Articles | Volume 15, issue 4
https://doi.org/10.5194/nhess-15-905-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue:
https://doi.org/10.5194/nhess-15-905-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Monitoring and prediction in early warning systems for rapid mass movements
M. Stähli
Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
M. Sättele
WSL Institute for Snow and Avalanche Research SLF, Davos Dorf, Switzerland
C. Huggel
Department of Geography, University of Zurich, Zurich, Switzerland
B. W. McArdell
Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
P. Lehmann
Soil and Terrestrial Environmental Physics, ETH Zurich, Zurich, Switzerland
A. Van Herwijnen
WSL Institute for Snow and Avalanche Research SLF, Davos Dorf, Switzerland
Environmental Remote Sensing Laboratory, EPF Lausanne, Lausanne, Switzerland
M. Schleiss
Environmental Remote Sensing Laboratory, EPF Lausanne, Lausanne, Switzerland
now at: Civil and Environmental Engineering, Princeton University, Princeton, USA
A. Ferrari
Soil Mechanics Laboratory, EPF Lausanne, Lausanne, Switzerland
A. Kos
Institute for Geotechnical Engineering, ETH Zurich, Zurich, Switzerland
now at: Terrasense Switzerland Ltd, Werdenberg, Switzerland
Soil and Terrestrial Environmental Physics, ETH Zurich, Zurich, Switzerland
S. M. Springman
Institute for Geotechnical Engineering, ETH Zurich, Zurich, Switzerland
Related authors
Benjamin B. Mirus, Thom A. Bogaard, Roberto Greco, and Manfred Stähli
EGUsphere, https://doi.org/10.5194/egusphere-2024-1219, https://doi.org/10.5194/egusphere-2024-1219, 2024
Short summary
Short summary
Early warning of increased landslide potential provides situational awareness to reduce landslide-related losses from major storm events. For decades, landslide forecasts relied on rainfall data alone, but recent research points to the value of hydrologic information for improving predictions. In this article, we provide our perspectives on the value and limitations of integrating subsurface hillslope hydrologic monitoring data and mathematical modeling for more accurate landslide forecasts.
Adrian Wicki, Peter Lehmann, Christian Hauck, and Manfred Stähli
Nat. Hazards Earth Syst. Sci., 23, 1059–1077, https://doi.org/10.5194/nhess-23-1059-2023, https://doi.org/10.5194/nhess-23-1059-2023, 2023
Short summary
Short summary
Soil wetness measurements are used for shallow landslide prediction; however, existing sites are often located in flat terrain. Here, we assessed the ability of monitoring sites at flat locations to detect critically saturated conditions compared to if they were situated at a landslide-prone location. We found that differences exist but that both sites could equally well distinguish critical from non-critical conditions for shallow landslide triggering if relative changes are considered.
Adrian Wicki, Per-Erik Jansson, Peter Lehmann, Christian Hauck, and Manfred Stähli
Hydrol. Earth Syst. Sci., 25, 4585–4610, https://doi.org/10.5194/hess-25-4585-2021, https://doi.org/10.5194/hess-25-4585-2021, 2021
Short summary
Short summary
Soil moisture information was shown to be valuable for landslide prediction. Soil moisture was simulated at 133 sites in Switzerland, and the temporal variability was compared to the regional occurrence of landslides. We found that simulated soil moisture is a good predictor for landslides, and that the forecast goodness is similar to using in situ measurements. This encourages the use of models for complementing existing soil moisture monitoring networks for regional landslide early warning.
Leonie Kiewiet, Ilja van Meerveld, Manfred Stähli, and Jan Seibert
Hydrol. Earth Syst. Sci., 24, 3381–3398, https://doi.org/10.5194/hess-24-3381-2020, https://doi.org/10.5194/hess-24-3381-2020, 2020
Short summary
Short summary
The sources of stream water are important, for instance, for predicting floods. The connectivity between streams and different (ground-)water sources can change during rain events, which affects the stream water composition. We investigated this for stream water sampled during four events and found that stream water came from different sources. The stream water composition changed gradually, and we showed that changes in solute concentrations could be partly linked to changes in connectivity.
M. Stähli, C. Graf, C. Scheidl, C. R. Wyss, and A. Volkwein
Geogr. Helv., 70, 1–9, https://doi.org/10.5194/gh-70-1-2015, https://doi.org/10.5194/gh-70-1-2015, 2015
Stephanie Mayer, Martin Hendrick, Adrien Michel, Bettina Richter, Jürg Schweizer, Heini Wernli, and Alec van Herwijnen
The Cryosphere, 18, 5495–5517, https://doi.org/10.5194/tc-18-5495-2024, https://doi.org/10.5194/tc-18-5495-2024, 2024
Short summary
Short summary
Understanding the impact of climate change on snow avalanche activity is crucial for safeguarding lives and infrastructure. Here, we project changes in avalanche activity in the Swiss Alps throughout the 21st century. Our findings reveal elevation-dependent patterns of change, indicating a decrease in dry-snow avalanches alongside an increase in wet-snow avalanches at elevations above the current treeline. These results underscore the necessity to revisit measures for avalanche risk mitigation.
Amelie Fees, Alec van Herwijnen, Michael Lombardo, Jürg Schweizer, and Peter Lehmann
Nat. Hazards Earth Syst. Sci., 24, 3387–3400, https://doi.org/10.5194/nhess-24-3387-2024, https://doi.org/10.5194/nhess-24-3387-2024, 2024
Short summary
Short summary
Glide-snow avalanches release at the ground–snow interface, and their release process is poorly understood. To investigate the influence of spatial variability (snowpack and basal friction) on avalanche release, we developed a 3D, mechanical, threshold-based model that reproduces an observed release area distribution. A sensitivity analysis showed that the distribution was mostly influenced by the basal friction uniformity, while the variations in snowpack properties had little influence.
Nedal Aqel, Lea Reusser, Stephan Margreth, Andrea Carminati, and Peter Lehmann
Geosci. Model Dev., 17, 6949–6966, https://doi.org/10.5194/gmd-17-6949-2024, https://doi.org/10.5194/gmd-17-6949-2024, 2024
Short summary
Short summary
The soil water potential (SWP) determines various soil water processes. Since remote sensing techniques cannot measure it directly, it is often deduced from volumetric water content (VWC) information. However, under dynamic field conditions, the relationship between SWP and VWC is highly ambiguous due to different factors that cannot be modeled with the classical approach. Applying a deep neural network with an autoencoder enables the prediction of the dynamic SWP.
Kunfeng Gao, Franziska Vogel, Romanos Foskinis, Stergios Vratolis, Maria I. Gini, Konstantinos Granakis, Anne-Claire Billault-Roux, Paraskevi Georgakaki, Olga Zografou, Prodromos Fetfatzis, Alexis Berne, Alexandros Papayannis, Konstantinos Eleftheridadis, Ottmar Möhler, and Athanasios Nenes
Atmos. Chem. Phys., 24, 9939–9974, https://doi.org/10.5194/acp-24-9939-2024, https://doi.org/10.5194/acp-24-9939-2024, 2024
Short summary
Short summary
Ice nucleating particle (INP) concentrations are required for correct predictions of clouds and precipitation in a changing climate, but they are poorly constrained in climate models. We unravel source contributions to INPs in the eastern Mediterranean and find that biological particles are important, regardless of their origin. The parameterizations developed exhibit superior performance and enable models to consider biological-particle effects on INPs.
Amelie Fees, Michael Lombardo, Alec van Herwijnen, Peter Lehmann, and Jürg Schweizer
EGUsphere, https://doi.org/10.5194/egusphere-2024-2485, https://doi.org/10.5194/egusphere-2024-2485, 2024
Short summary
Short summary
Glide-snow avalanches release at the soil-snow interface due to a loss of friction which is suspected to be linked to interfacial water. The importance of the interfacial water was investigated with a spatio-temporal soil and local snow monitoring setup in an avalanche-prone slope. Seven glide-snow avalanches released on the monitoring grid (season 2021/22 to 2023/24) and provided insights into the source, quantity, and spatial distribution of interfacial water before avalanche release.
Marc Schleiss
Atmos. Meas. Tech., 17, 4789–4802, https://doi.org/10.5194/amt-17-4789-2024, https://doi.org/10.5194/amt-17-4789-2024, 2024
Short summary
Short summary
Research is conducted to identify special rainfall patterns in the Netherlands using multiple types of rainfall sensors. A total of eight potentially unique events are analyzed, considering both the number and size of raindrops. However, no clear evidence supporting the existence of a special rainfall regime could be found. The results highlight the challenges in experimentally confirming well-established theoretical ideas in the field of precipitation sciences.
Philipp L. Rosendahl, Johannes Schneider, Grégoire Bobillier, Florian Rheinschmidt, Bastian Bergfeld, Alec van Herwijnen, and Philipp Weißgraeber
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-122, https://doi.org/10.5194/nhess-2024-122, 2024
Revised manuscript under review for NHESS
Short summary
Short summary
Our research investigates the role of anticracks in snowpacks and their impact on avalanche formation, focusing on anticracks due to weak layer collapse. We discovered that slab touchdown on the snow below the weak layer decreases the energy available for crack propagation, potentially leading to a stop of crack propagation. This underscores the importance of mechanical interactions in snowpack stability. Our work offers new insights for enhancing avalanche prediction and mitigation strategies.
Cristina Pérez-Guillén, Frank Techel, Michele Volpi, and Alec van Herwijnen
EGUsphere, https://doi.org/10.5194/egusphere-2024-2374, https://doi.org/10.5194/egusphere-2024-2374, 2024
Short summary
Short summary
This study assesses the performance and explainability of a random forest classifier for predicting dry-snow avalanche danger levels during initial live-testing. The model achieved ∼70 % agreement with human forecasts, performing equally well in nowcast and forecast modes, while capturing the temporal dynamics of avalanche forecasting. The explainability approach enhances the transparency of the model's decision-making process, providing a valuable tool for operational avalanche forecasting.
Tobias Karl David Weber, Lutz Weihermüller, Attila Nemes, Michel Bechtold, Aurore Degré, Efstathios Diamantopoulos, Simone Fatichi, Vilim Filipović, Surya Gupta, Tobias L. Hohenbrink, Daniel R. Hirmas, Conrad Jackisch, Quirijn de Jong van Lier, John Koestel, Peter Lehmann, Toby R. Marthews, Budiman Minasny, Holger Pagel, Martine van der Ploeg, Shahab Aldin Shojaeezadeh, Simon Fiil Svane, Brigitta Szabó, Harry Vereecken, Anne Verhoef, Michael Young, Yijian Zeng, Yonggen Zhang, and Sara Bonetti
Hydrol. Earth Syst. Sci., 28, 3391–3433, https://doi.org/10.5194/hess-28-3391-2024, https://doi.org/10.5194/hess-28-3391-2024, 2024
Short summary
Short summary
Pedotransfer functions (PTFs) are used to predict parameters of models describing the hydraulic properties of soils. The appropriateness of these predictions critically relies on the nature of the datasets for training the PTFs and the physical comprehensiveness of the models. This roadmap paper is addressed to PTF developers and users and critically reflects the utility and future of PTFs. To this end, we present a manifesto aiming at a paradigm shift in PTF research.
Yu Zhuang, Brian W. McArdell, and Perry Bartelt
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-87, https://doi.org/10.5194/nhess-2024-87, 2024
Preprint under review for NHESS
Short summary
Short summary
This study reformulates the μ(I) rheology into a Voellmy-type relationship to elucidate its physical implications. The μ(I) rheology, incorporating a dimensionless inertial number, mimics granular temperature effects, reflecting shear thinning behavior of mass flows. However, its constant Coulomb friction coefficient limits accuracy in modeling deposition. Comparing μ(I) with Voellmy-type rheologies reveals strengths and limitations, enhancing mass flow modeling and engineering applications.
Gwendolyn Dasser, Valentin T. Bickel, Marius Rüetschi, Mylène Jacquemart, Mathias Bavay, Elisabeth D. Hafner, Alec van Herwijnen, and Andrea Manconi
EGUsphere, https://doi.org/10.5194/egusphere-2024-1510, https://doi.org/10.5194/egusphere-2024-1510, 2024
Short summary
Short summary
Understanding snowpack wetness is crucial for predicting wet snow avalanches, but detailed data is often limited to certain locations. Using satellite radar, we monitor snow wetness spatially continuously. By combining different radar tracks from Sentinel-1, we improved spatial resolution and tracked snow wetness over several seasons. Our results indicate higher snow wetness to correlate with increased wet snow avalanche activity, suggesting our method can help identify potential risk areas.
Andri Simeon, Cristina Pérez-Guillén, Michele Volpi, Christine Seupel, and Alec van Herwijnen
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-76, https://doi.org/10.5194/gmd-2024-76, 2024
Revised manuscript under review for GMD
Short summary
Short summary
Avalanche seismic detection systems are key for forecasting, but distinguishing avalanches from other seismic sources remains challenging. We propose novel autoencoder models to automatically extract features and compare them with standard seismic attributes. These features are then used to classify avalanches and noise events. The autoencoder feature classifiers have the highest sensitivity to detect avalanches, while the standard seismic classifier performs better overall.
Benjamin B. Mirus, Thom A. Bogaard, Roberto Greco, and Manfred Stähli
EGUsphere, https://doi.org/10.5194/egusphere-2024-1219, https://doi.org/10.5194/egusphere-2024-1219, 2024
Short summary
Short summary
Early warning of increased landslide potential provides situational awareness to reduce landslide-related losses from major storm events. For decades, landslide forecasts relied on rainfall data alone, but recent research points to the value of hydrologic information for improving predictions. In this article, we provide our perspectives on the value and limitations of integrating subsurface hillslope hydrologic monitoring data and mathematical modeling for more accurate landslide forecasts.
Grégoire Bobillier, Bertil Trottet, Bastian Bergfeld, Ron Simenhois, Alec van Herwijnen, Jürg Schweizer, and Johan Gaume
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-70, https://doi.org/10.5194/nhess-2024-70, 2024
Revised manuscript has not been submitted
Short summary
Short summary
Our study focuses on the initiation process of snow slab avalanches. By combining experimental data and numerical simulations, we show that on gentle slopes, a crack forms and propagates due to compression fracture within a weak layer, and on steep slopes, the crack velocity can increase dramatically after about 5 meters due to a fracture mode transition (compression to shear). Understanding these dynamics represents an essential additional piece in the dry-snow slab avalanche formation puzzle.
Bastian Bergfeld, Karl W. Birkeland, Valentin Adam, Philipp L. Rosendahl, and Alec van Herwijnen
EGUsphere, https://doi.org/10.5194/egusphere-2024-690, https://doi.org/10.5194/egusphere-2024-690, 2024
Short summary
Short summary
To release a slab avalanche, a crack in a weak snow layer beneath a cohesive slab has to propagate. Information on that is essential for assessing avalanche risk. In the field, information can be gathered with the Propagation Saw Test (PST). However, there are different standards on how to cut the PST. In this study, we experimentally investigate the effect of these different column geometries and provide models to correct for imprecise field test geometry effects on the critical cut length.
Daniel Bolliger, Fritz Schlunegger, and Brian W. McArdell
Nat. Hazards Earth Syst. Sci., 24, 1035–1049, https://doi.org/10.5194/nhess-24-1035-2024, https://doi.org/10.5194/nhess-24-1035-2024, 2024
Short summary
Short summary
We analysed data from the Illgraben debris flow monitoring station, Switzerland, and we modelled these flows with a debris flow runout model. We found that no correlation exists between the grain size distribution, the mineralogical composition of the matrix, and the debris flow properties. The flow properties rather appear to be determined by the flow volume, from which most other parameters can be derived.
Alfonso Ferrone, Jérôme Kopp, Martin Lainer, Marco Gabella, Urs Germann, and Alexis Berne
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-2, https://doi.org/10.5194/amt-2024-2, 2024
Revised manuscript accepted for AMT
Short summary
Short summary
Estimates of hail size have been collected by a network of hail sensors, installed in three regions of Switzerland, since September 2018. In this study, we use a technique called “double moment normalization” to model the distribution of diameter sizes. The parameters of the method have been defined over 70 % of the dataset, and testes over the remaining 30 %. An independent distribution of hail sizes, collected by a drone, has also been used to evaluate the method.
