Articles | Volume 17, issue 7
Nat. Hazards Earth Syst. Sci., 17, 1003–1024, 2017
https://doi.org/10.5194/nhess-17-1003-2017
Nat. Hazards Earth Syst. Sci., 17, 1003–1024, 2017
https://doi.org/10.5194/nhess-17-1003-2017

Research article 04 Jul 2017

Research article | 04 Jul 2017

Public perceptions of a rip current hazard education program: “Break the Grip of the Rip!”

Chris Houser et al.

Related authors

Machine learning analysis of lifeguard flag decisions and recorded rescues
Chris Houser, Jacob Lehner, Nathan Cherry, and Phil Wernette
Nat. Hazards Earth Syst. Sci., 19, 2541–2549, https://doi.org/10.5194/nhess-19-2541-2019,https://doi.org/10.5194/nhess-19-2541-2019, 2019
Short summary
Directional dependency and coastal framework geology: implications for barrier island resilience
Phillipe A. Wernette, Chris Houser, Bradley A. Weymer, Mark E. Everett, Michael P. Bishop, and Bobby Reece
Earth Surf. Dynam., 6, 1139–1153, https://doi.org/10.5194/esurf-6-1139-2018,https://doi.org/10.5194/esurf-6-1139-2018, 2018
Short summary

Related subject area

Sea, Ocean and Coastal Hazards
Trivariate copula to design coastal structures
Olivier Orcel, Philippe Sergent, and François Ropert
Nat. Hazards Earth Syst. Sci., 21, 239–260, https://doi.org/10.5194/nhess-21-239-2021,https://doi.org/10.5194/nhess-21-239-2021, 2021
Short summary
Beachgoers' ability to identify rip currents at a beach in situ
Sebastian J. Pitman, Katie Thompson, Deirdre E. Hart, Kevin Moran, Shari L. Gallop, Robert W. Brander, and Adam Wooler
Nat. Hazards Earth Syst. Sci., 21, 115–128, https://doi.org/10.5194/nhess-21-115-2021,https://doi.org/10.5194/nhess-21-115-2021, 2021
Short summary
Wave height return periods from combined measurement–model data: a Baltic Sea case study
Jan-Victor Björkqvist, Sander Rikka, Victor Alari, Aarne Männik, Laura Tuomi, and Heidi Pettersson
Nat. Hazards Earth Syst. Sci., 20, 3593–3609, https://doi.org/10.5194/nhess-20-3593-2020,https://doi.org/10.5194/nhess-20-3593-2020, 2020
Short summary
Modeling dependence and coincidence of storm surges and high tide: methodology, discussion and recommendations based on a simplified case study in Le Havre (France)
Amine Ben Daoued, Yasser Hamdi, Nassima Mouhous-Voyneau, and Philippe Sergent
Nat. Hazards Earth Syst. Sci., 20, 3387–3398, https://doi.org/10.5194/nhess-20-3387-2020,https://doi.org/10.5194/nhess-20-3387-2020, 2020
Short summary
Laboratory study of non-linear wave–wave interactions of extreme focused waves in the nearshore zone
Iskander Abroug, Nizar Abcha, Armelle Jarno, and François Marin
Nat. Hazards Earth Syst. Sci., 20, 3279–3291, https://doi.org/10.5194/nhess-20-3279-2020,https://doi.org/10.5194/nhess-20-3279-2020, 2020
Short summary

Cited articles

Arozarena, I., Houser, C., Echeverria, A. G., and Brannstrom, C.: The rip current hazard in Costa Rica, Nat. Hazards, 77, 753–768, 2015.
Arun Kumar, S. V. V. and Prasad, K. V. S. R.: Rip current-related fatalities in India: a new predictive risk scale for forecasting rip currents, Nat. Hazards, 70, 313–335, 2014.
Ashley, W. S. and Black, A. W.: Fatalities associated with nonconvective high-wind events in the United States, J. Appl. Meteorol. Climatol., 47, 717–725, 2008.
Barnes, P. H.: Approaches to community safety: risk perception and social meaning, Aust. J. Emerg. Manag., 1, 15–23, 2002.
Barrett, G. and Houser, C.: Identifying hotspots of rip current activity using wavelet analysis at Pensacola Beach, Florida, Phys. Geogr., 33, 32–49, 2012.
Download
Short summary
Rip currents pose a major global beach hazard. Despite increased social research into beach-goer experience, little is known about levels of rip current knowledge within the general population. This study describes results of an online survey to determine the extent of rip current knowledge across the United States, with the aim of improving and enhancing existing beach safety education materials. Results suggest a need for locally specific and verified rip forecasts and signage.
Altmetrics
Final-revised paper
Preprint