
Using video games for volcanic hazard education and communication: an assessment of the method and preliminary results
Short-term volcano-tectonic earthquake forecasts based on a moving mean recurrence time algorithm: the El Hierro seismo-volcanic crisis experience
Lightning and electrical activity during the Shiveluch volcano eruption on 16 November 2014
Chronology and impact of the 2011 Cordón Caulle eruption, Chile
PM10 measurements in urban settlements after lava fountain episodes at Mt. Etna, Italy: pilot test to assess volcanic ash hazard to human health
Preliminary assessment for the use of VORIS as a tool for rapid lava flow simulation at Goma Volcano Observatory, Democratic Republic of the Congo
Secondary lahar hazard assessment for Villa la Angostura, Argentina, using Two-Phase-Titan modelling code during 2011 Cordón Caulle eruption
Brief Communication: The effect of submerged vents on probabilistic hazard assessment for tephra fallout
The use of FLO2D numerical code in lahar hazard evaluation at Popocatépetl volcano: a 2001 lahar scenario
A multi-scale risk assessment for tephra fallout and airborne concentration from multiple Icelandic volcanoes – Part 1: Hazard assessment
A multi-scale risk assessment for tephra fallout and airborne concentration from multiple Icelandic volcanoes – Part 2: Vulnerability and impact
Long-term volcanic hazard assessment on El Hierro (Canary Islands)
Support to Aviation Control Service (SACS): an online service for near-real-time satellite monitoring of volcanic plumes
Investigating volcanic hazard in Cape Verde Islands through geophysical monitoring: network description and first results
Numerical simulations of tsunamis generated by underwater volcanic explosions at Karymskoye lake (Kamchatka, Russia) and Kolumbo volcano (Aegean Sea, Greece)
Modeling volcanic ash resuspension – application to the 14–18 October 2011 outbreak episode in central Patagonia, Argentina
"Last mile" challenges to in situ volcanic data transmission
Tephra hazard assessment at Mt. Etna (Italy)
Sulfur dioxide emissions from Papandayan and Bromo, two Indonesian volcanoes
The environmental impact of the Puyehue–Cordon Caulle 2011 volcanic eruption on Buenos Aires
Carola Leva, Georg Rümpker, and Ingo Wölbern
Nat. Hazards Earth Syst. Sci., 20, 3627–3638, https://doi.org/10.5194/nhess-20-3627-2020, https://doi.org/10.5194/nhess-20-3627-2020, 2020
Short summary
Short summary
Often, an abrupt increase in shallow seismicity at volcanoes is seen as an indicator for magmatic intrusions into the upper crust. If no eruption occurs and the seismic activity stops, this is called a failed eruption. Here, we report a failed eruption of Brava, Cabo Verde, in August 2016. We remotely monitored the seismicity of Brava with a seismic array, operating from October 2015 to December 2016. Other episodes with increased seismicity around the island were also observed during the study.
Philipson Bani, Kristianto, Syegi Kunrat, and Devy Kamil Syahbana
Nat. Hazards Earth Syst. Sci., 20, 2119–2132, https://doi.org/10.5194/nhess-20-2119-2020, https://doi.org/10.5194/nhess-20-2119-2020, 2020
Short summary
Short summary
Awu is a little-known volcano in Indonesia, and paradoxically it is one of the deadliest volcanoes on Earth. Some of its recurrent intense eruptions have induced world-scale impacts. The pulverization of a cooled lava dome and its conduit plug have allowed lake water injection into the conduit, leading to explosive water–magma interaction. The past vigorous eruptions were likely induced by these phenomena and it is a possible scenario for future events.
Joana Medeiros, Rita Carmo, Adriano Pimentel, José Cabral Vieira, and Gabriela Queiroz
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2020-239, https://doi.org/10.5194/nhess-2020-239, 2020
Revised manuscript accepted for NHESS
Short summary
Short summary
This study proposes a new approach to access the economic impact of explosive eruptions on tourism sector on São Miguel Island, which uses the Loss Updated Present Value method to estimate the benefits generated by accommodation units over 30 years for different scenarios. The results reveals that in a near total destruction scenario, the economic loss is ~ 145 million euros. This method can be adopted to other volcanic regions, but also to other geological hazards and economic sectors.
Giuseppe De Natale, Claudia Troise, and Renato Somma
Nat. Hazards Earth Syst. Sci., 20, 2037–2053, https://doi.org/10.5194/nhess-20-2037-2020, https://doi.org/10.5194/nhess-20-2037-2020, 2020
Short summary
Short summary
This paper starts by showing the present low performance of eruption forecasting and then addresses the problem of effectively mitigating the highest volcanic risk in the world, represented by the Naples area (southern Italy). The problem is considered in a highly multidisciplinary way, taking into account the main economic, sociological and urban planning issues. Our study gives precise guidelines to assessing and managing volcanic risk in any densely urbanised area.