Valentin Wiener, Marie-Laure Roussel, Christophe Genthon, Étienne Vignon, Jacopo Grazioli, and Alexis Berne
Earth Syst. Sci. Data, 16, 821–836, https://doi.org/10.5194/essd-16-821-2024, https://doi.org/10.5194/essd-16-821-2024, 2024
Short summary
Short summary
This paper presents 7 years of data from a precipitation radar deployed at the Dumont d'Urville station in East Antarctica. The main characteristics of the dataset are outlined in a short statistical study. Interannual and seasonal variability are also investigated. Then, we extensively describe the processing method to retrieve snowfall profiles from the radar data. Lastly, a brief comparison is made with two climate models as an application example of the dataset.
Sophie Erb, Elias Graf, Yanick Zeder, Simone Lionetti, Alexis Berne, Bernard Clot, Gian Lieberherr, Fiona Tummon, Pascal Wullschleger, and Benoît Crouzy
Atmos. Meas. Tech., 17, 441–451, https://doi.org/10.5194/amt-17-441-2024, https://doi.org/10.5194/amt-17-441-2024, 2024
Short summary
Short summary
In this study, we focus on an automatic bioaerosol measurement instrument and investigate the impact of using its fluorescence measurement for pollen identification. The fluorescence signal is used together with a pair of images from the same instrument to identify single pollen grains via neural networks. We test whether considering fluorescence as a supplementary input improves the pollen identification performance by comparing three different neural networks.
Gina Garland, John Koestel, Alice Johannes, Olivier Heller, Sebastian Doetterl, Dani Or, and Thomas Keller
SOIL, 10, 23–31, https://doi.org/10.5194/soil-10-23-2024, https://doi.org/10.5194/soil-10-23-2024, 2024
Short summary
Short summary
The concept of soil aggregates is hotly debated, leading to confusion about their function or relevancy to soil processes. We propose that the use of conceptual figures showing detached and isolated aggregates can be misleading and has contributed to this skepticism. Here, we conceptually illustrate how aggregates can form and dissipate within the context of undisturbed soils, highlighting the fact that aggregates do not necessarily need to have distinct physical boundaries.
Christos Gatidis, Marc Schleiss, and Christine Unal
Atmos. Meas. Tech., 17, 235–245, https://doi.org/10.5194/amt-17-235-2024, https://doi.org/10.5194/amt-17-235-2024, 2024
Short summary
Short summary
A common method to retrieve important information about the microphysical structure of rain (DSD retrievals) requires a constrained relationship between the drop size distribution parameters. The most widely accepted empirical relationship is between μ and Λ. The relationship shows variability across the different types of rainfall (convective or stratiform). The new proposed power-law model to represent the μ–Λ relation provides a better physical interpretation of the relationship coefficients.
Alfonso Ferrone, Étienne Vignon, Andrea Zonato, and Alexis Berne
The Cryosphere, 17, 4937–4956, https://doi.org/10.5194/tc-17-4937-2023, https://doi.org/10.5194/tc-17-4937-2023, 2023
Short summary
Short summary
In austral summer 2019/2020, three K-band Doppler profilers were deployed across the Sør Rondane Mountains, south of the Belgian base Princess Elisabeth Antarctica. Their measurements, along with atmospheric simulations and reanalyses, have been used to study the spatial variability in precipitation over the region, as well as investigate the interaction between the complex terrain and the typical flow associated with precipitating systems.
Stephanie Mayer, Frank Techel, Jürg Schweizer, and Alec van Herwijnen
Nat. Hazards Earth Syst. Sci., 23, 3445–3465, https://doi.org/10.5194/nhess-23-3445-2023, https://doi.org/10.5194/nhess-23-3445-2023, 2023
Short summary
Short summary
We present statistical models to estimate the probability for natural dry-snow avalanche release and avalanche size based on the simulated layering of the snowpack. The benefit of these models is demonstrated in comparison with benchmark models based on the amount of new snow. From the validation with data sets of quality-controlled avalanche observations and danger levels, we conclude that these models may be valuable tools to support forecasting natural dry-snow avalanche activity.
Anne-Claire Billault-Roux, Paraskevi Georgakaki, Josué Gehring, Louis Jaffeux, Alfons Schwarzenboeck, Pierre Coutris, Athanasios Nenes, and Alexis Berne
Atmos. Chem. Phys., 23, 10207–10234, https://doi.org/10.5194/acp-23-10207-2023, https://doi.org/10.5194/acp-23-10207-2023, 2023
Short summary
Short summary
Secondary ice production plays a key role in clouds and precipitation. In this study, we analyze radar measurements from a snowfall event in the Jura Mountains. Complex signatures are observed, which reveal that ice crystals were formed through various processes. An analysis of multi-sensor data suggests that distinct ice multiplication processes were taking place. Both the methods used and the insights gained through this case study contribute to a better understanding of snowfall microphysics.
Mathieu Le Breton, Éric Larose, Laurent Baillet, Yves Lejeune, and Alec van Herwijnen
The Cryosphere, 17, 3137–3156, https://doi.org/10.5194/tc-17-3137-2023, https://doi.org/10.5194/tc-17-3137-2023, 2023
Short summary
Short summary
We monitor the amount of snow on the ground using passive radiofrequency identification (RFID) tags. These small and inexpensive tags are wirelessly read by a stationary reader placed above the snowpack. Variations in the radiofrequency phase delay accurately reflect variations in snow amount, known as snow water equivalent. Additionally, each tag is equipped with a sensor that monitors the snow temperature.
Alfonso Ferrone and Alexis Berne
Earth Syst. Sci. Data, 15, 1115–1132, https://doi.org/10.5194/essd-15-1115-2023, https://doi.org/10.5194/essd-15-1115-2023, 2023
Short summary
Short summary
This article presents the datasets collected between November 2019 and February 2020 in the vicinity of the Belgian research base Princess Elisabeth Antarctica. Five meteorological radars, a multi-angle snowflake camera, three weather stations, and two radiometers have been deployed at five sites, up to a maximum distance of 30 km from the base. Their varied locations allow the study of spatial variability in snowfall and its interaction with the complex terrain in the region.
Adrian Wicki, Peter Lehmann, Christian Hauck, and Manfred Stähli
Nat. Hazards Earth Syst. Sci., 23, 1059–1077, https://doi.org/10.5194/nhess-23-1059-2023, https://doi.org/10.5194/nhess-23-1059-2023, 2023
Short summary
Short summary
Soil wetness measurements are used for shallow landslide prediction; however, existing sites are often located in flat terrain. Here, we assessed the ability of monitoring sites at flat locations to detect critically saturated conditions compared to if they were situated at a landslide-prone location. We found that differences exist but that both sites could equally well distinguish critical from non-critical conditions for shallow landslide triggering if relative changes are considered.
Anne-Claire Billault-Roux, Gionata Ghiggi, Louis Jaffeux, Audrey Martini, Nicolas Viltard, and Alexis Berne
Atmos. Meas. Tech., 16, 911–940, https://doi.org/10.5194/amt-16-911-2023, https://doi.org/10.5194/amt-16-911-2023, 2023
Short summary
Short summary
Better understanding and modeling snowfall properties and processes is relevant to many fields, ranging from weather forecasting to aircraft safety. Meteorological radars can be used to gain insights into the microphysics of snowfall. In this work, we propose a new method to retrieve snowfall properties from measurements of radars with different frequencies. It relies on an original deep-learning framework, which incorporates knowledge of the underlying physics, i.e., electromagnetic scattering.
Bastian Bergfeld, Alec van Herwijnen, Grégoire Bobillier, Philipp L. Rosendahl, Philipp Weißgraeber, Valentin Adam, Jürg Dual, and Jürg Schweizer
Nat. Hazards Earth Syst. Sci., 23, 293–315, https://doi.org/10.5194/nhess-23-293-2023, https://doi.org/10.5194/nhess-23-293-2023, 2023
Short summary
Short summary
For a slab avalanche to release, the snowpack must facilitate crack propagation over large distances. Field measurements on crack propagation at this scale are very scarce. We performed a series of experiments, up to 10 m long, over a period of 10 weeks. Beside the temporal evolution of the mechanical properties of the snowpack, we found that crack speeds were highest for tests resulting in full propagation. Based on these findings, an index for self-sustained crack propagation is proposed.
Fabian Walter, Elias Hodel, Erik S. Mannerfelt, Kristen Cook, Michael Dietze, Livia Estermann, Michaela Wenner, Daniel Farinotti, Martin Fengler, Lukas Hammerschmidt, Flavia Hänsli, Jacob Hirschberg, Brian McArdell, and Peter Molnar
Nat. Hazards Earth Syst. Sci., 22, 4011–4018, https://doi.org/10.5194/nhess-22-4011-2022, https://doi.org/10.5194/nhess-22-4011-2022, 2022
Short summary
Short summary
Debris flows are dangerous sediment–water mixtures in steep terrain. Their formation takes place in poorly accessible terrain where instrumentation cannot be installed. Here we propose to monitor such source terrain with an autonomous drone for mapping sediments which were left behind by debris flows or may contribute to future events. Short flight intervals elucidate changes of such sediments, providing important information for landscape evolution and the likelihood of future debris flows.
Stephanie Mayer, Alec van Herwijnen, Frank Techel, and Jürg Schweizer
The Cryosphere, 16, 4593–4615, https://doi.org/10.5194/tc-16-4593-2022, https://doi.org/10.5194/tc-16-4593-2022, 2022
Short summary
Short summary
Information on snow instability is crucial for avalanche forecasting. We introduce a novel machine-learning-based method to assess snow instability from snow stratigraphy simulated with the snow cover model SNOWPACK. To develop the model, we compared observed and simulated snow profiles. Our model provides a probability of instability for every layer of a simulated snow profile, which allows detection of the weakest layer and assessment of its degree of instability with one single index.
Claudia Mignani, Lukas Zimmermann, Rigel Kivi, Alexis Berne, and Franz Conen
Atmos. Chem. Phys., 22, 13551–13568, https://doi.org/10.5194/acp-22-13551-2022, https://doi.org/10.5194/acp-22-13551-2022, 2022
Short summary
Short summary
We determined over the course of 8 winter months the phase of clouds associated with snowfall in Northern Finland using radiosondes and observations of ice particle habits at ground level. We found that precipitating clouds were extending from near ground to at least 2.7 km altitude and approximately three-quarters of them were likely glaciated. Possible moisture sources and ice formation processes are discussed.
Étienne Vignon, Lea Raillard, Christophe Genthon, Massimo Del Guasta, Andrew J. Heymsfield, Jean-Baptiste Madeleine, and Alexis Berne
Atmos. Chem. Phys., 22, 12857–12872, https://doi.org/10.5194/acp-22-12857-2022, https://doi.org/10.5194/acp-22-12857-2022, 2022
Short summary
Short summary
The near-surface atmosphere over the Antarctic Plateau is cold and pristine and resembles to a certain extent the high troposphere where cirrus clouds form. In this study, we use innovative humidity measurements at Concordia Station to study the formation of ice fogs at temperatures <−40°C. We provide observational evidence that ice fogs can form through the homogeneous freezing of solution aerosols, a common nucleation pathway for cirrus clouds.
Adam Emmer, Simon K. Allen, Mark Carey, Holger Frey, Christian Huggel, Oliver Korup, Martin Mergili, Ashim Sattar, Georg Veh, Thomas Y. Chen, Simon J. Cook, Mariana Correas-Gonzalez, Soumik Das, Alejandro Diaz Moreno, Fabian Drenkhan, Melanie Fischer, Walter W. Immerzeel, Eñaut Izagirre, Ramesh Chandra Joshi, Ioannis Kougkoulos, Riamsara Kuyakanon Knapp, Dongfeng Li, Ulfat Majeed, Stephanie Matti, Holly Moulton, Faezeh Nick, Valentine Piroton, Irfan Rashid, Masoom Reza, Anderson Ribeiro de Figueiredo, Christian Riveros, Finu Shrestha, Milan Shrestha, Jakob Steiner, Noah Walker-Crawford, Joanne L. Wood, and Jacob C. Yde
Nat. Hazards Earth Syst. Sci., 22, 3041–3061, https://doi.org/10.5194/nhess-22-3041-2022, https://doi.org/10.5194/nhess-22-3041-2022, 2022
Short summary
Short summary
Glacial lake outburst floods (GLOFs) have attracted increased research attention recently. In this work, we review GLOF research papers published between 2017 and 2021 and complement the analysis with research community insights gained from the 2021 GLOF conference we organized. The transdisciplinary character of the conference together with broad geographical coverage allowed us to identify progress, trends and challenges in GLOF research and outline future research needs and directions.
Christos Gatidis, Marc Schleiss, and Christine Unal
Atmos. Meas. Tech., 15, 4951–4969, https://doi.org/10.5194/amt-15-4951-2022, https://doi.org/10.5194/amt-15-4951-2022, 2022
Short summary
Short summary
Knowledge of the raindrop size distribution (DSD) is crucial for understanding rainfall microphysics and quantifying uncertainty in quantitative precipitation estimates. In this study a general overview of the DSD retrieval approach from a polarimetric radar is discussed, highlighting sensitivity to potential sources of errors, either directly linked to the radar measurements or indirectly through the critical modeling assumptions behind the method such as the shape–size (μ–Λ) relationship.
Alfonso Ferrone, Anne-Claire Billault-Roux, and Alexis Berne
Atmos. Meas. Tech., 15, 3569–3592, https://doi.org/10.5194/amt-15-3569-2022, https://doi.org/10.5194/amt-15-3569-2022, 2022
Short summary
Short summary
The Micro Rain Radar PRO (MRR-PRO) is a meteorological radar, with a relevant set of features for deployment in remote locations. We developed an algorithm, named ERUO, for the processing of its measurements of snowfall. The algorithm addresses typical issues of the raw spectral data, such as interference lines, but also improves the quality and sensitivity of the radar variables. ERUO has been evaluated over four different datasets collected in Antarctica and in the Swiss Jura.
Cristina Pérez-Guillén, Frank Techel, Martin Hendrick, Michele Volpi, Alec van Herwijnen, Tasko Olevski, Guillaume Obozinski, Fernando Pérez-Cruz, and Jürg Schweizer
Nat. Hazards Earth Syst. Sci., 22, 2031–2056, https://doi.org/10.5194/nhess-22-2031-2022, https://doi.org/10.5194/nhess-22-2031-2022, 2022
Short summary
Short summary
A fully data-driven approach to predicting the danger level for dry-snow avalanche conditions in Switzerland was developed. Two classifiers were trained using a large database of meteorological data, snow cover simulations, and danger levels. The models performed well throughout the Swiss Alps, reaching a performance similar to the current experience-based avalanche forecasts. This approach shows the potential to be a valuable supplementary decision support tool for assessing avalanche hazard.
Jeong-Su Ko, Kyo-Sun Sunny Lim, Kwonil Kim, Gyuwon Lee, Gregory Thompson, and Alexis Berne
Geosci. Model Dev., 15, 4529–4553, https://doi.org/10.5194/gmd-15-4529-2022, https://doi.org/10.5194/gmd-15-4529-2022, 2022
Short summary
Short summary
This study evaluates the performance of the four microphysics parameterizations, the WDM6, WDM7, Thompson, and Morrison schemes, in simulating snowfall events during the ICE-POP 2018 field campaign. Eight snowfall events are selected and classified into three categories (cold-low, warm-low, and air–sea interaction cases). The evaluation focuses on the simulated hydrometeors, microphysics budgets, wind fields, and precipitation using the measurement data.
Paraskevi Georgakaki, Georgia Sotiropoulou, Étienne Vignon, Anne-Claire Billault-Roux, Alexis Berne, and Athanasios Nenes
Atmos. Chem. Phys., 22, 1965–1988, https://doi.org/10.5194/acp-22-1965-2022, https://doi.org/10.5194/acp-22-1965-2022, 2022
Short summary
Short summary
The modelling study focuses on the importance of ice multiplication processes in orographic mixed-phase clouds, which is one of the least understood cloud types in the climate system. We show that the consideration of ice seeding and secondary ice production through ice–ice collisional breakup is essential for correct predictions of precipitation in mountainous terrain, with important implications for radiation processes.
Antoine Guillemot, Alec van Herwijnen, Eric Larose, Stephanie Mayer, and Laurent Baillet
The Cryosphere, 15, 5805–5817, https://doi.org/10.5194/tc-15-5805-2021, https://doi.org/10.5194/tc-15-5805-2021, 2021
Short summary
Short summary
Ambient noise correlation is a broadly used method in seismology to monitor tiny changes in subsurface properties. Some environmental forcings may influence this method, including snow. During one winter season, we studied this snow effect on seismic velocity of the medium, recorded by a pair of seismic sensors. We detected and modeled a measurable effect during early snowfalls: the fresh new snow layer modifies rigidity and density of the medium, thus decreasing the recorded seismic velocity.
