Articles | Volume 16, issue 8
https://doi.org/10.5194/nhess-16-1807-2016
https://doi.org/10.5194/nhess-16-1807-2016
Review article
 | 
09 Aug 2016
Review article |  | 09 Aug 2016

Development of super-ensemble techniques for ocean analyses: the Mediterranean Sea case

Jenny Pistoia, Nadia Pinardi, Paolo Oddo, Matthew Collins, Gerasimos Korres, and Yann Drillet

Related authors

Numerical modelling framework for assessing dune effectiveness against coastal inundation
Italo R. Lopes, Ivan Federico, Michalis Vousdoukas, Luisa Perini, Salvatore Causio, Giovanni Coppini, Maurilio Milella, Nadia Pinardi, and Lorenzo Mentaschi
EGUsphere, https://doi.org/10.5194/egusphere-2025-1695,https://doi.org/10.5194/egusphere-2025-1695, 2025
This preprint is open for discussion and under review for Natural Hazards and Earth System Sciences (NHESS).
Short summary
Modeling wave-vegetation interactions: the impact of seagrass flexibility and seasonal variability
Seimur Shirinov, Ivan Federico, Simone Bonamano, Salvatore Causio, Nicolás Biocca, Viviana Piermattei, Daniele Piazzolla, Jacopo Alessandri, Lorenzo Mentaschi, Giovanni Coppini, Marco Marcelli, and Nadia Pinardi
EGUsphere, https://doi.org/10.5194/egusphere-2025-321,https://doi.org/10.5194/egusphere-2025-321, 2025
Short summary
Sea Level Rise in Europe: Knowledge gaps identified through a participatory approach
José A. Jiménez, Gundula Winter, Antonio Bonaduce, Michael Depuydt, Giulia Galluccio, Bart van den Hurk, H. E. Markus Meier, Nadia Pinardi, Lavinia G. Pomarico, and Natalia Vazquez Riveiros
State Planet, 3-slre1, 3, https://doi.org/10.5194/sp-3-slre1-3-2024,https://doi.org/10.5194/sp-3-slre1-3-2024, 2024
Short summary
Sea Level Rise in Europe: A knowledge hub at the ocean–climate nexus
Nadia Pinardi, Bart van den Hurk, Michael Depuydt, Thorsten Kiefer, Petra Manderscheid, Lavinia Giulia Pomarico, and Kanika Singh
State Planet, 3-slre1, 2, https://doi.org/10.5194/sp-3-slre1-2-2024,https://doi.org/10.5194/sp-3-slre1-2-2024, 2024
Short summary
Sea Level Rise in Europe: Summary for Policymakers
Bart van den Hurk, Nadia Pinardi, Alexander Bisaro, Giulia Galluccio, José A. Jiménez, Kate Larkin, Angélique Melet, Lavinia Giulia Pomarico, Kristin Richter, Kanika Singh, Roderik van de Wal, and Gundula Winter
State Planet, 3-slre1, 1, https://doi.org/10.5194/sp-3-slre1-1-2024,https://doi.org/10.5194/sp-3-slre1-1-2024, 2024
Short summary

Related subject area

Sea, Ocean and Coastal Hazards
Advancing nearshore and onshore tsunami hazard approximation with machine learning surrogates
Naveen Ragu Ramalingam, Kendra Johnson, Marco Pagani, and Mario L. V. Martina
Nat. Hazards Earth Syst. Sci., 25, 1655–1679, https://doi.org/10.5194/nhess-25-1655-2025,https://doi.org/10.5194/nhess-25-1655-2025, 2025
Short summary
Untangling the waves: decomposing extreme sea levels in a non-tidal basin, the Baltic Sea
Marvin Lorenz, Katri Viigand, and Ulf Gräwe
Nat. Hazards Earth Syst. Sci., 25, 1439–1458, https://doi.org/10.5194/nhess-25-1439-2025,https://doi.org/10.5194/nhess-25-1439-2025, 2025
Short summary
Accelerating compound flood risk assessments through active learning: A case study of Charleston County (USA)
Lucas Terlinden-Ruhl, Anaïs Couasnon, Dirk Eilander, Gijs G. Hendrickx, Patricia Mares-Nasarre, and José A. Á. Antolínez
Nat. Hazards Earth Syst. Sci., 25, 1353–1375, https://doi.org/10.5194/nhess-25-1353-2025,https://doi.org/10.5194/nhess-25-1353-2025, 2025
Short summary
Tsunami detection methods for ocean-bottom pressure gauges
Cesare Angeli, Alberto Armigliato, Martina Zanetti, Filippo Zaniboni, Fabrizio Romano, Hafize Başak Bayraktar, and Stefano Lorito
Nat. Hazards Earth Syst. Sci., 25, 1169–1185, https://doi.org/10.5194/nhess-25-1169-2025,https://doi.org/10.5194/nhess-25-1169-2025, 2025
Short summary
Using random forests to forecast daily extreme sea level occurrences at the Baltic Coast
Kai Bellinghausen, Birgit Hünicke, and Eduardo Zorita
Nat. Hazards Earth Syst. Sci., 25, 1139–1162, https://doi.org/10.5194/nhess-25-1139-2025,https://doi.org/10.5194/nhess-25-1139-2025, 2025
Short summary

Cited articles

Boria, R. A., Olson, L. E., Goodman, S. M., and Anderson, R. P.: Spatial filtering to reduce sampling bias can improve the performance of ecological niche models, Ecol. Model., 275, 73–77, https://doi.org/10.1016/j.ecolmodel.2013.12.012, 2014.
Brasseur, P., Bahurel, P., Bertino, L., Birol, F., Brankart, J.-M., Ferry, N., Losa, S., Remy, E., Schröter, J., Skachko, S., Testut, C.-E., Tranchant, B., Van Leeuwen, P. J., and Verron, J.: Data assimilation for marine monitoring and prediction: The MERCATOR operational assimilation systems and the MERSEA developments, Q. J. Roy. Meteor. Soc., 131, 3561–3582, https://doi.org/10.1256/qj.05.142, 2005.
Casey, K., Brandon, T., Cornillon, P., and Evans, R.: The Past, Present and Future of the AVHRR Pathfinder SST Program, Oceanography from Space: Revisited, 2010.
Dobricic, S. and Pinardi, N.: An oceanographic three-dimensional variational data assimilation scheme, Ocean Model., 22, 89–105, https://doi.org/10.1016/j.ocemod.2008.01.004, 2008.
Evans, R., Harrison, M., Graham, R., and Mylne, K.: Joint Medium-Range Ensembles from The Met. Office and ECMWF Systems, Mon. Weather Rev., 128, 3104–3127, https://doi.org/10.1175/1520-0493(2000)128<3104:JMREFT>2.0.CO;2, 2000.
Download
Short summary
In this work we developed a new multi-model super-ensemble method to estimate sea surface temperature, an important product of ocean analysis systems. We find that ensemble size, quality, type of members and the training period length are all important elements of the MMSE methodology and require careful calibration. We show that with a rather limited but overconfident data set (with a low bias of the starting ensemble members) the RMSE analysis can be improved.
Share
Altmetrics
Final-revised paper
Preprint