Marcus Hirtl, Delia Arnold, Rocio Baro, Hugues Brenot, Mauro Coltelli, Kurt Eschbacher, Helmut Hard-Stremayer, Florian Lipok, Christian Maurer, Dieter Meinhard, Lucia Mona, Marie D. Mulder, Nikolaos Papagiannopoulos, Michael Pernsteiner, Matthieu Plu, Lennart Robertson, Carl-Herbert Rokitansky, Barbara Scherllin-Pirscher, Klaus Sievers, Mikhail Sofiev, Wim Som de Cerff, Martin Steinheimer, Martin Stuefer, Nicolas Theys, Andreas Uppstu, Saskia Wagenaar, Roland Winkler, Gerhard Wotawa, Fritz Zobl, and Raimund Zopp
Nat. Hazards Earth Syst. Sci., 20, 1719–1739, https://doi.org/10.5194/nhess-20-1719-2020, https://doi.org/10.5194/nhess-20-1719-2020, 2020
Short summary
Short summary
The paper summarizes the set-up and outcome of a volcanic-hazard demonstration exercise, with the goals of assessing and mitigating the impacts of volcanic ash clouds on civil and military aviation. Experts in the field simulated the sequence of procedures for an artificial eruption of the Etna volcano in Italy. The scope of the exercise ranged from the detection of the assumed event to the issuance of early warnings and optimized rerouting of flights.
Adrianus de Laat, Margarita Vazquez-Navarro, Nicolas Theys, and Piet Stammes
Nat. Hazards Earth Syst. Sci., 20, 1203–1217, https://doi.org/10.5194/nhess-20-1203-2020, https://doi.org/10.5194/nhess-20-1203-2020, 2020
Short summary
Short summary
TROPOMI satellite measurements can accurately determine the height of thick volcanic ash clouds from a short-lived volcanic eruption of the Sinabung volcano in Indonesia. Standard geostationary satellite detection of volcanic ash was limited due to the presence of water and ice in the upper parts of volcanic ash clouds, a known issue. The TROPOMI satellite measurements do not suffer from this limitation, hence providing information where standard geostationary volcanic ash detection is limited.
Ayleen Gaete, Thomas R. Walter, Stefan Bredemeyer, Martin Zimmer, Christian Kujawa, Luis Franco Marin, Juan San Martin, and Claudia Bucarey Parra
Nat. Hazards Earth Syst. Sci., 20, 377–397, https://doi.org/10.5194/nhess-20-377-2020, https://doi.org/10.5194/nhess-20-377-2020, 2020
Short summary
Short summary
Phreatic eruptions often occur without signs of enhanced volcanic unrest, avoiding detection and posing a threat to people in the vicinity. We analyzed data of the 2015 phreatic eruption of Lascar volcano, Chile, to retrospectively identify a precipitation event as the trigger mechanism and potential signs heralding this minor eruption. We showed that it is possible to detect the precursory activity of phreatic eruptions by deploying appropriate multiparametric monitoring.
Valérie Baumann, Costanza Bonadonna, Sabatino Cuomo, Mariagiovanna Moscariello, Sebastien Biass, Marco Pistolesi, and Alessandro Gattuso
Nat. Hazards Earth Syst. Sci., 19, 2421–2449, https://doi.org/10.5194/nhess-19-2421-2019, https://doi.org/10.5194/nhess-19-2421-2019, 2019
Short summary
Short summary
Lahars are fast-moving mixtures of volcanic debris and water propagating downslope on volcanoes that can be very dangerous for people and property. Identification of lahar source areas and initiation mechanisms is crucial to comprehensive lahar hazard assessment. We present the first rain-triggered lahar susceptibility map for La Fossa volcano (Vulcano, Italy) combining probabilistic tephra modelling, slope-stability modelling, precipitation data, field characterizations, and geotechnical tests.
David M. Hyman, Andrea Bevilacqua, and Marcus I. Bursik
Nat. Hazards Earth Syst. Sci., 19, 1347–1363, https://doi.org/10.5194/nhess-19-1347-2019, https://doi.org/10.5194/nhess-19-1347-2019, 2019
Short summary
Short summary
In this work, we present new methods for calculating the mean, standard deviation, median, and modal locations of the boundaries of volcanic hazards. These calculations are based on a new, mathematically rigorous definition of probabilistic hazard maps – a way to map the probabilities of inundation by a given hazard. We apply this analysis to several models of volcanic flows: simple models of viscous flows, complex models of a tabletop granular flow, and a complex model of a volcanic mud flow.
Sophie Mossoux, Matthieu Kervyn, and Frank Canters
Nat. Hazards Earth Syst. Sci., 19, 1251–1263, https://doi.org/10.5194/nhess-19-1251-2019, https://doi.org/10.5194/nhess-19-1251-2019, 2019
Short summary
Short summary
Hazard maps provide information about the probability of given areas of being affected by hazards. So far studies combining hazard mapping with accessibility to services are few. In this study, we propose two new metrics defining the importance of each road segment in the accessibility of services, taking into account the probability of being affected by a hazard. These metrics may help support discussions about the development of new infrastructure or road segments and evacuation procedures.