Monika Feldmann, Urs Germann, Marco Gabella, and Alexis Berne
Weather Clim. Dynam., 2, 1225–1244, https://doi.org/10.5194/wcd-2-1225-2021, https://doi.org/10.5194/wcd-2-1225-2021, 2021
Short summary
Short summary
Mesocyclones are the rotating updraught of supercell thunderstorms that present a particularly hazardous subset of thunderstorms. A first-time characterisation of the spatiotemporal occurrence of mesocyclones in the Alpine region is presented, using 5 years of Swiss operational radar data. We investigate parallels to hailstorms, particularly the influence of large-scale flow, daily cycles and terrain. Improving understanding of mesocyclones is valuable for risk assessment and warning purposes.
Elena Leonarduzzi, Brian W. McArdell, and Peter Molnar
Hydrol. Earth Syst. Sci., 25, 5937–5950, https://doi.org/10.5194/hess-25-5937-2021, https://doi.org/10.5194/hess-25-5937-2021, 2021
Short summary
Short summary
Landslides are a dangerous natural hazard affecting alpine regions, calling for effective warning systems. Here we consider different approaches for the prediction of rainfall-induced shallow landslides at the regional scale, based on open-access datasets and operational hydrological forecasting systems. We find antecedent wetness useful to improve upon the classical rainfall thresholds and the resolution of the hydrological model used for its estimate to be a critical aspect.
Jussi Leinonen, Jacopo Grazioli, and Alexis Berne
Atmos. Meas. Tech., 14, 6851–6866, https://doi.org/10.5194/amt-14-6851-2021, https://doi.org/10.5194/amt-14-6851-2021, 2021
Short summary
Short summary
Measuring the shape, size and mass of a large number of snowflakes is a challenging task; it is hard to achieve in an automatic and instrumented manner. We present a method to retrieve these properties of individual snowflakes using as input a triplet of images/pictures automatically collected by a multi-angle snowflake camera (MASC) instrument. Our method, based on machine learning, is trained on artificially generated snowflakes and evaluated on 3D-printed snowflake replicas.
Marc Schwaerzel, Dominik Brunner, Fabian Jakub, Claudia Emde, Brigitte Buchmann, Alexis Berne, and Gerrit Kuhlmann
Atmos. Meas. Tech., 14, 6469–6482, https://doi.org/10.5194/amt-14-6469-2021, https://doi.org/10.5194/amt-14-6469-2021, 2021
Short summary
Short summary
NO2 maps from airborne imaging remote sensing often appear much smoother than one would expect from high-resolution model simulations of NO2 over cities, despite the small ground-pixel size of the sensors. Our case study over Zurich, using the newly implemented building module of the MYSTIC radiative transfer solver, shows that the 3D effect can explain part of the smearing and that building shadows cause a noticeable underestimation and noise in the measured NO2 columns.
Nora Helbig, Michael Schirmer, Jan Magnusson, Flavia Mäder, Alec van Herwijnen, Louis Quéno, Yves Bühler, Jeff S. Deems, and Simon Gascoin
The Cryosphere, 15, 4607–4624, https://doi.org/10.5194/tc-15-4607-2021, https://doi.org/10.5194/tc-15-4607-2021, 2021
Short summary
Short summary
The snow cover spatial variability in mountains changes considerably over the course of a snow season. In applications such as weather, climate and hydrological predictions the fractional snow-covered area is therefore an essential parameter characterizing how much of the ground surface in a grid cell is currently covered by snow. We present a seasonal algorithm and a spatiotemporal evaluation suggesting that the algorithm can be applied in other geographic regions by any snow model application.
Jacob Hirschberg, Alexandre Badoux, Brian W. McArdell, Elena Leonarduzzi, and Peter Molnar
Nat. Hazards Earth Syst. Sci., 21, 2773–2789, https://doi.org/10.5194/nhess-21-2773-2021, https://doi.org/10.5194/nhess-21-2773-2021, 2021
Short summary
Short summary
Debris-flow prediction is often based on rainfall thresholds, but uncertainty assessments are rare. We established rainfall thresholds using two approaches and find that 25 debris flows are needed for uncertainties to converge in an Alpine basin and that the suitable method differs for regional compared to local thresholds. Finally, we demonstrate the potential of a statistical learning algorithm to improve threshold performance. These findings are helpful for early warning system development.
Anna Špačková, Vojtěch Bareš, Martin Fencl, Marc Schleiss, Joël Jaffrain, Alexis Berne, and Jörg Rieckermann
Earth Syst. Sci. Data, 13, 4219–4240, https://doi.org/10.5194/essd-13-4219-2021, https://doi.org/10.5194/essd-13-4219-2021, 2021
Short summary
Short summary
An original dataset of microwave signal attenuation and rainfall variables was collected during 1-year-long field campaign. The monitored 38 GHz dual-polarized commercial microwave link with a short sampling resolution (4 s) was accompanied by five disdrometers and three rain gauges along its path. Antenna radomes were temporarily shielded for approximately half of the campaign period to investigate antenna wetting impacts.
Adrian Wicki, Per-Erik Jansson, Peter Lehmann, Christian Hauck, and Manfred Stähli
Hydrol. Earth Syst. Sci., 25, 4585–4610, https://doi.org/10.5194/hess-25-4585-2021, https://doi.org/10.5194/hess-25-4585-2021, 2021
Short summary
Short summary
Soil moisture information was shown to be valuable for landslide prediction. Soil moisture was simulated at 133 sites in Switzerland, and the temporal variability was compared to the regional occurrence of landslides. We found that simulated soil moisture is a good predictor for landslides, and that the forecast goodness is similar to using in situ measurements. This encourages the use of models for complementing existing soil moisture monitoring networks for regional landslide early warning.
Didier de Villiers, Marc Schleiss, Marie-Claire ten Veldhuis, Rolf Hut, and Nick van de Giesen
Atmos. Meas. Tech., 14, 5607–5623, https://doi.org/10.5194/amt-14-5607-2021, https://doi.org/10.5194/amt-14-5607-2021, 2021
Short summary
Short summary
Ground-based rainfall observations across the African continent are sparse. We present a new and inexpensive rainfall measuring instrument (the intervalometer) and use it to derive reasonably accurate rainfall rates. These are dependent on a fundamental assumption that is widely used in parameterisations of the rain drop size distribution. This assumption is tested and found to not apply for most raindrops but is still useful in deriving rainfall rates. The intervalometer shows good potential.
Bastian Bergfeld, Alec van Herwijnen, Benjamin Reuter, Grégoire Bobillier, Jürg Dual, and Jürg Schweizer
The Cryosphere, 15, 3539–3553, https://doi.org/10.5194/tc-15-3539-2021, https://doi.org/10.5194/tc-15-3539-2021, 2021
Short summary
Short summary
The modern picture of the snow slab avalanche release process involves a
dynamic crack propagation phasein which a whole slope becomes detached. The present work contains the first field methodology which provides the temporal and spatial resolution necessary to study this phase. We demonstrate the versatile capabilities and accuracy of our method by revealing intricate dynamics and present how to determine relevant characteristics of crack propagation such as crack speed.
Paraskevi Georgakaki, Aikaterini Bougiatioti, Jörg Wieder, Claudia Mignani, Fabiola Ramelli, Zamin A. Kanji, Jan Henneberger, Maxime Hervo, Alexis Berne, Ulrike Lohmann, and Athanasios Nenes
Atmos. Chem. Phys., 21, 10993–11012, https://doi.org/10.5194/acp-21-10993-2021, https://doi.org/10.5194/acp-21-10993-2021, 2021
Short summary
Short summary
Aerosol and cloud observations coupled with a droplet activation parameterization was used to investigate the aerosol–cloud droplet link in alpine mixed-phase clouds. Predicted droplet number, Nd, agrees with observations and never exceeds a characteristic “limiting droplet number”, Ndlim, which depends solely on σw. Nd becomes velocity limited when it is within 50 % of Ndlim. Identifying when dynamical changes control Nd variability is central for understanding aerosol–cloud interactions.
Noémie Planat, Josué Gehring, Étienne Vignon, and Alexis Berne
Atmos. Meas. Tech., 14, 4543–4564, https://doi.org/10.5194/amt-14-4543-2021, https://doi.org/10.5194/amt-14-4543-2021, 2021
Short summary
Short summary
We implement a new method to identify microphysical processes during cold precipitation events based on the sign of the vertical gradient of polarimetric radar variables. We analytically asses the meteorological conditions for this vertical analysis to hold, apply it on two study cases and successfully compare it with other methods informing about the microphysics. Finally, we are able to obtain the main vertical structure and characteristics of the different processes during these study cases.
Daniel Wolfensberger, Marco Gabella, Marco Boscacci, Urs Germann, and Alexis Berne
Atmos. Meas. Tech., 14, 3169–3193, https://doi.org/10.5194/amt-14-3169-2021, https://doi.org/10.5194/amt-14-3169-2021, 2021
Short summary
Short summary
In this work, we present a novel quantitative precipitation estimation method for Switzerland that uses random forests, an ensemble-based machine learning technique. The estimator has been trained with a database of 4 years of ground and radar observations. The results of an in-depth evaluation indicate that, compared with the more classical method in use at MeteoSwiss, this novel estimator is able to reduce both the average error and bias of the predictions.
Surya Gupta, Tomislav Hengl, Peter Lehmann, Sara Bonetti, and Dani Or
Earth Syst. Sci. Data, 13, 1593–1612, https://doi.org/10.5194/essd-13-1593-2021, https://doi.org/10.5194/essd-13-1593-2021, 2021
Andreas Kääb, Mylène Jacquemart, Adrien Gilbert, Silvan Leinss, Luc Girod, Christian Huggel, Daniel Falaschi, Felipe Ugalde, Dmitry Petrakov, Sergey Chernomorets, Mikhail Dokukin, Frank Paul, Simon Gascoin, Etienne Berthier, and Jeffrey S. Kargel
The Cryosphere, 15, 1751–1785, https://doi.org/10.5194/tc-15-1751-2021, https://doi.org/10.5194/tc-15-1751-2021, 2021
Short summary
Short summary
Hardly recognized so far, giant catastrophic detachments of glaciers are a rare but great potential for loss of lives and massive damage in mountain regions. Several of the events compiled in our study involve volumes (up to 100 million m3 and more), avalanche speeds (up to 300 km/h), and reaches (tens of kilometres) that are hard to imagine. We show that current climate change is able to enhance associated hazards. For the first time, we elaborate a set of factors that could cause these events.
Anne-Claire Billault-Roux and Alexis Berne
Atmos. Meas. Tech., 14, 2749–2769, https://doi.org/10.5194/amt-14-2749-2021, https://doi.org/10.5194/amt-14-2749-2021, 2021
Short summary
Short summary
In the context of climate studies, understanding the role of clouds on a global and local scale is of paramount importance. One aspect is the quantification of cloud liquid water, which impacts the Earth’s radiative balance. This is routinely achieved with radiometers operating at different frequencies. In this study, we propose an approach that uses a single-frequency radiometer and that can be applied at any location to retrieve vertically integrated quantities of liquid water and water vapor.
Josué Gehring, Alfonso Ferrone, Anne-Claire Billault-Roux, Nikola Besic, Kwang Deuk Ahn, GyuWon Lee, and Alexis Berne
Earth Syst. Sci. Data, 13, 417–433, https://doi.org/10.5194/essd-13-417-2021, https://doi.org/10.5194/essd-13-417-2021, 2021
Short summary
Short summary
This article describes a dataset of precipitation and cloud measurements collected from November 2017 to March 2018 in Pyeongchang, South Korea. The dataset includes weather radar data and images of snowflakes. It allows for studying the snowfall intensity; wind conditions; and shape, size and fall speed of snowflakes. Classifications of the types of snowflakes show that aggregates of ice crystals were dominant. This dataset represents a unique opportunity to study snowfall in this region.
Mengyuan Mu, Martin G. De Kauwe, Anna M. Ukkola, Andy J. Pitman, Teresa E. Gimeno, Belinda E. Medlyn, Dani Or, Jinyan Yang, and David S. Ellsworth
Hydrol. Earth Syst. Sci., 25, 447–471, https://doi.org/10.5194/hess-25-447-2021, https://doi.org/10.5194/hess-25-447-2021, 2021
Short summary
Short summary
Land surface model (LSM) is a critical tool to study land responses to droughts and heatwaves, but lacking comprehensive observations limited past model evaluations. Here we use a novel dataset at a water-limited site, evaluate a typical LSM with a range of competing model hypotheses widely used in LSMs and identify marked uncertainty due to the differing process assumptions. We show the extensive observations constrain model processes and allow better simulated land responses to these extremes.
Michaela Wenner, Clément Hibert, Alec van Herwijnen, Lorenz Meier, and Fabian Walter
Nat. Hazards Earth Syst. Sci., 21, 339–361, https://doi.org/10.5194/nhess-21-339-2021, https://doi.org/10.5194/nhess-21-339-2021, 2021
Short summary
Short summary
Mass movements constitute a risk to property and human life. In this study we use machine learning to automatically detect and classify slope failure events using ground vibrations. We explore the influence of non-ideal though commonly encountered conditions: poor network coverage, small number of events, and low signal-to-noise ratios. Our approach enables us to detect the occurrence of rare events of high interest in a large data set of more than a million windowed seismic signals.
Georgia Sotiropoulou, Étienne Vignon, Gillian Young, Hugh Morrison, Sebastian J. O'Shea, Thomas Lachlan-Cope, Alexis Berne, and Athanasios Nenes
Atmos. Chem. Phys., 21, 755–771, https://doi.org/10.5194/acp-21-755-2021, https://doi.org/10.5194/acp-21-755-2021, 2021
Short summary
Short summary
Summer clouds have a significant impact on the radiation budget of the Antarctic surface and thus on ice-shelf melting. However, these are poorly represented in climate models due to errors in their microphysical structure, including the number of ice crystals that they contain. We show that breakup from ice particle collisions can substantially magnify the ice crystal number concentration with significant implications for surface radiation. This process is currently missing in climate models.
Bettina Richter, Alec van Herwijnen, Mathias W. Rotach, and Jürg Schweizer
Nat. Hazards Earth Syst. Sci., 20, 2873–2888, https://doi.org/10.5194/nhess-20-2873-2020, https://doi.org/10.5194/nhess-20-2873-2020, 2020
Short summary
Short summary
We investigated the sensitivity of modeled snow instability to uncertainties in meteorological input, typically found in complex terrain. The formation of the weak layer was very robust due to the long dry period, indicated by a widespread avalanche problem. Once a weak layer has formed, precipitation mostly determined slab and weak layer properties and hence snow instability. When spatially assessing snow instability for avalanche forecasting, accurate precipitation patterns have to be known.
Louis Quéno, Charles Fierz, Alec van Herwijnen, Dylan Longridge, and Nander Wever
The Cryosphere, 14, 3449–3464, https://doi.org/10.5194/tc-14-3449-2020, https://doi.org/10.5194/tc-14-3449-2020, 2020
Short summary
Short summary
Deep ice layers may form in the snowpack due to preferential water flow with impacts on the snowpack mechanical, hydrological and thermodynamical properties. We studied their formation and evolution at a high-altitude alpine site, combining a comprehensive observation dataset at a daily frequency (with traditional snowpack observations, penetration resistance and radar measurements) and detailed snowpack modeling, including a new parameterization of ice formation in the 1-D SNOWPACK model.
Marc Schwaerzel, Claudia Emde, Dominik Brunner, Randulph Morales, Thomas Wagner, Alexis Berne, Brigitte Buchmann, and Gerrit Kuhlmann
Atmos. Meas. Tech., 13, 4277–4293, https://doi.org/10.5194/amt-13-4277-2020, https://doi.org/10.5194/amt-13-4277-2020, 2020
Short summary
Short summary
Horizontal homogeneity is often assumed for trace gases remote sensing, although it is not valid where trace gas concentrations have high spatial variability, e.g., in cities. We show the importance of 3D effects for MAX-DOAS and airborne imaging spectrometers using 3D-box air mass factors implemented in the MYSTIC radiative transfer solver. In both cases, 3D information is invaluable for interpreting the measurements, as not considering 3D effects can lead to misinterpretation of measurements.
Christian Huggel, Mark Carey, Adam Emmer, Holger Frey, Noah Walker-Crawford, and Ivo Wallimann-Helmer
Nat. Hazards Earth Syst. Sci., 20, 2175–2193, https://doi.org/10.5194/nhess-20-2175-2020, https://doi.org/10.5194/nhess-20-2175-2020, 2020
Short summary
Short summary
There is increasing interest and need to analyze the contribution of anthropogenic climate change to negative impacts of climate change. We study the case of glacial lake Palcacocha in Peru, which poses a significant flood risk to the city of Huaraz. We found that greenhouse gas emissions; strong urbanization processes without appropriate land use planning; and social, cultural, political, and institutional factors all contribute to the existing flood risk.
Marc Schleiss
Hydrol. Earth Syst. Sci., 24, 3699–3723, https://doi.org/10.5194/hess-24-3699-2020, https://doi.org/10.5194/hess-24-3699-2020, 2020
Short summary
Short summary
A new way to downscale rainfall fields based on the notion of equal-volume areas (EVAs) is proposed. Experiments conducted on 100 rainfall events in the Netherlands show that the EVA method outperforms classical methods based on fixed grid cell sizes, producing fields with more realistic spatial structures. The main novelty of the method lies in its adaptive sampling strategy, which avoids many of the mathematical challenges associated with the presence of zero rainfall values.
Frank Techel, Kurt Winkler, Matthias Walcher, Alec van Herwijnen, and Jürg Schweizer
Nat. Hazards Earth Syst. Sci., 20, 1941–1953, https://doi.org/10.5194/nhess-20-1941-2020, https://doi.org/10.5194/nhess-20-1941-2020, 2020
Short summary
Short summary
Snow instability tests, like the extended column test (ECT), provide valuable information regarding point snow instability. A large data set of ECT – together with information on slope instability – was explored. The findings clearly show that combining information regarding propagation propensity and fracture initiation provided the best correlation with slope instability. A new four-class stability interpretation scheme is proposed for ECT results.
Leonie Kiewiet, Ilja van Meerveld, Manfred Stähli, and Jan Seibert
Hydrol. Earth Syst. Sci., 24, 3381–3398, https://doi.org/10.5194/hess-24-3381-2020, https://doi.org/10.5194/hess-24-3381-2020, 2020
Short summary
Short summary
The sources of stream water are important, for instance, for predicting floods. The connectivity between streams and different (ground-)water sources can change during rain events, which affects the stream water composition. We investigated this for stream water sampled during four events and found that stream water came from different sources. The stream water composition changed gradually, and we showed that changes in solute concentrations could be partly linked to changes in connectivity.
Josué Gehring, Annika Oertel, Étienne Vignon, Nicolas Jullien, Nikola Besic, and Alexis Berne
Atmos. Chem. Phys., 20, 7373–7392, https://doi.org/10.5194/acp-20-7373-2020, https://doi.org/10.5194/acp-20-7373-2020, 2020
Short summary
Short summary
In this study, we analyse how large-scale meteorological conditions influenced the local enhancement of snowfall during an intense precipitation event in Korea. We used atmospheric models, weather radars and snowflake images. We found out that a rising airstream in the warm sector of the low pressure system associated to this event influenced the evolution of snowfall. This study highlights the importance of interactions between large and local scales in this intense precipitation event.
Marc Schleiss, Jonas Olsson, Peter Berg, Tero Niemi, Teemu Kokkonen, Søren Thorndahl, Rasmus Nielsen, Jesper Ellerbæk Nielsen, Denica Bozhinova, and Seppo Pulkkinen
Hydrol. Earth Syst. Sci., 24, 3157–3188, https://doi.org/10.5194/hess-24-3157-2020, https://doi.org/10.5194/hess-24-3157-2020, 2020
Short summary
Short summary
A multinational assessment of radar's ability to capture heavy rain events is conducted. In total, six different radar products in Denmark, the Netherlands, Finland and Sweden were considered. Results show a fair agreement, with radar underestimating by 17 %-44 % on average compared with gauges. Despite being adjusted for bias, five of six radar products still exhibited strong conditional biases with intensities of 1–2% per mm/h. Median peak intensity bias was significantly higher, reaching 44 %–67%.
Tjalling de Haas, Wiebe Nijland, Brian W. McArdell, and Maurice W. M. L. Kalthof
Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurf-2020-43, https://doi.org/10.5194/esurf-2020-43, 2020
Preprint withdrawn
Short summary
Short summary
High-quality digital surface models generated by automated photogrammetry techniques on aerial images captured with drones are increasingly used for topographic change detection. We demonstrate that co-aligning the images from multiple surveys strongly enhances the accuracy of topographic change detection. We find that co-alignment leads to particularly large improvements in the accuracy of poorly aligned surveys that have severe offsets when processed individually.
Neige Calonne, Bettina Richter, Henning Löwe, Cecilia Cetti, Judith ter Schure, Alec Van Herwijnen, Charles Fierz, Matthias Jaggi, and Martin Schneebeli
The Cryosphere, 14, 1829–1848, https://doi.org/10.5194/tc-14-1829-2020, https://doi.org/10.5194/tc-14-1829-2020, 2020
Short summary
Short summary
During winter 2015–2016, the standard program to monitor the structure and stability of the snowpack at Weissflujoch, Swiss Alps, was complemented by additional measurements to compare between various traditional and newly developed techniques. Snow micro-penetrometer measurements allowed monitoring of the evolution of the snowpack's internal structure at a daily resolution throughout the winter. We show the potential of such high-resolution data for detailed evaluations of snowpack models.
Jussi Leinonen and Alexis Berne
Atmos. Meas. Tech., 13, 2949–2964, https://doi.org/10.5194/amt-13-2949-2020, https://doi.org/10.5194/amt-13-2949-2020, 2020
Short summary
Short summary
The appearance of snowflakes provides a signature of the atmospheric processes that created them. To get this information from large numbers of snowflake images, automated analysis using computer image recognition is needed. In this work, we use a neural network that learns the structure of the snowflake images to divide a snowflake dataset into classes corresponding to different sizes and structures. Unlike with most comparable methods, only minimal input from a human expert is needed.
Emanuele Marchetti, Alec van Herwijnen, Marc Christen, Maria Cristina Silengo, and Giulia Barfucci
Earth Surf. Dynam., 8, 399–411, https://doi.org/10.5194/esurf-8-399-2020, https://doi.org/10.5194/esurf-8-399-2020, 2020
Short summary
Short summary
We present infrasonic and seismic array data of a powder snow avalanche, that was released on 5 February 2016, in the Dischma valley nearby Davos, Switzerland. Combining information derived from both arrays, we show how infrasound and seismic energy are radiated from different sources acting along the path. Moreover, infrasound transmits to the ground and affects the recorded seismic signal. Results highlight the benefits of combined seismo-acoustic array analyses for monitoring and research.
Nicolas Jullien, Étienne Vignon, Michael Sprenger, Franziska Aemisegger, and Alexis Berne
The Cryosphere, 14, 1685–1702, https://doi.org/10.5194/tc-14-1685-2020, https://doi.org/10.5194/tc-14-1685-2020, 2020
Short summary
Short summary
Although snowfall is the main input of water to the Antarctic ice sheet, snowflakes are often evaporated by dry and fierce winds near the surface of the continent. The amount of snow that actually reaches the ground is therefore considerably reduced. By analyzing the position of cyclones and fronts as well as by back-tracing the atmospheric moisture pathway towards Antarctica, this study explains in which meteorological conditions snowfall is either completely evaporated or reaches the ground.
Floor van den Heuvel, Loris Foresti, Marco Gabella, Urs Germann, and Alexis Berne
Atmos. Meas. Tech., 13, 2481–2500, https://doi.org/10.5194/amt-13-2481-2020, https://doi.org/10.5194/amt-13-2481-2020, 2020
Short summary
Short summary
In areas with reduced visibility at the ground level, radar precipitation measurements higher up in the atmosphere need to be extrapolated to the ground and be corrected for the vertical change (i.e. growth and transformation) of precipitation. This study proposes a method based on hydrometeor proportions and machine learning (ML) to apply these corrections at smaller spatiotemporal scales. In comparison with existing techniques, the ML methods can make predictions from higher altitudes.
Mathieu Schaer, Christophe Praz, and Alexis Berne
The Cryosphere, 14, 367–384, https://doi.org/10.5194/tc-14-367-2020, https://doi.org/10.5194/tc-14-367-2020, 2020
Short summary
Short summary
Wind and precipitation often occur together, making the distinction between particles coming from the atmosphere and those blown by the wind difficult. This is however a crucial task to accurately close the surface mass balance. We propose an algorithm based on Gaussian mixture models to separate blowing snow and precipitation in images collected by a Multi-Angle Snowflake Camera (MASC). The algorithm is trained and (positively) evaluated using data collected in the Swiss Alps and in Antarctica.
Grégoire Bobillier, Bastian Bergfeld, Achille Capelli, Jürg Dual, Johan Gaume, Alec van Herwijnen, and Jürg Schweizer
The Cryosphere, 14, 39–49, https://doi.org/10.5194/tc-14-39-2020, https://doi.org/10.5194/tc-14-39-2020, 2020
Bettina Richter, Jürg Schweizer, Mathias W. Rotach, and Alec van Herwijnen
The Cryosphere, 13, 3353–3366, https://doi.org/10.5194/tc-13-3353-2019, https://doi.org/10.5194/tc-13-3353-2019, 2019
Short summary
Short summary
Information on snow stability is important for avalanche forecasting. To improve the stability estimation in the snow cover model SNOWPACK, we suggested an improved parameterization for the critical crack length. We compared 3 years of field data to SNOWPACK simulations. The match between observed and modeled critical crack lengths greatly improved, and critical weak layers appear more prominently in the modeled vertical profile of critical crack length.
Matthias Heck, Alec van Herwijnen, Conny Hammer, Manuel Hobiger, Jürg Schweizer, and Donat Fäh
Earth Surf. Dynam., 7, 491–503, https://doi.org/10.5194/esurf-7-491-2019, https://doi.org/10.5194/esurf-7-491-2019, 2019
Short summary
Short summary
We used continuous seismic data from two small aperture geophone arrays deployed in the region above Davos in the eastern Swiss Alps to develop a machine learning workflow to automatically identify signals generated by snow avalanches. Our results suggest that the method presented could be used to identify major avalanche periods and highlight the importance of array processing techniques for the automatic classification of avalanches in seismic data.
Étienne Vignon, Olivier Traullé, and Alexis Berne
Atmos. Chem. Phys., 19, 4659–4683, https://doi.org/10.5194/acp-19-4659-2019, https://doi.org/10.5194/acp-19-4659-2019, 2019
Short summary
Short summary
The future sea-level rise will depend on how much the Antarctic ice sheet gain – via precipitation – or loose mass. The simulation of precipitation by numerical models used for projections depends on the representation of the atmospheric circulation over and around Antarctica. Using daily measurements from balloon soundings at nine Antarctic stations, this study characterizes the structure of the atmosphere over the Antarctic coast and its representation in atmospheric simulations.
Florentin Lemonnier, Jean-Baptiste Madeleine, Chantal Claud, Christophe Genthon, Claudio Durán-Alarcón, Cyril Palerme, Alexis Berne, Niels Souverijns, Nicole van Lipzig, Irina V. Gorodetskaya, Tristan L'Ecuyer, and Norman Wood
The Cryosphere, 13, 943–954, https://doi.org/10.5194/tc-13-943-2019, https://doi.org/10.5194/tc-13-943-2019, 2019
Short summary
Short summary
Evaluation of the vertical precipitation rate profiles of CloudSat radar by comparison with two surface-based micro-rain radars (MRR) located at two antarctic stations gives a near-perfect correlation between both datasets, even though climatic and geographic conditions are different for the stations. A better understanding and reassessment of CloudSat uncertainties ranging from −13 % up to +22 % confirms the robustness of the CloudSat retrievals of snowfall over Antarctica.
Claudio Durán-Alarcón, Brice Boudevillain, Christophe Genthon, Jacopo Grazioli, Niels Souverijns, Nicole P. M. van Lipzig, Irina V. Gorodetskaya, and Alexis Berne
The Cryosphere, 13, 247–264, https://doi.org/10.5194/tc-13-247-2019, https://doi.org/10.5194/tc-13-247-2019, 2019
Short summary
Short summary
Precipitation is the main input in the surface mass balance of the Antarctic ice sheet, but it is still poorly understood due to a lack of observations in this region. We analyzed the vertical structure of the precipitation using multiyear observation of vertically pointing micro rain radars (MRRs) at two stations located in East Antarctica. The use of MRRs showed the potential to study the effect of climatology and hydrometeor microphysics on the vertical structure of Antarctic precipitation.
Niels Souverijns, Alexandra Gossart, Stef Lhermitte, Irina V. Gorodetskaya, Jacopo Grazioli, Alexis Berne, Claudio Duran-Alarcon, Brice Boudevillain, Christophe Genthon, Claudio Scarchilli, and Nicole P. M. van Lipzig
The Cryosphere, 12, 3775–3789, https://doi.org/10.5194/tc-12-3775-2018, https://doi.org/10.5194/tc-12-3775-2018, 2018
Short summary
Short summary
Snowfall observations over Antarctica are scarce and currently limited to information from the CloudSat satellite. Here, a first evaluation of the CloudSat snowfall record is performed using observations of ground-based precipitation radars. Results indicate an accurate representation of the snowfall climatology over Antarctica, despite the low overpass frequency of the satellite, outperforming state-of-the-art model estimates. Individual snowfall events are however not well represented.
Franziska Gerber, Nikola Besic, Varun Sharma, Rebecca Mott, Megan Daniels, Marco Gabella, Alexis Berne, Urs Germann, and Michael Lehning
The Cryosphere, 12, 3137–3160, https://doi.org/10.5194/tc-12-3137-2018, https://doi.org/10.5194/tc-12-3137-2018, 2018
Short summary
Short summary
A comparison of winter precipitation variability in operational radar measurements and high-resolution simulations reveals that large-scale variability is well captured by the model, depending on the event. Precipitation variability is driven by topography and wind. A good portion of small-scale variability is captured at the highest resolution. This is essential to address small-scale precipitation processes forming the alpine snow seasonal snow cover – an important source of water.
Floor van den Heuvel, Marco Gabella, Urs Germann, and Alexis Berne
Atmos. Meas. Tech., 11, 5181–5198, https://doi.org/10.5194/amt-11-5181-2018, https://doi.org/10.5194/amt-11-5181-2018, 2018
Short summary
Short summary
The paper aims at characterising and quantifying the spatio-temporal variability of the melting layer (ML; transition zone from solid to liquid precipitation). A method based on the Fourier transform is found to accurately describe different ML signatures. Hence, it is applied to characterise the ML variability in a relatively flat area and in an inner Alpine valley in Switzerland, where the variability at smaller spatial scales is found to be relatively more important.
Christophe Genthon, Alexis Berne, Jacopo Grazioli, Claudio Durán Alarcón, Christophe Praz, and Brice Boudevillain
Earth Syst. Sci. Data, 10, 1605–1612, https://doi.org/10.5194/essd-10-1605-2018, https://doi.org/10.5194/essd-10-1605-2018, 2018
Short summary
Short summary
Antarctica suffers from a severe shortage of in situ observations of precipitation. The APRES3 program contributes to improving observation from both the surface and from space. A field campaign with various instruments was deployed at the coast of Adélie Land, with an intensive observing period in austral summer 2015–16, then continuous radar monitoring through 2016 and beyond. This paper provides a compact presentation of the APRES3 dataset, which is now made open to the scientific community.
Nikola Besic, Josué Gehring, Christophe Praz, Jordi Figueras i Ventura, Jacopo Grazioli, Marco Gabella, Urs Germann, and Alexis Berne
Atmos. Meas. Tech., 11, 4847–4866, https://doi.org/10.5194/amt-11-4847-2018, https://doi.org/10.5194/amt-11-4847-2018, 2018
Short summary
Short summary
In this paper we propose an innovative approach for hydrometeor de-mixing, i.e., to identify and quantify the presence of mixtures of different hydrometeor types in a radar sampling volume. It is a bin-based approach, inspired by conventional decomposition methods and evaluated using C- and X-band radar measurements compared with synchronous ground observations. The paper also investigates the potential influence of incoherency in the backscattering from hydrometeor mixtures in a radar volume.