Sara Osman, Eduardo Rossi, Costanza Bonadonna, Corine Frischknecht, Daniele Andronico, Raffaello Cioni, and Simona Scollo
Nat. Hazards Earth Syst. Sci., 19, 589–610, https://doi.org/10.5194/nhess-19-589-2019, https://doi.org/10.5194/nhess-19-589-2019, 2019
Short summary
Short summary
The fallout of large clasts (> 5 cm) from the margins of eruptive plumes can damage local infrastructure and severely injure people close to the volcano. Even though this potential hazard has been observed at many volcanoes, it has often been overlooked. We present the first hazard and risk assessment of large-clast fallout from eruptive plumes and use Mt Etna (Italy) as a case study. The use of dedicated shelters in the case of an explosive event that occurs with no warning is also evaluated.
Herlan Darmawan, Thomas R. Walter, Valentin R. Troll, and Agus Budi-Santoso
Nat. Hazards Earth Syst. Sci., 18, 3267–3281, https://doi.org/10.5194/nhess-18-3267-2018, https://doi.org/10.5194/nhess-18-3267-2018, 2018
Short summary
Short summary
At Merapi volcano, lava dome failure may generate pyroclastic flow and threaten populations who live on its flanks. Here, we assessed the potential hazard of the Merapi lava dome by using drone photogrammetry and numerical modeling. Results show a weak structural depression that is associated with high thermal imaging in the southern Merapi lava dome sector. The southern lava dome sector may be further destabilized by typical rainfall at the Merapi summit and produce pyroclastic flow up to 4 km.
Elena Gerwing, Matthias Hort, Jörn Behrens, and Bärbel Langmann
Nat. Hazards Earth Syst. Sci., 18, 1517–1534, https://doi.org/10.5194/nhess-18-1517-2018, https://doi.org/10.5194/nhess-18-1517-2018, 2018
Short summary
Short summary
This article describes the first volcanic emission advection model based on an adaptive mesh. The advection of volcanic emissions plays a crucial role in climate research, air traffic control and human wellbeing. In contrast to already existing volcanic emission dispersion models relying on a fixed grid, the application of an adaptive mesh enables us to simulate the advection of volcanic emissions with a high local resolution while minimizing computational cost.
Natalie J. Harvey, Nathan Huntley, Helen F. Dacre, Michael Goldstein, David Thomson, and Helen Webster
Nat. Hazards Earth Syst. Sci., 18, 41–63, https://doi.org/10.5194/nhess-18-41-2018, https://doi.org/10.5194/nhess-18-41-2018, 2018
Laura Becerril, Joan Martí, Stefania Bartolini, and Adelina Geyer
Nat. Hazards Earth Syst. Sci., 17, 1145–1157, https://doi.org/10.5194/nhess-17-1145-2017, https://doi.org/10.5194/nhess-17-1145-2017, 2017
Short summary
Short summary
Lanzarote is an island (Canaries, Spain), that has hosted the largest and longest eruption in the archipelago (Timanfaya 1730–36). It brought severe economic losses and forced local people to migrate. We have developed the first comprehensive hazard assessment for the island. New eruptions will take place close to the last one and will be characterised by Strombolian activity, with ash emission towards the S, medium-length lava flows and hydromagmatic activity only close to the coastal areas.
Arnau Folch, Jordi Barcons, Tomofumi Kozono, and Antonio Costa
Nat. Hazards Earth Syst. Sci., 17, 861–879, https://doi.org/10.5194/nhess-17-861-2017, https://doi.org/10.5194/nhess-17-861-2017, 2017
Short summary
Short summary
Atmospheric dispersal of a gas denser than air can threat the environment and surrounding communities. In complex terrains, microscale winds and local orographic features can have a strong influence on the gas cloud behavior, potentially leading to inaccurate model results if not captured by coarser-scale simulations. We introduce a methodology for microscale wind field characterization and validate it using, as a test case, the CO2 gas dispersal from 1986 Lake Nyos eruption.
Stuart R. Mead, Christina Magill, Vincent Lemiale, Jean-Claude Thouret, and Mahesh Prakash
Nat. Hazards Earth Syst. Sci., 17, 703–719, https://doi.org/10.5194/nhess-17-703-2017, https://doi.org/10.5194/nhess-17-703-2017, 2017
Short summary
Short summary
Volcanic mudflows, called lahars, can cause large amounts of damage to buildings. In this research we developed a method to estimate lahar-induced building damage based on the height, speed and amount of volcanic material in the lahar. This method was applied to a small region in Arequipa, Peru, where computer models were used to estimate the number of buildings affected by lahars. The research found that building location and the size of the flow are most important in determining damage.
Werner T. Flueck
Nat. Hazards Earth Syst. Sci., 16, 2351–2355, https://doi.org/10.5194/nhess-16-2351-2016, https://doi.org/10.5194/nhess-16-2351-2016, 2016
Short summary
Short summary
The 2011 Puyehue volcano eruption also caused persisting chemical impacts. By 2012, dental fluorosis in deer appeared, with bone fluoride increasing > 38-fold. Livestock also succumbed to fluorosis. As exposure of ruminants continued, bone fluoride reached 10 396 ppm, by 2014 caused skeletal fluorosis, reduced wool growth, and caused major losses among periparturient cattle. Peculiarities of digestive processes make ruminants susceptible to fluoride-containing ashes.