Milad Aminzadeh, Peter Lehmann, and Dani Or
Hydrol. Earth Syst. Sci., 22, 4015–4032, https://doi.org/10.5194/hess-22-4015-2018, https://doi.org/10.5194/hess-22-4015-2018, 2018
Short summary
Short summary
Significant evaporative losses from local water reservoirs in arid regions exacerbate water shortages during dry spells. We propose a systematic approach for modeling energy balance and fluxes from covered water bodies using self-assembling floating elements, considering cover properties and local conditions. The study will provide a scientific and generalized basis for designing and implementing this important water conservation strategy to assist with its adaptation in various arid regions.
Fanny Jeanneret, Giovanni Martucci, Simon Pinnock, and Alexis Berne
Atmos. Meas. Tech., 11, 4153–4170, https://doi.org/10.5194/amt-11-4153-2018, https://doi.org/10.5194/amt-11-4153-2018, 2018
Short summary
Short summary
Above mountainous regions, satellites may have difficulty in discriminating snow from clouds: this study proposes a new method that combines different ground-based measurements to assess the sky cloudiness with high temporal resolution. The method's output is used as input to a model capable of identifying false satellite cloud detections. Results show that 62 ± 13 % of these false detections can be identified by the model when applied to the AVHRR-PM and MODIS Aqua data sets of the Cloud_cci.
Marc Schleiss
Earth Syst. Dynam., 9, 955–968, https://doi.org/10.5194/esd-9-955-2018, https://doi.org/10.5194/esd-9-955-2018, 2018
Short summary
Short summary
The present study aims at explaining how intermittency (i.e., the alternation of dry and rainy periods) affects the rate at which precipitation extremes increase with temperature. Using high-resolution rainfall data from 99 stations in the United States, we show that at scales beyond a few hours, intermittency causes rainfall extremes to deviate substantially from Clausius–Clapeyron. A new model is proposed to better represent and predict these changes across scales.
Daniel Wolfensberger and Alexis Berne
Atmos. Meas. Tech., 11, 3883–3916, https://doi.org/10.5194/amt-11-3883-2018, https://doi.org/10.5194/amt-11-3883-2018, 2018
Short summary
Short summary
This work presents a polarimetric forward operator for the COSMO weather prediction model. This tool is able to simulate radar observables from the state of the atmosphere simulated by the model, taking into account most physical aspects of radar beam propagation and backscattering. This operator was validated with a large dataset of radar observations from several instruments and it was shown that is able to simulate a realistic radar signature in liquid precipitation.
Stephan Harrison, Jeffrey S. Kargel, Christian Huggel, John Reynolds, Dan H. Shugar, Richard A. Betts, Adam Emmer, Neil Glasser, Umesh K. Haritashya, Jan Klimeš, Liam Reinhardt, Yvonne Schaub, Andy Wiltshire, Dhananjay Regmi, and Vít Vilímek
The Cryosphere, 12, 1195–1209, https://doi.org/10.5194/tc-12-1195-2018, https://doi.org/10.5194/tc-12-1195-2018, 2018
Short summary
Short summary
Most mountain glaciers have receded throughout the last century in response to global climate change. This recession produces a range of natural hazards including glacial lake outburst floods (GLOFs). We have produced the first global inventory of GLOFs associated with the failure of moraine dams and show, counterintuitively, that these have reduced in frequency over recent decades. In this paper we explore the reasons for this pattern.
Matthias Heck, Conny Hammer, Alec van Herwijnen, Jürg Schweizer, and Donat Fäh
Nat. Hazards Earth Syst. Sci., 18, 383–396, https://doi.org/10.5194/nhess-18-383-2018, https://doi.org/10.5194/nhess-18-383-2018, 2018
Short summary
Short summary
In this study we use hidden Markov models, a machine learning algorithm to automatically identify avalanche events in a continuous seismic data set recorded during the winter 2010. With additional post processing steps, we detected around 70 avalanche events. Although not every detection could be confirmed as an avalanche, we clearly identified the two main avalanche periods of the winter season 2010 in our classification results.
Christian Bouwens, Marie-Claire ten Veldhuis, Marc Schleiss, Xin Tian, and Jerôme Schepers
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-751, https://doi.org/10.5194/hess-2017-751, 2018
Revised manuscript not accepted
Short summary
Short summary
Urban drainage systems are challenged by both urbanization and climate change, intensifying flooding impacts by rainfall. We performed this study to better understand and predict this process. The paper provides an approach to analyze the functioning of an urban drainage system without the need to run hydrodynamic models. Rainfall thresholds for urban flood prediction were derived, which surprisingly are only approximately half of the theoretical drainage system design capacity.
Daniel Wolfensberger, Auguste Gires, Ioulia Tchiguirinskaia, Daniel Schertzer, and Alexis Berne
Atmos. Chem. Phys., 17, 14253–14273, https://doi.org/10.5194/acp-17-14253-2017, https://doi.org/10.5194/acp-17-14253-2017, 2017
Short summary
Short summary
Precipitation intensities simulated by the COSMO weather prediction model are compared to radar observations over a range of spatial and temporal scales using the universal multifractal framework. Our results highlight the strong influence of meteorological and topographical features on the multifractal characteristics of precipitation. Moreover, the influence of the subgrid parameterizations of COSMO is clearly visible by a break in the scaling properties that is absent from the radar data.
Minsu Kim and Dani Or
Biogeosciences, 14, 5403–5424, https://doi.org/10.5194/bg-14-5403-2017, https://doi.org/10.5194/bg-14-5403-2017, 2017
Short summary
Short summary
We report a mechanistic model for linking biophysical and chemical processes in Cyanobacterial crusts comprised of trophically interacting photoautotrophs, aerobic and anaerobic heterotrophs, and nitrifiers. The biocrust model captures salient aspects of microbial activity and community organisation in response to diurnal cycles of light and temperature. The framework offers new mechanistic insights into a host of highly dynamic and spatially resolved processes shaping biogeochemical fluxes.
Albrecht von Boetticher, Jens M. Turowski, Brian W. McArdell, Dieter Rickenmann, Marcel Hürlimann, Christian Scheidl, and James W. Kirchner
Geosci. Model Dev., 10, 3963–3978, https://doi.org/10.5194/gmd-10-3963-2017, https://doi.org/10.5194/gmd-10-3963-2017, 2017
Short summary
Short summary
The open-source fluid dynamic solver presented in v. Boetticher et al. (2016) combines a Coulomb viscosplastic rheological model with a Herschel–Bulkley model based on material properties for 3-D debris flow simulations. Here, we validate the solver and illustrate the model sensitivity to water content, channel curvature, content of fine material and channel bed roughness. We simulate both laboratory-scale and large-scale debris-flow experiments, using only one of the two calibration parameters.
Jacopo Grazioli, Christophe Genthon, Brice Boudevillain, Claudio Duran-Alarcon, Massimo Del Guasta, Jean-Baptiste Madeleine, and Alexis Berne
The Cryosphere, 11, 1797–1811, https://doi.org/10.5194/tc-11-1797-2017, https://doi.org/10.5194/tc-11-1797-2017, 2017
Short summary
Short summary
We present medium and long-term measurements of precipitation in a coastal region of Antarctica. These measurements are among the first of their kind on the Antarctic continent and combine remote sensing with in situ observations. The benefits of this synergy are demonstrated and the lessons learned from this measurements, which are still ongoing, are very important for the creation of similar observatories elsewhere on the continent.
Timothy H. Raupach and Alexis Berne
Atmos. Meas. Tech., 10, 2573–2594, https://doi.org/10.5194/amt-10-2573-2017, https://doi.org/10.5194/amt-10-2573-2017, 2017
Short summary
Short summary
The raindrop size distribution (DSD) describes the microstructure of rain. It is required knowledge for weather radar applications and has broad applicability to studies of rainfall processes, including weather models and rain retrieval algorithms. We present a new technique for estimating the DSD from polarimetric radar data. The new method was tested in three different domains, and its performance was found to be similar to and often better than an an existing DSD retrieval method.
Stanislaus J. Schymanski, Daniel Breitenstein, and Dani Or
Hydrol. Earth Syst. Sci., 21, 3377–3400, https://doi.org/10.5194/hess-21-3377-2017, https://doi.org/10.5194/hess-21-3377-2017, 2017
Short summary
Short summary
Leaf transpiration and energy exchange are coupled processes at the small scale that have strong effects on the water cycle and climate at the large scale. In this technical note, we present a novel experimental set-up that enables detailed study of these coupled processes in the laboratory under controlled conditions. Results document the abilities of the experimental set-up to confirm or challenge our understanding of these processes.
Fabian Walter, Arnaud Burtin, Brian W. McArdell, Niels Hovius, Bianca Weder, and Jens M. Turowski
Nat. Hazards Earth Syst. Sci., 17, 939–955, https://doi.org/10.5194/nhess-17-939-2017, https://doi.org/10.5194/nhess-17-939-2017, 2017
Short summary
Short summary
Debris flows are naturally occuring mass motion events, which mobilize loose material in steep Alpine torrents. The destructive potential of debris flows is well known and demands early warning. Here we apply the amplitude source location (ASL) method to seismic ground vibrations induced by a debris flow event in Switzerland. The method efficiently detects the initiation of the event and traces its front propagation down the torrent channel.
Florian Frank, Brian W. McArdell, Nicole Oggier, Patrick Baer, Marc Christen, and Andreas Vieli
Nat. Hazards Earth Syst. Sci., 17, 801–815, https://doi.org/10.5194/nhess-17-801-2017, https://doi.org/10.5194/nhess-17-801-2017, 2017
Short summary
Short summary
This study describes a sensitivity analysis of the RAMMS debris-flow entrainment model, which is intended to help solve problems related to predicting the runout of debris flows. The results indicate that the entrainment model predicts plausible erosion volumes in comparison with field data. These eroded volumes are sensitive to the initial landslide volume, suggesting that this tool may be useful for both reconstruction of historical events and modeling of debris flow scenarios.
Marie-Claire ten Veldhuis and Marc Schleiss
Hydrol. Earth Syst. Sci., 21, 1991–2013, https://doi.org/10.5194/hess-21-1991-2017, https://doi.org/10.5194/hess-21-1991-2017, 2017
Short summary
Short summary
In this paper we analysed flow measurements from 17 watersheds in a (semi-)urban region, to characterise flow patterns according to basin features. Instead of sampling flows at fixed time intervals, we looked at how fast given amounts of flow were accumulated. By doing so, we could identify patterns of flow regulation in urban streams and quantify flashiness of hydrological response. We were able to show that in this region, higher urbanisation was clearly associated with lower basin flashiness.
Christophe Praz, Yves-Alain Roulet, and Alexis Berne
Atmos. Meas. Tech., 10, 1335–1357, https://doi.org/10.5194/amt-10-1335-2017, https://doi.org/10.5194/amt-10-1335-2017, 2017
Short summary
Short summary
The Multi-Angle Snowflake Camera (MASC) provides high-resolution pictures of individual falling snowflakes and ice crystals. A method is proposed to automatically classify these pictures into six classes of snowflakes as well to estimate the degree of riming and to detect whether or not the particles are melting. Multinomial logistic regression is used with a manually classified
reference set. The evaluation demonstrates the good and reliable performance of the proposed technique.
Guillaume Nord, Brice Boudevillain, Alexis Berne, Flora Branger, Isabelle Braud, Guillaume Dramais, Simon Gérard, Jérôme Le Coz, Cédric Legoût, Gilles Molinié, Joel Van Baelen, Jean-Pierre Vandervaere, Julien Andrieu, Coralie Aubert, Martin Calianno, Guy Delrieu, Jacopo Grazioli, Sahar Hachani, Ivan Horner, Jessica Huza, Raphaël Le Boursicaud, Timothy H. Raupach, Adriaan J. Teuling, Magdalena Uber, Béatrice Vincendon, and Annette Wijbrans
Earth Syst. Sci. Data, 9, 221–249, https://doi.org/10.5194/essd-9-221-2017, https://doi.org/10.5194/essd-9-221-2017, 2017
Short summary
Short summary
A high space–time resolution dataset linking hydrometeorological forcing and hydro-sedimentary response in a mesoscale catchment (Auzon, 116 km2) of the Ardèche region (France) is presented. This region is subject to precipitating systems of Mediterranean origin, which can result in significant rainfall amount. The data presented cover a period of 4 years (2011–2014) and aim at improving the understanding of processes triggering flash floods.
Stanislaus J. Schymanski and Dani Or
Hydrol. Earth Syst. Sci., 21, 685–706, https://doi.org/10.5194/hess-21-685-2017, https://doi.org/10.5194/hess-21-685-2017, 2017
Short summary
Short summary
Most of the rain falling on land is returned to the atmosphere by plant leaves, which release water vapour (transpire) through tiny pores. To better understand this process, we used artificial leaves in a special wind tunnel and discovered major problems with an established approach (PM equation) widely used to quantify transpiration and its sensitivity to climate change. We present an improved set of equations, consistent with experiments and displaying more realistic climate sensitivity.
Johan Gaume, Alec van Herwijnen, Guillaume Chambon, Nander Wever, and Jürg Schweizer
The Cryosphere, 11, 217–228, https://doi.org/10.5194/tc-11-217-2017, https://doi.org/10.5194/tc-11-217-2017, 2017
Short summary
Short summary
Based on DEM simulations we developed a new model for the onset of crack propagation in snow slab avalanche release. The model reconciles past approaches by considering the complex interplay between slab elasticity and the mechanical behavior of the weak layer including its structural collapse. The model agrees with extensive field data and can reproduce crack propagation on low-angle terrain and the decrease in critical crack length with increasing slope angle observed in numerical experiments.
Jürg Schweizer, Benjamin Reuter, Alec van Herwijnen, Bettina Richter, and Johan Gaume
The Cryosphere, 10, 2637–2653, https://doi.org/10.5194/tc-10-2637-2016, https://doi.org/10.5194/tc-10-2637-2016, 2016
Nikola Besic, Jordi Figueras i Ventura, Jacopo Grazioli, Marco Gabella, Urs Germann, and Alexis Berne
Atmos. Meas. Tech., 9, 4425–4445, https://doi.org/10.5194/amt-9-4425-2016, https://doi.org/10.5194/amt-9-4425-2016, 2016
Short summary
Short summary
In this paper we propose a novel semi-supervised method for hydrometeor classification, which takes into account both the specificities of acquired polarimetric radar measurements and the presumed electromagnetic behavior of different hydrometeor types. The method has been applied on three datasets, each acquired by different C-band radar from the Swiss network, and on two X-band research radar datasets. The obtained classification is found to be of high quality.
Albrecht von Boetticher, Jens M. Turowski, Brian W. McArdell, Dieter Rickenmann, and James W. Kirchner
Geosci. Model Dev., 9, 2909–2923, https://doi.org/10.5194/gmd-9-2909-2016, https://doi.org/10.5194/gmd-9-2909-2016, 2016
Short summary
Short summary
Debris flows are characterized by unsteady flows of water with different content of clay, silt, sand, gravel, and large particles, resulting in a dense moving mixture mass. Here we present a three-dimensional fluid dynamic solver that simulates the flow as a mixture of a pressure-dependent rheology model of the gravel mixed with a Herschel–Bulkley rheology of the fine material suspension. We link rheological parameters to the material composition. The user must specify two free model parameters.
Luca Panziera, Marco Gabella, Stefano Zanini, Alessandro Hering, Urs Germann, and Alexis Berne
Hydrol. Earth Syst. Sci., 20, 2317–2332, https://doi.org/10.5194/hess-20-2317-2016, https://doi.org/10.5194/hess-20-2317-2016, 2016
Short summary
Short summary
This paper presents a novel system to issue heavy rainfall alerts for predefined geographical regions by evaluating the sum of precipitation fallen in the immediate past and expected in the near future. In order to objectively define the thresholds for the alerts, an extreme rainfall analysis for the 159 regions used for official warnings in Switzerland was developed. It is shown that the system has additional lead time with respect to thunderstorm tracking tools targeted for convective storms.
Fabiano Monti, Johan Gaume, Alec van Herwijnen, and Jürg Schweizer
Nat. Hazards Earth Syst. Sci., 16, 775–788, https://doi.org/10.5194/nhess-16-775-2016, https://doi.org/10.5194/nhess-16-775-2016, 2016
Short summary
Short summary
We propose a new approach based on a simplification of the multi-layered elasticity theory in order to easily compute the additional stress due to a skier at the depth of the weak layer, taking into account the layering of the snow slab and the substratum. The method was tested on simplified snow profiles, then on manually observed snow profiles including a stability test and, finally, on simulated snow profiles, thereby showing the promise of our approach.
J. Grazioli, G. Lloyd, L. Panziera, C. R. Hoyle, P. J. Connolly, J. Henneberger, and A. Berne
Atmos. Chem. Phys., 15, 13787–13802, https://doi.org/10.5194/acp-15-13787-2015, https://doi.org/10.5194/acp-15-13787-2015, 2015
Short summary
Short summary
This study investigates the microphysics of winter alpine snowfall occurring in mixed-phase clouds in an inner-Alpine valley during CLACE2014. From polarimetric radar and in situ observations, riming is shown to be an important process leading to more intense snowfall. Riming is usually associated with more intense turbulence providing supercooled liquid water. Distinct features are identified in the vertical structure of polarimetric radar variables.
F. Frank, B. W. McArdell, C. Huggel, and A. Vieli
Nat. Hazards Earth Syst. Sci., 15, 2569–2583, https://doi.org/10.5194/nhess-15-2569-2015, https://doi.org/10.5194/nhess-15-2569-2015, 2015
Short summary
Short summary
The sudden onset of large and erosive debris flows has been observed recently in different catchments in Switzerland, implicating the importance of erosion for debris flow modelling. Therefore, an erosion model was established based on field data (relationship between maximum shear stress and erosion depth and rate) of several debris flows measured at the Illgraben. Erosion model tests at the Spreitgraben showed considerable improvements in runout pattern as well as hydrograph propagation.
J. Gaume, A. van Herwijnen, G. Chambon, K. W. Birkeland, and J. Schweizer
The Cryosphere, 9, 1915–1932, https://doi.org/10.5194/tc-9-1915-2015, https://doi.org/10.5194/tc-9-1915-2015, 2015
Short summary
Short summary
We proposed a new approach to characterize the dynamic phase of crack propagation in weak snowpack layers as well as fracture arrest propensity by means of numerical "propagation saw test" simulations based on the discrete element method. Crack propagation speed and distance before fracture arrest were derived from the simulations for different snowpack configurations and mechanical properties. Numerical and experimental results were compared and the mechanical processes at play were discussed.
A. von Boetticher, J. M. Turowski, B. W. McArdell, D. Rickenmann, M. Hürlimann, C. Scheidl, and J. W. Kirchner
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmdd-8-6379-2015, https://doi.org/10.5194/gmdd-8-6379-2015, 2015
Preprint withdrawn
K. Schraml, B. Thomschitz, B. W. McArdell, C. Graf, and R. Kaitna
Nat. Hazards Earth Syst. Sci., 15, 1483–1492, https://doi.org/10.5194/nhess-15-1483-2015, https://doi.org/10.5194/nhess-15-1483-2015, 2015
Short summary
Short summary
In this paper we used two different numerical simulation models to replicate two debris-flow events in Austria and compare the range and sensitivity of the model input parameters. We expect that our results contribute to a better application of simulation models for hazard and risk assessment in alpine regions.
S. J. Schymanski and D. Or
Proc. IAHS, 371, 99–107, https://doi.org/10.5194/piahs-371-99-2015, https://doi.org/10.5194/piahs-371-99-2015, 2015
Short summary
Short summary
The common use of "potential evaporation" to estimate actual evapotranspiration or to describe the suitability of a given climate for plant growth may lead to wrong conclusions about the consequences of climate change on plant growth and water relations. Wind speed in particular can have opposite effects on potential evaporation and transpiration from plant leaves. Therefore, we recommend to avoid using the concept of potential evaporation in relation to plants and transpiration from leaves.
B. Reuter, J. Schweizer, and A. van Herwijnen
The Cryosphere, 9, 837–847, https://doi.org/10.5194/tc-9-837-2015, https://doi.org/10.5194/tc-9-837-2015, 2015
Short summary
Short summary
We present a novel approach to estimate point snow instability based on snow mechanical properties from snow micro-penetrometer measurements. This is the first approach that takes into account the essential processes involved in dry-snow slab avalanche release: failure initiation and crack propagation. Comparison with field observations confirms that the two-step calculation of a stability criterion and a critical crack length is suited to describe point snow instability.
N. Helbig, A. van Herwijnen, J. Magnusson, and T. Jonas
Hydrol. Earth Syst. Sci., 19, 1339–1351, https://doi.org/10.5194/hess-19-1339-2015, https://doi.org/10.5194/hess-19-1339-2015, 2015
C. Huggel, A. Raissig, M. Rohrer, G. Romero, A. Diaz, and N. Salzmann
Nat. Hazards Earth Syst. Sci., 15, 475–485, https://doi.org/10.5194/nhess-15-475-2015, https://doi.org/10.5194/nhess-15-475-2015, 2015
Short summary
Short summary
Three different disaster databases are analyzed for detection of decadal spatiotemporal changes in the Andes of Peru. We find large variations in the disaster metrics depending on the database. We recommend that the type, method and source of documentation should be carefully evaluated for any analysis of disaster databases; reporting criteria should be improved and documentation efforts strengthened.
M. Stähli, C. Graf, C. Scheidl, C. R. Wyss, and A. Volkwein
Geogr. Helv., 70, 1–9, https://doi.org/10.5194/gh-70-1-2015, https://doi.org/10.5194/gh-70-1-2015, 2015
T. H. Raupach and A. Berne
Atmos. Meas. Tech., 8, 343–365, https://doi.org/10.5194/amt-8-343-2015, https://doi.org/10.5194/amt-8-343-2015, 2015
Short summary
Short summary
Using the 2-D video disdrometer (2DVD) as a reference, a technique to correct the spectra of drop size distribution (DSD) measured by Parsivel disdrometers (1st and 2nd generation) is proposed. The measured velocities and equivolume diameters are corrected to better match those from the 2DVD. The correction is evaluated using data from southern France and the Swiss Plateau. It appears to be similar for both climatologies, and to improve the consistency with colocated 2DVDs and rain gauges.
J. Grazioli, D. Tuia, and A. Berne
Atmos. Meas. Tech., 8, 149–170, https://doi.org/10.5194/amt-8-149-2015, https://doi.org/10.5194/amt-8-149-2015, 2015
Short summary
Short summary
A new approach for hydrometeor classification from polarimetric radar measurements is proposed. It takes adavantage of clustering techniques to objectively determine the number of hydrometeor classes that can be reliably identified. The proposed method is tested using observations from an X-band polarimetric radar in different regions and evaluated by comparison with existing algorithms and with measurements from a ground-based 2D video disdrometer (providing 2-D views of falling hydrometeors).
H. Frey, H. Machguth, M. Huss, C. Huggel, S. Bajracharya, T. Bolch, A. Kulkarni, A. Linsbauer, N. Salzmann, and M. Stoffel
The Cryosphere, 8, 2313–2333, https://doi.org/10.5194/tc-8-2313-2014, https://doi.org/10.5194/tc-8-2313-2014, 2014
Short summary
Short summary
Existing methods (area–volume relations, a slope-dependent volume estimation method, and two ice-thickness distribution models) are used to estimate the ice reserves stored in Himalayan–Karakoram glaciers. Resulting volumes range from 2955–4737km³. Results from the ice-thickness distribution models agree well with local measurements; volume estimates from area-related relations exceed the estimates from the other approaches. Evidence on the effect of the selected method on results is provided.
J. Grazioli, D. Tuia, S. Monhart, M. Schneebeli, T. Raupach, and A. Berne
Atmos. Meas. Tech., 7, 2869–2882, https://doi.org/10.5194/amt-7-2869-2014, https://doi.org/10.5194/amt-7-2869-2014, 2014
E. H. Bair, R. Simenhois, A. van Herwijnen, and K. Birkeland
The Cryosphere, 8, 1407–1418, https://doi.org/10.5194/tc-8-1407-2014, https://doi.org/10.5194/tc-8-1407-2014, 2014
S. Nussbaumer, Y. Schaub, C. Huggel, and A. Walz
Nat. Hazards Earth Syst. Sci., 14, 1611–1624, https://doi.org/10.5194/nhess-14-1611-2014, https://doi.org/10.5194/nhess-14-1611-2014, 2014
A. Burtin, N. Hovius, B. W. McArdell, J. M. Turowski, and J. Vergne
Earth Surf. Dynam., 2, 21–33, https://doi.org/10.5194/esurf-2-21-2014, https://doi.org/10.5194/esurf-2-21-2014, 2014
D. Schneider, C. Huggel, A. Cochachin, S. Guillén, and J. García
Adv. Geosci., 35, 145–155, https://doi.org/10.5194/adgeo-35-145-2014, https://doi.org/10.5194/adgeo-35-145-2014, 2014
A. Rabatel, B. Francou, A. Soruco, J. Gomez, B. Cáceres, J. L. Ceballos, R. Basantes, M. Vuille, J.-E. Sicart, C. Huggel, M. Scheel, Y. Lejeune, Y. Arnaud, M. Collet, T. Condom, G. Consoli, V. Favier, V. Jomelli, R. Galarraga, P. Ginot, L. Maisincho, J. Mendoza, M. Ménégoz, E. Ramirez, P. Ribstein, W. Suarez, M. Villacis, and P. Wagnon
The Cryosphere, 7, 81–102, https://doi.org/10.5194/tc-7-81-2013, https://doi.org/10.5194/tc-7-81-2013, 2013
Related subject area
Landslides and Debris Flows Hazards
The vulnerability of buildings to a large-scale debris flow and outburst flood hazard cascade that occurred on 30 August 2020 in Ganluo, southwest China
Optimizing rainfall-triggered landslide thresholds for daily landslide hazard warning in the Three Gorges Reservoir area
Brief communication: Monitoring impending slope failure with very high-resolution spaceborne synthetic aperture radar
Size scaling of large landslides from incomplete inventories
InSAR-informed in situ monitoring for deep-seated landslides: insights from El Forn (Andorra)
A coupled hydrological and hydrodynamic modeling approach for estimating rainfall thresholds of debris-flow occurrence
More than one landslide per road kilometer – surveying and modeling mass movements along the Rishikesh–Joshimath (NH-7) highway, Uttarakhand, India
An integrated method for assessing vulnerability of buildings caused by debris flows in mountainous areas
Temporal clustering of precipitation for detection of potential landslides
Shallow-landslide stability evaluation in loess areas according to the Revised Infinite Slope Model: a case study of the 7.25 Tianshui sliding-flow landslide events of 2013 in the southwest of the Loess Plateau, China
Probabilistic assessment of postfire debris-flow inundation in response to forecast rainfall
Evaluating post-wildfire debris-flow rainfall thresholds and volume models at the 2020 Grizzly Creek Fire in Glenwood Canyon, Colorado, USA
Predicting Deep-Seated Landslide Displacements in Mountains through the Integration of Convolutional Neural Networks and Age of Exploration-Inspired Optimizer
Addressing class imbalance in soil movement predictions
Assessing the impact of climate change on landslides near Vejle, Denmark, using public data
Predicting the thickness of shallow landslides in Switzerland using machine learning
Analysis of three-dimensional slope stability combined with rainfall and earthquake
Assessing landslide damming susceptibility in Central Asia
Invited Perspectives: Integrating hydrologic information into the next generation of landslide early warning systems
Assessing locations susceptible to shallow landslide initiation during prolonged intense rainfall in the Lares, Utuado, and Naranjito municipalities of Puerto Rico
Evaluation of debris-flow building damage forecasts
Characteristics of debris-flow-prone watersheds and debris-flow-triggering rainstorms following the Tadpole Fire, New Mexico, USA
Morphological characteristics and conditions of drainage basins contributing to the formation of debris flow fans: an examination of regions with different rock strength using decision tree analysis
Characterizing the scale of regional landslide triggering from storm hydrometeorology
Comparison of debris flow observations, including fine-sediment grain size and composition and runout model results, at Illgraben, Swiss Alps
Simulation analysis of 3D stability of a landslide with a locking segment: a case study of the Tizicao landslide in Maoxian County, southwest China
Space–time landslide hazard modeling via Ensemble Neural Networks
Optimization strategy for flexible barrier structures: investigation and back analysis of a rockfall disaster case in southwestern China
Comparison of conditioning factors classification criteria in large scale statistically based landslide susceptibility models
Numerical-model-derived intensity–duration thresholds for early warning of rainfall-induced debris flows in a Himalayan catchment
Slope Unit Maker (SUMak): an efficient and parameter-free algorithm for delineating slope units to improve landslide modeling
Probabilistic Hydrological Estimation of LandSlides (PHELS): global ensemble landslide hazard modelling
Limit analysis of earthquake-induced landslides considering two strength envelopes
Exploratory analysis of the annual risk to life from debris flows
A new analytical method for stability analysis of rock blocks with basal erosion in sub-horizontal strata by considering the eccentricity effect
Rockfall monitoring with a Doppler radar on an active rockslide complex in Brienz/Brinzauls (Switzerland)
Landslide initiation thresholds in data-sparse regions: application to landslide early warning criteria in Sitka, Alaska, USA
Lessons learnt from a rockfall time series analysis: data collection, statistical analysis, and applications
The concept of event-size-dependent exhaustion and its application to paraglacial rockslides
Coastal earthquake-induced landslide susceptibility during the 2016 Mw 7.8 Kaikōura earthquake, New Zealand
Characteristics of debris flows recorded in the Shenmu area of central Taiwan between 2004 and 2021
Semi-automatic mapping of shallow landslides using free Sentinel-2 images and Google Earth Engine
The role of thermokarst evolution in debris flow initiation (Hüttekar Rock Glacier, Austrian Alps)
Accounting for the effect of forest and fragmentation in probabilistic rockfall hazard
Comprehensive landslide susceptibility map of Central Asia
The influence of large woody debris on post-wildfire debris flow sediment storage
Statistical modeling of sediment supply in torrent catchments of the northern French Alps
A data-driven evaluation of post-fire landslide susceptibility
Deciphering seasonal effects of triggering and preparatory precipitation for improved shallow landslide prediction using generalized additive mixed models
Brief communication: The northwest Himalaya towns slipping towards potential disaster
Li Wei, Kaiheng Hu, Shuang Liu, Lan Ning, Xiaopeng Zhang, Qiyuan Zhang, and Md. Abdur Rahim
Nat. Hazards Earth Syst. Sci., 24, 4179–4197, https://doi.org/10.5194/nhess-24-4179-2024, https://doi.org/10.5194/nhess-24-4179-2024, 2024
Short summary
Short summary
The damage patterns of the buildings were classified into three types: (I) buried by primary debris flow, (II) inundated by secondary dam-burst flood, and (III) sequentially buried by debris flow and inundated by dam-burst flood. The threshold of the impact pressures in Zones (II) and (III) where vulnerability is equal to 1 is 84 kPa and 116 kPa, respectively. Heavy damage occurs at an impact pressure greater than 50 kPa, while slight damage occurs below 30 kPa.
Bo Peng and Xueling Wu
Nat. Hazards Earth Syst. Sci., 24, 3991–4013, https://doi.org/10.5194/nhess-24-3991-2024, https://doi.org/10.5194/nhess-24-3991-2024, 2024
Short summary
Short summary
Our research enhances landslide prevention using advanced machine learning to forecast heavy-rainfall-triggered landslides. By analyzing regions and employing various models, we identified optimal ways to predict high-risk rainfall events. Integrating multiple factors and models, including a neural network, significantly improves landslide predictions. Real data validation confirms our approach's reliability, aiding communities in mitigating landslide impacts and safeguarding lives and property.
Andrea Manconi, Yves Bühler, Andreas Stoffel, Johan Gaume, Qiaoping Zhang, and Valentyn Tolpekin
Nat. Hazards Earth Syst. Sci., 24, 3833–3839, https://doi.org/10.5194/nhess-24-3833-2024, https://doi.org/10.5194/nhess-24-3833-2024, 2024
Short summary
Short summary
Our research reveals the power of high-resolution satellite synthetic-aperture radar (SAR) imagery for slope deformation monitoring. Using ICEYE data over the Brienz/Brinzauls instability, we measured surface velocity and mapped the landslide event with unprecedented precision. This underscores the potential of satellite SAR for timely hazard assessment in remote regions and aiding disaster mitigation efforts effectively.