Ana Graciela Ulke, Marcela M. Torres Brizuela, Graciela B. Raga, and Darrel Baumgardner
Nat. Hazards Earth Syst. Sci., 16, 2159–2175, https://doi.org/10.5194/nhess-16-2159-2016, https://doi.org/10.5194/nhess-16-2159-2016, 2016
Short summary
Short summary
The eruption in June 2011 of the Puyehue-Cordón Caulle Volcanic Complex (Chile) impacted air traffic around the Southern Hemisphere for several months. The ash deposited in vast areas of the Patagonian steppe was subjected to the strong wind conditions prevalent during the austral winter and spring. An ash resuspension event impacted Buenos Aires and resulted in the closure of airports in the area on 16 October 2011. Measurements of aerosol properties clearly indicate the enhanced concentrations
Nicole Richter, Massimiliano Favalli, Elske de Zeeuw-van Dalfsen, Alessandro Fornaciai, Rui Manuel da Silva Fernandes, Nemesio M. Pérez, Judith Levy, Sónia Silva Victória, and Thomas R. Walter
Nat. Hazards Earth Syst. Sci., 16, 1925–1951, https://doi.org/10.5194/nhess-16-1925-2016, https://doi.org/10.5194/nhess-16-1925-2016, 2016
Short summary
Short summary
We provide a comprehensive lava flow hazard assessment for Fogo volcano, Cabo Verde before and after the 2014–2015 eruption based on probabilistic lava flow simulations. We find that the probability of lava flow invasion has not decreased at the location of two villages that were destroyed during this eruption, but have already started to be rebuilt. Our findings will be important for the next eruption of Fogo volcano and have implications for future lava flow crises elsewhere in the world.
Rosario Vázquez, Lucia Capra, and Velio Coviello
Nat. Hazards Earth Syst. Sci., 16, 1881–1895, https://doi.org/10.5194/nhess-16-1881-2016, https://doi.org/10.5194/nhess-16-1881-2016, 2016
Short summary
Short summary
We present the morphological changes experienced by Montegrande ravine (Volcán de Colima, Mexico) during the 2013, 2014 and 2015 rainy seasons. A total of 11 lahars occurred during this period of time, and their erosion/deposition effects were quantified by means of cross sections and rainfall analysis. The major factors controlling the E/D rates are the channel-bed slope, the cross-section width, the flow depth and the joint effect of sediment availability and accumulated rainfall.
Alessandro Bonforte, Douglas Antonio Hernandez, Eduardo Gutiérrez, Louis Handal, Cecilia Polío, Salvatore Rapisarda, and Piergiorgio Scarlato
Nat. Hazards Earth Syst. Sci., 16, 1755–1769, https://doi.org/10.5194/nhess-16-1755-2016, https://doi.org/10.5194/nhess-16-1755-2016, 2016
Short summary
Short summary
In this paper, we present the work done during an international cooperation between Italy and El Salvador, for implementing the multiparametric monitoring of the San Miguel volcano in El Salvador after its sudden unrest. In particular, the aim of this paper is to show and describe the installed geodetic network and to show, comment and interpret the very first detailed ground deformation data obtained on this volcano during an unrest period, useful for characterizing its unknown dynamics.
Lara Mani, Paul D. Cole, and Iain Stewart
Nat. Hazards Earth Syst. Sci., 16, 1673–1689, https://doi.org/10.5194/nhess-16-1673-2016, https://doi.org/10.5194/nhess-16-1673-2016, 2016
Short summary
Short summary
Here, we aim to better understand the potential for using video games in volcanic hazard education with at-risk communities. A study using a bespoke-designed video game – St. Vincent's Volcano – was trialled on the Caribbean island of St. Vincent in 2015. Preliminary data analysis demonstrates 94 % of study participants had an improved knowledge of volcanic hazards after playing the game, leading us to conclude that video games could be a logical progression for education and outreach activities.
Alicia García, Servando De la Cruz-Reyna, José M. Marrero, and Ramón Ortiz
Nat. Hazards Earth Syst. Sci., 16, 1135–1144, https://doi.org/10.5194/nhess-16-1135-2016, https://doi.org/10.5194/nhess-16-1135-2016, 2016
Short summary
Short summary
Earthquakes of volcanic origin (VT) represent a significant hazard in volcanic islands prone to landslides. We present a methodology to forecast large VT earthquakes during volcanic crises based on an algorithm that translates fluctuations of the level of seismicity into 10-day time windows of increased probability of a major event. This algorithm has been successfully applied during the 2011–2013 volcanic crisis at El Hierro (Canary Islands).