Oliver Korup, Lisa V. Luna, and Joaquin V. Ferrer
Nat. Hazards Earth Syst. Sci., 24, 3815–3832, https://doi.org/10.5194/nhess-24-3815-2024, https://doi.org/10.5194/nhess-24-3815-2024, 2024
Short summary
Short summary
Catalogues of mapped landslides are useful for learning and forecasting how frequently they occur in relation to their size. Yet, rare and large landslides remain mostly uncertain in statistical summaries of these catalogues. We propose a single, consistent method of comparing across different data sources and find that landslide statistics disclose more about subjective mapping choices than trigger types or environmental settings.
Rachael Lau, Carolina Seguí, Tyler Waterman, Nathaniel Chaney, and Manolis Veveakis
Nat. Hazards Earth Syst. Sci., 24, 3651–3661, https://doi.org/10.5194/nhess-24-3651-2024, https://doi.org/10.5194/nhess-24-3651-2024, 2024
Short summary
Short summary
This work examines the use of interferometric synthetic-aperture radar (InSAR) alongside in situ borehole measurements to assess the stability of deep-seated landslides for the case study of El Forn (Andorra). Comparing InSAR with borehole data suggests a key trade-off between accuracy and precision for various InSAR resolutions. Spatial interpolation with InSAR informed how many remote observations are necessary to lower error in a remote sensing re-creation of ground motion over the landslide.
Zhen Lei Wei, Yue Quan Shang, Qiu Hua Liang, and Xi Lin Xia
Nat. Hazards Earth Syst. Sci., 24, 3357–3379, https://doi.org/10.5194/nhess-24-3357-2024, https://doi.org/10.5194/nhess-24-3357-2024, 2024
Short summary
Short summary
The initiation of debris flows is significantly influenced by rainfall-induced hydrological processes. We propose a novel framework based on an integrated hydrological and hydrodynamic model and aimed at estimating intensity–duration (ID) rainfall thresholds responsible for triggering debris flows. In comparison to traditional statistical approaches, this physically based framework is particularly suitable for application in ungauged catchments where historical debris flow data are scarce.
Jürgen Mey, Ravi Kumar Guntu, Alexander Plakias, Igo Silva de Almeida, and Wolfgang Schwanghart
Nat. Hazards Earth Syst. Sci., 24, 3207–3223, https://doi.org/10.5194/nhess-24-3207-2024, https://doi.org/10.5194/nhess-24-3207-2024, 2024
Short summary
Short summary
The Himalayan road network links remote areas, but fragile terrain and poor construction lead to frequent landslides. This study on the NH-7 in India's Uttarakhand region analyzed 300 landslides after heavy rainfall in 2022 . Factors like slope, rainfall, rock type and road work influence landslides. The study's model predicts landslide locations for better road maintenance planning, highlighting the risk from climate change and increased road use.
Chenchen Qiu and Xueyu Geng
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-156, https://doi.org/10.5194/nhess-2024-156, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
We proposed an interated method with the combination of a physical vulnerability matric and a machine learning model to estimate the potential physical damage and associated economic loss caused by future debris flows based on the collected historical data on the Qinghai-Tibet Plateau regions.
Fabiola Banfi, Emanuele Bevacqua, Pauline Rivoire, Sérgio C. Oliveira, Joaquim G. Pinto, Alexandre M. Ramos, and Carlo De Michele
Nat. Hazards Earth Syst. Sci., 24, 2689–2704, https://doi.org/10.5194/nhess-24-2689-2024, https://doi.org/10.5194/nhess-24-2689-2024, 2024
Short summary
Short summary
Landslides are complex phenomena causing important impacts in vulnerable areas, and they are often triggered by rainfall. Here, we develop a new approach that uses information on the temporal clustering of rainfall, i.e. multiple events close in time, to detect landslide events and compare it with the use of classical empirical rainfall thresholds, considering as a case study the region of Lisbon, Portugal. The results could help to improve the prediction of rainfall-triggered landslides.
Jianqi Zhuang, Jianbing Peng, Chenhui Du, Yi Zhu, and Jiaxu Kong
Nat. Hazards Earth Syst. Sci., 24, 2615–2631, https://doi.org/10.5194/nhess-24-2615-2024, https://doi.org/10.5194/nhess-24-2615-2024, 2024
Short summary
Short summary
The Revised Infinite Slope Model (RISM) is proposed using the equal differential unit method and correcting the deficiency of the safety factor increasing with the slope increasing when the slope is larger than 40°, as calculated using the Taylor slope infinite model. The intensity–duration (I–D) prediction curve of the rainfall-induced shallow loess landslides with different slopes was constructed and can be used in forecasting regional shallow loess landslides.
Alexander B. Prescott, Luke A. McGuire, Kwang-Sung Jun, Katherine R. Barnhart, and Nina S. Oakley
Nat. Hazards Earth Syst. Sci., 24, 2359–2374, https://doi.org/10.5194/nhess-24-2359-2024, https://doi.org/10.5194/nhess-24-2359-2024, 2024
Short summary
Short summary
Fire can dramatically increase the risk of debris flows to downstream communities with little warning, but hazard assessments have not traditionally included estimates of inundation. We unify models developed by the scientific community to create probabilistic estimates of inundation area in response to rainfall at forecast lead times (≥ 24 h) needed for decision-making. This work takes an initial step toward a near-real-time postfire debris-flow inundation hazard assessment product.
Francis K. Rengers, Samuel Bower, Andrew Knapp, Jason W. Kean, Danielle W. vonLembke, Matthew A. Thomas, Jaime Kostelnik, Katherine R. Barnhart, Matthew Bethel, Joseph E. Gartner, Madeline Hille, Dennis M. Staley, Justin K. Anderson, Elizabeth K. Roberts, Stephen B. DeLong, Belize Lane, Paxton Ridgway, and Brendan P. Murphy
Nat. Hazards Earth Syst. Sci., 24, 2093–2114, https://doi.org/10.5194/nhess-24-2093-2024, https://doi.org/10.5194/nhess-24-2093-2024, 2024
Short summary
Short summary
Every year the U.S. Geological Survey produces 50–100 postfire debris-flow hazard assessments using models for debris-flow likelihood and volume. To refine these models they must be tested with datasets that clearly document rainfall, debris-flow response, and debris-flow volume. These datasets are difficult to obtain, but this study developed and analyzed a postfire dataset with more than 100 postfire storm responses over a 2-year period. We also proposed ways to improve these models.
Jui-Sheng Chou, Hoang-Minh Nguyen, Huy-Phuong Phan, and Kuo-Lung Wang
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-86, https://doi.org/10.5194/nhess-2024-86, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
This study enhances landslide prediction using advanced machine learning, including new algorithms inspired by historical explorations. The research accurately forecasts landslide movements by analyzing eight years of data from Taiwan's Lushan Mountain, improving early warnings and potentially saving lives and infrastructure. This integration marks a significant advancement in environmental risk management.
Praveen Kumar, Priyanka Priyanka, Kala Venkata Uday, and Varun Dutt
Nat. Hazards Earth Syst. Sci., 24, 1913–1928, https://doi.org/10.5194/nhess-24-1913-2024, https://doi.org/10.5194/nhess-24-1913-2024, 2024
Short summary
Short summary
Our study focuses on predicting soil movement to mitigate landslide risks. We develop machine learning models with oversampling techniques to address the class imbalance in monitoring data. The dynamic ensemble model with K-means SMOTE (synthetic minority oversampling technique) achieves high precision, high recall, and a high F1 score. Our findings highlight the potential of these models with oversampling techniques to improve soil movement predictions in landslide-prone areas.
Kristian Svennevig, Julian Koch, Marie Keiding, and Gregor Luetzenburg
Nat. Hazards Earth Syst. Sci., 24, 1897–1911, https://doi.org/10.5194/nhess-24-1897-2024, https://doi.org/10.5194/nhess-24-1897-2024, 2024
Short summary
Short summary
In our study, we analysed publicly available data in order to investigate the impact of climate change on landslides in Denmark. Our research indicates that the rising groundwater table due to climate change will result in an increase in landslide activity. Previous incidents of extremely wet winters have caused damage to infrastructure and buildings due to landslides. This study is the first of its kind to exclusively rely on public data and examine landslides in Denmark.
Christoph Schaller, Luuk Dorren, Massimiliano Schwarz, Christine Moos, Arie C. Seijmonsbergen, and E. Emiel van Loon
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-76, https://doi.org/10.5194/nhess-2024-76, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
We developed a machine learning-based approach to predict the potential thickness of shallow landslides to generate improved inputs for slope stability models. We selected 21 explanatory variables including metrics on terrain, geomorphology, vegetation height, and lithology and used data from two Swiss field inventories to calibrate and test the models. The best performing machine learning model consistently reduced the mean average error by least 17 % compared to previously existing models.
Jiao Wang, Zhangxing Wang, Guanhua Sun, and Hongming Luo
Nat. Hazards Earth Syst. Sci., 24, 1741–1756, https://doi.org/10.5194/nhess-24-1741-2024, https://doi.org/10.5194/nhess-24-1741-2024, 2024
Short summary
Short summary
With a simplified formula linking rainfall and groundwater level, the rise of the phreatic surface within the slope can be obtained. Then, a global analysis method that considers both seepage and seismic forces is proposed to determine the safety factor of slopes subjected to the combined effect of rainfall and earthquakes. By taking a slope in the Three Gorges Reservoir area as an example, the safety evolution of the slope combined with both rainfall and earthquake is also examined.
Carlo Tacconi Stefanelli, William Frodella, Francesco Caleca, Zhanar Raimbekova, Ruslan Umaraliev, and Veronica Tofani
Nat. Hazards Earth Syst. Sci., 24, 1697–1720, https://doi.org/10.5194/nhess-24-1697-2024, https://doi.org/10.5194/nhess-24-1697-2024, 2024
Short summary
Short summary
Central Asia regions are marked by active tectonics, high mountains with glaciers, and strong rainfall. These predisposing factors make large landslides a serious threat in the area and a source of possible damming scenarios, which endanger the population. To prevent this, a semi-automated geographic information system (GIS-)based mapping method, centered on a bivariate correlation of morphometric parameters, was applied to give preliminary information on damming susceptibility in Central Asia.
Benjamin B. Mirus, Thom A. Bogaard, Roberto Greco, and Manfred Stähli
EGUsphere, https://doi.org/10.5194/egusphere-2024-1219, https://doi.org/10.5194/egusphere-2024-1219, 2024
Short summary
Short summary
Early warning of increased landslide potential provides situational awareness to reduce landslide-related losses from major storm events. For decades, landslide forecasts relied on rainfall data alone, but recent research points to the value of hydrologic information for improving predictions. In this article, we provide our perspectives on the value and limitations of integrating subsurface hillslope hydrologic monitoring data and mathematical modeling for more accurate landslide forecasts.
Rex L. Baum, Dianne L. Brien, Mark E. Reid, William H. Schulz, and Matthew J. Tello
Nat. Hazards Earth Syst. Sci., 24, 1579–1605, https://doi.org/10.5194/nhess-24-1579-2024, https://doi.org/10.5194/nhess-24-1579-2024, 2024
Short summary
Short summary
We mapped potential for heavy rainfall to cause landslides in part of the central mountains of Puerto Rico using new tools for estimating soil depth and quasi-3D slope stability. Potential ground-failure locations correlate well with the spatial density of landslides from Hurricane Maria. The smooth boundaries of the very high and high ground-failure susceptibility zones enclose 75 % and 90 %, respectively, of observed landslides. The maps can help mitigate ground-failure hazards.
Katherine R. Barnhart, Christopher R. Miller, Francis K. Rengers, and Jason W. Kean
Nat. Hazards Earth Syst. Sci., 24, 1459–1483, https://doi.org/10.5194/nhess-24-1459-2024, https://doi.org/10.5194/nhess-24-1459-2024, 2024
Short summary
Short summary
Debris flows are a type of fast-moving landslide that start from shallow landslides or during intense rain. Infrastructure located downstream of watersheds susceptible to debris flows may be damaged should a debris flow reach them. We present and evaluate an approach to forecast building damage caused by debris flows. We test three alternative models for simulating the motion of debris flows and find that only one can forecast the correct number and spatial pattern of damaged buildings.
Luke A. McGuire, Francis K. Rengers, Ann M. Youberg, Alexander N. Gorr, Olivia J. Hoch, Rebecca Beers, and Ryan Porter
Nat. Hazards Earth Syst. Sci., 24, 1357–1379, https://doi.org/10.5194/nhess-24-1357-2024, https://doi.org/10.5194/nhess-24-1357-2024, 2024
Short summary
Short summary
Runoff and erosion increase after fire, leading to a greater likelihood of floods and debris flows. We monitored debris flow activity following a fire in western New Mexico, USA, and observed 16 debris flows over a <2-year monitoring period. Rainstorms with recurrence intervals of approximately 1 year were sufficient to initiate debris flows. All debris flows initiated during the first several months following the fire, indicating a rapid decrease in debris flow susceptibility over time.
Ken'ichi Koshimizu, Satoshi Ishimaru, Fumitoshi Imaizumi, and Gentaro Kawakami
Nat. Hazards Earth Syst. Sci., 24, 1287–1301, https://doi.org/10.5194/nhess-24-1287-2024, https://doi.org/10.5194/nhess-24-1287-2024, 2024
Short summary
Short summary
Morphological conditions of drainage basins that classify the presence or absence of debris flow fans were analyzed in areas with different rock strength using decision tree analysis. The relief ratio is the most important morphological factor regardless of the geology. However, the thresholds of morphological parameters needed for forming debris flow fans differ depending on the geology. Decision tree analysis is an effective tool for evaluating the debris flow risk for each geology.
Jonathan P. Perkins, Nina S. Oakley, Brian D. Collins, Skye C. Corbett, and W. Paul Burgess
EGUsphere, https://doi.org/10.5194/egusphere-2024-873, https://doi.org/10.5194/egusphere-2024-873, 2024
Short summary
Short summary
Landslides are a global issue that results in deaths and economic losses annually. However, it is not clear how storm severity relates to landslide severity across large regions. Here we develop a method to estimate the footprint of landslide area and compare this to meteorologic estimates of storm severity. We find that total storm strength does not clearly relate to landslide area. Rather, landslide area depends on soil wetness and smaller storm structures that can produce intense rainfall.
Daniel Bolliger, Fritz Schlunegger, and Brian W. McArdell
Nat. Hazards Earth Syst. Sci., 24, 1035–1049, https://doi.org/10.5194/nhess-24-1035-2024, https://doi.org/10.5194/nhess-24-1035-2024, 2024
Short summary
Short summary
We analysed data from the Illgraben debris flow monitoring station, Switzerland, and we modelled these flows with a debris flow runout model. We found that no correlation exists between the grain size distribution, the mineralogical composition of the matrix, and the debris flow properties. The flow properties rather appear to be determined by the flow volume, from which most other parameters can be derived.
Yuntao Zhou, Xiaoyan Zhao, Guangze Zhang, Bernd Wünnemann, Jiajia Zhang, and Minghui Meng
Nat. Hazards Earth Syst. Sci., 24, 891–906, https://doi.org/10.5194/nhess-24-891-2024, https://doi.org/10.5194/nhess-24-891-2024, 2024
Short summary
Short summary
We developed three rock bridge models to analyze 3D stability and deformation behaviors of the Tizicao landslide and found that the contact surface model with high strength parameters combines advantages of the intact rock mass model in simulating the deformation of slopes with rock bridges and the modeling advantage of the Jennings model. The results help in choosing a rock bridge model to simulate landslide stability and reveal the influence laws of rock bridges on the stability of landslides.
Ashok Dahal, Hakan Tanyas, Cees van Westen, Mark van der Meijde, Paul Martin Mai, Raphaël Huser, and Luigi Lombardo
Nat. Hazards Earth Syst. Sci., 24, 823–845, https://doi.org/10.5194/nhess-24-823-2024, https://doi.org/10.5194/nhess-24-823-2024, 2024
Short summary
Short summary
We propose a modeling approach capable of recognizing slopes that may generate landslides, as well as how large these mass movements may be. This protocol is implemented, tested, and validated with data that change in both space and time via an Ensemble Neural Network architecture.