Boris M. Shevtsov, Pavel P. Firstov, Nina V. Cherneva, Robert H. Holzworth, and Renat R. Akbashev
Nat. Hazards Earth Syst. Sci., 16, 871–874, https://doi.org/10.5194/nhess-16-871-2016, https://doi.org/10.5194/nhess-16-871-2016, 2016
Short summary
Short summary
The Kamchatka volcano group is located near populated areas and international air routes. Due to this, explosive eruptions are a serious threat to their security. To decrease the risks, effective systems for remote detection of eruptions are necessary. WWLLN resolution is enough for the remote sensing of the volcano lightning activity in the early stage of ash cloud formation a few minutes after the eruption when electrification proceeds the most intensively.
Manuela Elissondo, Valérie Baumann, Costanza Bonadonna, Marco Pistolesi, Raffaello Cioni, Antonella Bertagnini, Sébastien Biass, Juan-Carlos Herrero, and Rafael Gonzalez
Nat. Hazards Earth Syst. Sci., 16, 675–704, https://doi.org/10.5194/nhess-16-675-2016, https://doi.org/10.5194/nhess-16-675-2016, 2016
Short summary
Short summary
We present a chronological reconstruction of the 2011 eruption of Puyehue-Cordón Caulle volcano (Chile) which significantly affected the ecosystem and important economic sectors. The comparison with the impact associated with other recent eruptions located in similar areas shows that the regions downwind of the erupting volcanoes suffered similar problems, suggesting that a detailed collection of impact data can be largely beneficial for the development of emergency and risk-mitigation plans.
D. Andronico and P. Del Carlo
Nat. Hazards Earth Syst. Sci., 16, 29–40, https://doi.org/10.5194/nhess-16-29-2016, https://doi.org/10.5194/nhess-16-29-2016, 2016
Short summary
Short summary
The paper focuses on the potential health risks caused by the sub-10 micron fraction of volcanic ash (PM10) following explosive eruptions of Mt. Etna (Italy). We present the results of a study on the ash concentration in the air of urbanized areas after the 15 November 2011 lava fountain and the related tephra fallout, causing high levels of PM10 in the air. We conclude by hoping that due attention will be given to the impact of ash fallout on the Etnean territory in the future.
A. M. Syavulisembo, H.-B. Havenith, B. Smets, N. d'Oreye, and J. Marti
Nat. Hazards Earth Syst. Sci., 15, 2391–2400, https://doi.org/10.5194/nhess-15-2391-2015, https://doi.org/10.5194/nhess-15-2391-2015, 2015
Short summary
Short summary
The Virunga area in the Democratic Republic of the Congo, with over 1 million inhabitants, has to permanently cope with the threat posed by the active Nyamulagira and Nyiragongo volcanoes. During the past century, Nyamulagira erupted at intervals of about every 3 years – mostly in the form of lava flows – at least 30 times. In order to identify a useful tool for hazard assessment at the Goma Volcanological Observatory, we tested VORIS, a freely available software (www.gvb-csic.es).
G. Córdoba, G. Villarosa, M. F. Sheridan, J. G. Viramonte, D. Beigt, and G. Salmuni
Nat. Hazards Earth Syst. Sci., 15, 757–766, https://doi.org/10.5194/nhess-15-757-2015, https://doi.org/10.5194/nhess-15-757-2015, 2015
Short summary
Short summary
This paper shows the results of secondary lahar modelling in Villa La Angostura town (Neuquén-Argentina) based on the Two-Phase-Titan modelling computer code.
Possible occurrence of secondary lahars that could reach the city was analysed. The procedure allowed simulation of the path of flows from Florencia, Las Piedritas and Colorado creeks, which are the most influential streams in Villa La Angostura. The output of the modelling is a valuable tool for city planning and risk management.
R. Tonini, L. Sandri, A. Costa, and J. Selva
Nat. Hazards Earth Syst. Sci., 15, 409–415, https://doi.org/10.5194/nhess-15-409-2015, https://doi.org/10.5194/nhess-15-409-2015, 2015
L. Caballero and L. Capra
Nat. Hazards Earth Syst. Sci., 14, 3345–3355, https://doi.org/10.5194/nhess-14-3345-2014, https://doi.org/10.5194/nhess-14-3345-2014, 2014
S. Biass, C. Scaini, C. Bonadonna, A. Folch, K. Smith, and A. Höskuldsson
Nat. Hazards Earth Syst. Sci., 14, 2265–2287, https://doi.org/10.5194/nhess-14-2265-2014, https://doi.org/10.5194/nhess-14-2265-2014, 2014
C. Scaini, S. Biass, A. Galderisi, C. Bonadonna, A. Folch, K. Smith, and A. Höskuldsson
Nat. Hazards Earth Syst. Sci., 14, 2289–2312, https://doi.org/10.5194/nhess-14-2289-2014, https://doi.org/10.5194/nhess-14-2289-2014, 2014
L. Becerril, S. Bartolini, R. Sobradelo, J. Martí, J. M. Morales, and I. Galindo
Nat. Hazards Earth Syst. Sci., 14, 1853–1870, https://doi.org/10.5194/nhess-14-1853-2014, https://doi.org/10.5194/nhess-14-1853-2014, 2014
H. Brenot, N. Theys, L. Clarisse, J. van Geffen, J. van Gent, M. Van Roozendael, R. van der A, D. Hurtmans, P.-F. Coheur, C. Clerbaux, P. Valks, P. Hedelt, F. Prata, O. Rasson, K. Sievers, and C. Zehner
Nat. Hazards Earth Syst. Sci., 14, 1099–1123, https://doi.org/10.5194/nhess-14-1099-2014, https://doi.org/10.5194/nhess-14-1099-2014, 2014
B. Faria and J. F. B. D. Fonseca
Nat. Hazards Earth Syst. Sci., 14, 485–499, https://doi.org/10.5194/nhess-14-485-2014, https://doi.org/10.5194/nhess-14-485-2014, 2014
M. Ulvrová, R. Paris, K. Kelfoun, and P. Nomikou
Nat. Hazards Earth Syst. Sci., 14, 401–412, https://doi.org/10.5194/nhess-14-401-2014, https://doi.org/10.5194/nhess-14-401-2014, 2014
A. Folch, L. Mingari, M. S. Osores, and E. Collini
Nat. Hazards Earth Syst. Sci., 14, 119–133, https://doi.org/10.5194/nhess-14-119-2014, https://doi.org/10.5194/nhess-14-119-2014, 2014
J. F. B. D. Fonseca, B. V. E. Faria, J. Trindade, G. Cruz, A. Chambel, F. M. Silva, R. L. Pereira, and T. Vazão
Nat. Hazards Earth Syst. Sci., 13, 3419–3428, https://doi.org/10.5194/nhess-13-3419-2013, https://doi.org/10.5194/nhess-13-3419-2013, 2013
S. Scollo, M. Coltelli, C. Bonadonna, and P. Del Carlo
Nat. Hazards Earth Syst. Sci., 13, 3221–3233, https://doi.org/10.5194/nhess-13-3221-2013, https://doi.org/10.5194/nhess-13-3221-2013, 2013
P. Bani, Surono, M. Hendrasto, H. Gunawan, and S. Primulyana
Nat. Hazards Earth Syst. Sci., 13, 2399–2407, https://doi.org/10.5194/nhess-13-2399-2013, https://doi.org/10.5194/nhess-13-2399-2013, 2013
G. B. Raga, D. Baumgardner, A. G. Ulke, M. Torres Brizuela, and B. Kucienska
Nat. Hazards Earth Syst. Sci., 13, 2319–2330, https://doi.org/10.5194/nhess-13-2319-2013, https://doi.org/10.5194/nhess-13-2319-2013, 2013
Cited articles
Aspinall, W. P.: Structured elicitation of expert judgment for probabilistic
hazard and risk assessment in volcanic eruptions, in: Statistics in
volcanology, edited by: Mader, H. M., Coles, S. G., Connor, C. B., and Connor,
L. J., Special Publication of IAVCEI,Geological Society of London, 2006.
Bartolini, S., Cappello, A., Martí, J., and Del Negro, C.: QVAST: a new
Quantum GIS plugin for estimating volcanic susceptibility, Nat. Hazards Earth
Syst. Sci., 13, 3031–3042, https://doi.org/10.5194/nhess-13-3031-2013, 2013.
Bartolini, S., Sobradelo, R., and Martí, J.: ST-HASSET for volcanic
hazard assessment: A Python tool for evaluating the evolution of unrest
indicators, Comput. Geosci., 93, 77–87, https://doi.org/10.1016/j.cageo.2016.05.002,
2016.
Becerril, L., Bartolini, S., Sobradelo, R., Martí, J., Morales, J. M.,
and Galindo, I.: Long-term volcanic hazard assessment on El Hierro (Canary
Islands), Nat. Hazards Earth Syst. Sci., 14, 1853–1870,
https://doi.org/10.5194/nhess-14-1853-2014, 2014.
Blong, R.: Volcanic hazards and risk management, in: Encyclopedia of
volcanoes, edited by: Sigurdsson, H., Houghton, B., McNutt, S., Rymer, H.,
and Stix, J., Academic Press, San Diego, 1215–1227, 2000.
Cappello, A., Neri, M., Acocella, V., Gallo, G., Vicari, A., and Del Negro,
C.: Spatial vent opening probability map of Etna volcano (Sicily, Italy), B.
Volcanol., 74, 2083–2094, https://doi.org/10.1007/s00445-012-0647-4, 2012.
Carniel, R., Tárraga, M., Jaquet, O., and García, A.: On the memory
of seismic noise recorded at Teide-Pico Viejo volcanic complex, Tenerife,
Spain, EGU06-A-01929, NH5.03-1WE2P-0679, EGU General Assembly, Vienna, 2006.
Chouet, B.: Long period volcano seismicity: Its source and use in eruption
forecasting, Nature, 380, 309–316. https://doi.org/10.1038/380309a0, 1996.
Connor, C. B. and Conway, F. M.: Basaltic Volcanic Fields, in Encyclopedia of
Volcanology, Academic Press, 331–343, 2000.
Connor, C. B., Sparks, R. S. J., Mason, R. M., Bonadonna, C., and Young, S.
R.: Exploring links between physical and probabilistic models of volcanic
eruptions: The Soufrière Hills Volcano, Montserrat, Geophys. Res. Lett.,
30, 1701, https://doi.org/10.1029/2003GL017384, 2003.
Endo, T. E. and Murray, T.: Real-time Seismic Amplitude Measurement (RSAM). A
volcano monitoring and prediction tool, B. Volcanol., 53, 533–545, 1991.
Geyer, A., Martí, J., and Villaseñor, A.: First-order estimate of
the Canary Islands plate-scale stress field: Implications for volcanic hazard
assessment, Tectonophysics, 679, 125–139, https://doi.org/10.1016/j.tecto.2016.04.010,
2016.
Guillou, H., Carracedo, J. C., Pérez-Torrado, F. J., and Rodríguez
Badiola, E.: K-Ar ages and magnetic stratigraphy of a hotspot- induced, fast
grown oceanic island: El Hierro, Canary Islands, J. Volcanol. Geoth. Res., 73,
141–155, 1996.
Harrington, R. M. and Brodsky, E. E.: Volcanic hybrid earthquakes that are
brittle-failure events, Geophys. Res. Lett., 34, L06308,
https://doi.org/10.1029/2006GL028714, 2007.
Jaquet, O. and Carniel, R.: Multivariate stochastic modelling: towards
forecasts of paroxysmal phases at Stromboli, J. Volcanol. Geoth. Res., 128,
261–271, 2003.
Jaquet, O., Sparks, R. S. J., and Carniel, R.: Magma memory recorded by
statistics of volcanic explosions at the Soufrière Hills Volcano,
Montserrat in Statistics in Volcanology, Special Publications of IAVCEI,
edited by: Mader, H. M., Coles, S., and Connor, C., vol. 1, 175–184, 2006.
Jaquet, O., Connor, C. B., and Connor, L.: Probabilistic Methodology for Long
Term Assessment of Volcanic Hazards, IHLRMW, Las Vegas, USA, 2008.
Jellinek, A. M. and Bercovici, D.: Seismic tremors and magma wagging during
explosive volcanism, Nature, 470, 522–526, 2011.
Lavallée, Y., Meredith, P. G., Dingwell, D. B., Hess, K. U., Wassermann,
J., Cordonnier, B., Gerik, A., and Kruhl, J. H.: Seismogenic lavas and
explosive eruption forecasting, Nature, 453, 507–510, 2008.
López, C., Blanco, M. J., Abella, R., Brenes, B., Cabrera-Rodríguez,
V. M., Casas, B., Domínguez-Cerdeña, I., Felpeto, A., Fernández
de Villalta, M., del Fresno, C., García, O., García-Arias, M. J.,
García-Cañada, L., Gomis-Moreno, A., González-Alonso, E.,
Guzmán-Pérez, J., Iribarren, I., López-Díaz, R.,
Luengo-Oroz, N., Meletlidis, S., Moreno, M., Moure, D., Pereda de Pablo, J.,
Rodero, C., Romero, E., Sainz-Maza, S., Sentre-Domingo, M. A., Torres, P. A.,
Trigo, P., and Villasante-Marcos, M.: Monitoring the unrest of El Hierro
(Canary Islands) before the onset of the 2011 Submarine Eruption, Geophys.
Res. Lett., 39, L13303, https://doi.org/10.1029/2012GL051846, 2012.
López, C., Martí, J., Abella, R., and Tárraga, M.: Applying
fractal dimensions and energy-budget analysis to characterize fracturing
processes during magma migration and eruption: 2011–2012 El Hierro (Canary
Islands) submarine eruption, Surv. Geophys., 35, 1023–1044,
https://doi.org/10.1007/s10712-014-9290-2, 2014.
López, C., Benito-Saz, M. A., Martí, J., del-Fresno, C.,
García-Cañada, L., Albert, H., and Lamolda, H.: Driving Magma to the
Surface: the 2011–2012 El Hierro Volcanic Eruption, Geochem. Geophy. Geosy.,
18, 3165–3184, https://doi.org/10.1002/2017GC007023, 2017.
Martí, J. and Felpeto, A.: Methodology for the computation of volcanic
susceptibility. An example for mafic and felsic eruptions on Tenerife (Canary
Islands), J. Volcanol. Geoth. Res., 195, 69–77,
https://doi.org/10.1016/j.jvolgeores.2010.06.008, 2010.
Martí, J., Pinel, V., López, C., Geyer, A., Abella, R., Tárraga,
M., Blanco, M. J., Castro, A., and Rodríguez, C.: Causes and mechanisms
of the 2011–2012 El Hierro (Canary Islands) submarine eruption, J. Geophys.
Res.-Sol. Ea., 118, 823–839, https://doi.org/10.1002/jgrb.50087, 2013.
Martí, J., López, C., Bartolini, S., Becerril, L., and Geyer, A.:
Stress controls of monogenetic volcanism: a review, Front. Earth Sci., 4,
106, https://doi.org/10.3389/feart.2016.00106, 2016.
Martí, J., Villaseñor, A., Geyer, A., López, C., and Tryggvason,
A.: Stress barriers controlling lateral migration of magma revealed by
seismic tomography, Scientific Reports, 7, 40757, https://doi.org/10.1038/srep40757,
2017.
Martin, A. J., Umeda, K., Connor, C. B., Weller, J. N., Zhao, D., and
Takahashi, M.: Modeling long-term volcanic hazards through Bayesian
inference: an example from the Tohuku volcanic arc Japan, J. Geophys. Res.,
109, B10208, https://doi.org/10.1029/2004JB003201, 2004.
Marzocchi, W., Sandri, L., and Selva, J.: BET_EF: A probabilistic tool for
long- and short-term eruption forecasting, B. Volcanol., 70, 623–632, 2008.
McNutt, S.: Seismic monitoring and eruption forecasting of volcanoes: A
review of the state of the art and case histories, in: Monitoring and
mitigation of volcano hazards, edited by: Scarpa, R. and Tilling, R. I.,
Springer, Berlin, 99–146, 1996.
McNutt, S. R.: Volcano Seismology, Ann. Rev. Earth Planet. Sc., 33, 461–491,
2005.
Neuberg, J., Luckett, R., Baptie, B., and Olsen, K.: Models of tremor and
low-frequency earthquake swarms on Montserrat, J. Volcanol. Geoth. Res.,
101, 83–104, 2000.
Papale, P.: Strain-induced magma fragmentation in explosive eruptions,
Nature, 397, 425–428, 1999.
Phillipson, G., Sobradelo, R., and Gottsmann, J.: Global volcanic unrest in
the 21st century: An analysis of the first decade, J. Volcanol. Geoth. Res.,
264, 183–196, 2013.
Scarpa, R. and Tilling, R. I.: Monitoring and Mitigation of Volcano Hazards,
Springer-Verlag, Berlin, 1996.
Silverman, B. W.: Density Estimation for Statistics and Data Analysis,
Chapman & Hall, London, 1986.
Sparks, R. S. J.: Forecasting volcanic eruptions, Earth Planet. Sc. Lett.,
210, 1–15, 2003.
Sobradelo, R. and Martí, J.: Short-term volcanic hazard assessment
through Bayesian inference: Retrospective application to the Pinatubo 1991
volcanic crisis, J. Volcanol. Geoth. Res., 290, 1–11, 2015.
Sobradelo, R., Martí, J., Kilburn, C., and López, C.: Probabilistic
approach to decision-making under uncertainty during volcanic crises:
retrospective application to the El Hierro (Spain) 2011 volcanic crisis, Nat.
Hazards, 76, 979–998, https://doi.org/10.1007/s11069-014-1530-8, 2014.
Stein, R.: The role of stress transfer in earthquake occurrence, Nature, 402,
605–609, 1999.
Tárraga, M., Carniel, R., Ortiz, R., Marrero, J. M., and García, A.:
On the predictability of volcano-tectonic events by low frequency seismic
noise analysis at Teide-Pico Viejo volcanic complex, Canary Islands, Nat.
Hazards Earth Syst. Sci., 6, 365–376,
https://doi.org/10.5194/nhess-6-365-2006, 2006.
Tárraga, M., Martí, J., Abella, R., Carniel, R., and López, C.:
Volcanic tremors: good indicators of change in plumbing systems during
volcanic eruptions, J. Volcanol. Geoth. Res., 273, 33–40, https://doi.org/10.1016/j.jvolgeores.2014.01.003, 2014.
Telesca, L., Lovallo, M., Martí, J., López, C., and Abella, R.:
Using the Fisher–Shannon method to characterize continuous seismic signal
during volcanic eruptions: application to 2011–2012 El Hierro (Canary
Islands) eruption. Revealing dynamic changes on El Hierro (Canary Islands)
during the 2011–2012 eruption through investigation of the continuous
seismic signal, Terra Nova, 26, 425–429, 2014.
Vallianatos, F., Michas, G., Papadakis, G., and Tzanis, A.: Evidence of
non-extensivity in the seismicity observed during the 2011–2012 unrest at
the Santorini volcanic complex, Greece, Nat. Hazards Earth Syst. Sci., 13,
177–185, https://doi.org/10.5194/nhess-13-177-2013, 2013.
Short summary
The most challenging aspect of forecasting volcanic eruptions is the correct identification and interpretation of precursors during the episodes that normally precede eruptive activity. We show an easy and useful approach to the understanding of the information recorded by the monitoring system and show how this information can be used to forecast an eruption and its potential hazards in real time. This methodology can be used to facilitate communication between scientists and decision-makers.
The most challenging aspect of forecasting volcanic eruptions is the correct identification and...
Altmetrics
Final-revised paper
Preprint