Li-Ru Luo, Zhi-Xiang Yu, Li-Jun Zhang, Qi Wang, Lin-Xu Liao, and Li Peng
Nat. Hazards Earth Syst. Sci., 24, 631–649, https://doi.org/10.5194/nhess-24-631-2024, https://doi.org/10.5194/nhess-24-631-2024, 2024
Short summary
Short summary
We performed field investigations on a rockfall near Jiguanshan National Forest Park, Chengdu. Vital information was obtained from an unmanned aerial vehicle survey. A finite element model was created to reproduce the damage evolution. We found that the impact kinetic energy was below the design protection energy. Improper member connections prevent the barrier from producing significant deformation to absorb energy. Damage is avoided by improving the ability of the nets and ropes to slide.
Marko Sinčić, Sanja Bernat Gazibara, Mauro Rossi, and Snježana Mihalić Arbanas
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2024-29, https://doi.org/10.5194/nhess-2024-29, 2024
Revised manuscript accepted for NHESS
Short summary
Short summary
The paper focuses on classifying continuous landslide conditioning factors for susceptibility modelling, which resulted in 54 landslide susceptibility models that tested 11 classification criteria in combination with five statistical methods. The novelty of the research is that using stretched landslide conditioning factor values results in models with higher accuracy and that certain statistical methods are more sensitive to the landslide conditioning factor classification criteria than others.
Sudhanshu Dixit, Srikrishnan Siva Subramanian, Piyush Srivastava, Ali P. Yunus, Tapas Ranjan Martha, and Sumit Sen
Nat. Hazards Earth Syst. Sci., 24, 465–480, https://doi.org/10.5194/nhess-24-465-2024, https://doi.org/10.5194/nhess-24-465-2024, 2024
Short summary
Short summary
Rainfall intensity–duration (ID) thresholds can aid in the prediction of natural hazards. Large-scale sediment disasters like landslides, debris flows, and flash floods happen frequently in the Himalayas because of their propensity for intense precipitation events. We provide a new framework that combines the Weather Research and Forecasting (WRF) model with a regionally distributed numerical model for debris flows to analyse and predict intense rainfall-induced landslides in the Himalayas.
Jacob B. Woodard, Benjamin B. Mirus, Nathan J. Wood, Kate E. Allstadt, Benjamin A. Leshchinsky, and Matthew M. Crawford
Nat. Hazards Earth Syst. Sci., 24, 1–12, https://doi.org/10.5194/nhess-24-1-2024, https://doi.org/10.5194/nhess-24-1-2024, 2024
Short summary
Short summary
Dividing landscapes into hillslopes greatly improves predictions of landslide potential across landscapes, but their scaling is often arbitrarily set and can require significant computing power to delineate. Here, we present a new computer program that can efficiently divide landscapes into meaningful slope units scaled to best capture landslide processes. The results of this work will allow an improved understanding of landslide potential and can help reduce the impacts of landslides worldwide.
Anne Felsberg, Zdenko Heyvaert, Jean Poesen, Thomas Stanley, and Gabriëlle J. M. De Lannoy
Nat. Hazards Earth Syst. Sci., 23, 3805–3821, https://doi.org/10.5194/nhess-23-3805-2023, https://doi.org/10.5194/nhess-23-3805-2023, 2023
Short summary
Short summary
The Probabilistic Hydrological Estimation of LandSlides (PHELS) model combines ensembles of landslide susceptibility and of hydrological predictor variables to provide daily, global ensembles of hazard for hydrologically triggered landslides. Testing different hydrological predictors showed that the combination of rainfall and soil moisture performed best, with the lowest number of missed and false alarms. The ensemble approach allowed the estimation of the associated prediction uncertainty.
Di Wu, Yuke Wang, and Xin Chen
EGUsphere, https://doi.org/10.5194/egusphere-2023-2318, https://doi.org/10.5194/egusphere-2023-2318, 2023
Short summary
Short summary
This paper proposed 3D limit analysis for seismic stability of soil slopes to address the influence of earthquake on slope stabilities with nonlinear and linear criteria. Comparison results illustrated that the use of linear envelope leads to the non-negligible overestimation of steep slope stability and this overestimation will be significant with the increasing earthquake. Earthquake has a smaller influence on slope slip surface with nonlinear envelope than that with linear envelope.
Mark Bloomberg, Tim Davies, Elena Moltchanova, Tom Robinson, and David Palmer
EGUsphere, https://doi.org/10.5194/egusphere-2023-2695, https://doi.org/10.5194/egusphere-2023-2695, 2023
Short summary
Short summary
Debris flows occur infrequently, with average recurrence intervals (ARIs) ranging from decades to millennia. Consequently, they pose an underappreciated hazard. We describe how to make a preliminary identification of debris flow-susceptible catchments, estimate threshold ARIs for debris flows which pose an unacceptable risk to life, and identify the "window of non-recognition" where debris flows are infrequent enough that their hazard is unrecognised, yet frequent enough to pose a risk to life.
Xushan Shi, Bo Chai, Juan Du, Wei Wang, and Bo Liu
Nat. Hazards Earth Syst. Sci., 23, 3425–3443, https://doi.org/10.5194/nhess-23-3425-2023, https://doi.org/10.5194/nhess-23-3425-2023, 2023
Short summary
Short summary
A 3D stability analysis method is proposed for biased rockfall with external erosion. Four failure modes are considered according to rockfall evolution processes, including partial damage of underlying soft rock and overall failure of hard rock blocks. This method is validated with the biased rockfalls in the Sichuan Basin, China. The critical retreat ratio from low to moderate rockfall susceptibility is 0.33. This method could facilitate rockfall early identification and risk mitigation.
Marius Schneider, Nicolas Oestreicher, Thomas Ehrat, and Simon Loew
Nat. Hazards Earth Syst. Sci., 23, 3337–3354, https://doi.org/10.5194/nhess-23-3337-2023, https://doi.org/10.5194/nhess-23-3337-2023, 2023
Short summary
Short summary
Rockfalls and their hazards are typically treated as statistical events based on rockfall catalogs, but only a few complete rockfall inventories are available today. Here, we present new results from a Doppler radar rockfall alarm system, which has operated since 2018 at a high frequency under all illumination and weather conditions at a site where frequent rockfall events threaten a village and road. The new data set is used to investigate rockfall triggers in an active rockslide complex.
Annette I. Patton, Lisa V. Luna, Joshua J. Roering, Aaron Jacobs, Oliver Korup, and Benjamin B. Mirus
Nat. Hazards Earth Syst. Sci., 23, 3261–3284, https://doi.org/10.5194/nhess-23-3261-2023, https://doi.org/10.5194/nhess-23-3261-2023, 2023
Short summary
Short summary
Landslide warning systems often use statistical models to predict landslides based on rainfall. They are typically trained on large datasets with many landslide occurrences, but in rural areas large datasets may not exist. In this study, we evaluate which statistical model types are best suited to predicting landslides and demonstrate that even a small landslide inventory (five storms) can be used to train useful models for landslide early warning when non-landslide events are also included.
Sandra Melzner, Marco Conedera, Johannes Hübl, and Mauro Rossi
Nat. Hazards Earth Syst. Sci., 23, 3079–3093, https://doi.org/10.5194/nhess-23-3079-2023, https://doi.org/10.5194/nhess-23-3079-2023, 2023
Short summary
Short summary
The estimation of the temporal frequency of the involved rockfall processes is an important part in hazard and risk assessments. Different methods can be used to collect and analyse rockfall data. From a statistical point of view, rockfall datasets are nearly always incomplete. Accurate data collection approaches and the application of statistical methods on existing rockfall data series as reported in this study should be better considered in rockfall hazard and risk assessments in the future.
Stefan Hergarten
Nat. Hazards Earth Syst. Sci., 23, 3051–3063, https://doi.org/10.5194/nhess-23-3051-2023, https://doi.org/10.5194/nhess-23-3051-2023, 2023
Short summary
Short summary
Rockslides are a major hazard in mountainous regions. In formerly glaciated regions, the disposition mainly arises from oversteepened topography and decreases through time. However, little is known about this decrease and thus about the present-day hazard of huge, potentially catastrophic rockslides. This paper presents a new theoretical framework that explains the decrease in maximum rockslide size through time and predicts the present-day frequency of large rockslides for the European Alps.
Colin K. Bloom, Corinne Singeisen, Timothy Stahl, Andrew Howell, Chris Massey, and Dougal Mason
Nat. Hazards Earth Syst. Sci., 23, 2987–3013, https://doi.org/10.5194/nhess-23-2987-2023, https://doi.org/10.5194/nhess-23-2987-2023, 2023
Short summary
Short summary
Landslides are often observed on coastlines following large earthquakes, but few studies have explored this occurrence. Here, statistical modelling of landslides triggered by the 2016 Kaikōura earthquake in New Zealand is used to investigate factors driving coastal earthquake-induced landslides. Geology, steep slopes, and shaking intensity are good predictors of landslides from the Kaikōura event. Steeper slopes close to the coast provide the best explanation for a high landslide density.
Yi-Min Huang
Nat. Hazards Earth Syst. Sci., 23, 2649–2662, https://doi.org/10.5194/nhess-23-2649-2023, https://doi.org/10.5194/nhess-23-2649-2023, 2023
Short summary
Short summary
Debris flows are common hazards in Taiwan, and debris-flow early warning is important for disaster responses. The rainfall thresholds of debris flows are analyzed and determined in terms of rainfall intensity, accumulated rainfall, and rainfall duration, based on case histories in Taiwan. These thresholds are useful for disaster management, and the cases in Taiwan are useful for global debris-flow databases.
Davide Notti, Martina Cignetti, Danilo Godone, and Daniele Giordan
Nat. Hazards Earth Syst. Sci., 23, 2625–2648, https://doi.org/10.5194/nhess-23-2625-2023, https://doi.org/10.5194/nhess-23-2625-2023, 2023
Short summary
Short summary
We developed a cost-effective and user-friendly approach to map shallow landslides using free satellite data. Our methodology involves analysing the pre- and post-event NDVI variation to semi-automatically detect areas potentially affected by shallow landslides (PLs). Additionally, we have created Google Earth Engine scripts to rapidly compute NDVI differences and time series of affected areas. Datasets and codes are stored in an open data repository for improvement by the scientific community.
Simon Seelig, Thomas Wagner, Karl Krainer, Michael Avian, Marc Olefs, Klaus Haslinger, and Gerfried Winkler
Nat. Hazards Earth Syst. Sci., 23, 2547–2568, https://doi.org/10.5194/nhess-23-2547-2023, https://doi.org/10.5194/nhess-23-2547-2023, 2023
Short summary
Short summary
A rapid sequence of cascading events involving thermokarst lake outburst, rock glacier front failure, debris flow development, and river blockage hit an alpine valley in Austria during summer 2019. We analyze the environmental conditions initiating the process chain and identify the rapid evolution of a thermokarst channel network as the main driver. Our results highlight the need to account for permafrost degradation in debris flow hazard assessment studies.
Camilla Lanfranconi, Paolo Frattini, Gianluca Sala, Giuseppe Dattola, Davide Bertolo, Juanjuan Sun, and Giovanni Battista Crosta
Nat. Hazards Earth Syst. Sci., 23, 2349–2363, https://doi.org/10.5194/nhess-23-2349-2023, https://doi.org/10.5194/nhess-23-2349-2023, 2023
Short summary
Short summary
This paper presents a study on rockfall dynamics and hazard, examining the impact of the presence of trees along slope and block fragmentation. We compared rockfall simulations that explicitly model the presence of trees and fragmentation with a classical approach that accounts for these phenomena in model parameters (both the hazard and the kinetic energy change). We also used a non-parametric probabilistic rockfall hazard analysis method for hazard mapping.
Ascanio Rosi, William Frodella, Nicola Nocentini, Francesco Caleca, Hans Balder Havenith, Alexander Strom, Mirzo Saidov, Gany Amirgalievich Bimurzaev, and Veronica Tofani
Nat. Hazards Earth Syst. Sci., 23, 2229–2250, https://doi.org/10.5194/nhess-23-2229-2023, https://doi.org/10.5194/nhess-23-2229-2023, 2023
Short summary
Short summary
This work was carried out within the Strengthening Financial Resilience and Accelerating Risk Reduction in Central Asia (SFRARR) project and is focused on the first landslide susceptibility analysis at a regional scale for Central Asia. The most detailed available landslide inventories were implemented in a random forest model. The final aim was to provide a useful tool for reduction strategies to landslide scientists, practitioners, and administrators.
Francis K. Rengers, Luke A. McGuire, Katherine R. Barnhart, Ann M. Youberg, Daniel Cadol, Alexander N. Gorr, Olivia J. Hoch, Rebecca Beers, and Jason W. Kean
Nat. Hazards Earth Syst. Sci., 23, 2075–2088, https://doi.org/10.5194/nhess-23-2075-2023, https://doi.org/10.5194/nhess-23-2075-2023, 2023
Short summary
Short summary
Debris flows often occur after wildfires. These debris flows move water, sediment, and wood. The wood can get stuck in channels, creating a dam that holds boulders, cobbles, sand, and muddy material. We investigated how the channel width and wood length influenced how much sediment is stored. We also used a series of equations to back calculate the debris flow speed using the breaking threshold of wood. These data will help improve models and provide insight into future field investigations.
Maxime Morel, Guillaume Piton, Damien Kuss, Guillaume Evin, and Caroline Le Bouteiller
Nat. Hazards Earth Syst. Sci., 23, 1769–1787, https://doi.org/10.5194/nhess-23-1769-2023, https://doi.org/10.5194/nhess-23-1769-2023, 2023
Short summary
Short summary
In mountain catchments, damage during floods is generally primarily driven by the supply of a massive amount of sediment. Predicting how much sediment can be delivered by frequent and infrequent events is thus important in hazard studies. This paper uses data gathered during the maintenance operation of about 100 debris retention basins to build simple equations aiming at predicting sediment supply from simple parameters describing the upstream catchment.
Elsa S. Culler, Ben Livneh, Balaji Rajagopalan, and Kristy F. Tiampo
Nat. Hazards Earth Syst. Sci., 23, 1631–1652, https://doi.org/10.5194/nhess-23-1631-2023, https://doi.org/10.5194/nhess-23-1631-2023, 2023
Short summary
Short summary
Landslides have often been observed in the aftermath of wildfires. This study explores regional patterns in the rainfall that caused landslides both after fires and in unburned locations. In general, landslides that occur after fires are triggered by less rainfall, confirming that fire helps to set the stage for landslides. However, there are regional differences in the ways in which fire impacts landslides, such as the size and direction of shifts in the seasonality of landslides after fires.
Stefan Steger, Mateo Moreno, Alice Crespi, Peter James Zellner, Stefano Luigi Gariano, Maria Teresa Brunetti, Massimo Melillo, Silvia Peruccacci, Francesco Marra, Robin Kohrs, Jason Goetz, Volkmar Mair, and Massimiliano Pittore
Nat. Hazards Earth Syst. Sci., 23, 1483–1506, https://doi.org/10.5194/nhess-23-1483-2023, https://doi.org/10.5194/nhess-23-1483-2023, 2023
Short summary
Short summary
We present a novel data-driven modelling approach to determine season-specific critical precipitation conditions for landslide occurrence. It is shown that the amount of precipitation required to trigger a landslide in South Tyrol varies from season to season. In summer, a higher amount of preparatory precipitation is required to trigger a landslide, probably due to denser vegetation and higher temperatures. We derive dynamic thresholds that directly relate to hit rates and false-alarm rates.
Yaspal Sundriyal, Vipin Kumar, Neha Chauhan, Sameeksha Kaushik, Rahul Ranjan, and Mohit Kumar Punia
Nat. Hazards Earth Syst. Sci., 23, 1425–1431, https://doi.org/10.5194/nhess-23-1425-2023, https://doi.org/10.5194/nhess-23-1425-2023, 2023
Short summary
Short summary
The NW Himalaya has been one of the most affected terrains of the Himalaya, subject to disastrous landslides. This article focuses on two towns (Joshimath and Bhatwari) of the NW Himalaya, which have been witnessing subsidence for decades. We used a slope stability simulation to determine the response of the hillslopes accommodating these towns under various loading conditions. We found that the maximum displacement in these hillslopes might reach up to 20–25 m.
Cited articles
Amitrano, D., Grasso, J. R., and Senfaute, G.: Seismic precursory patterns before a cliff collapse and critical point phenomena, Geophys. Res. Lett., 32, L08314, https://doi.org/10.1029/2004GL022270, 2005.
Askarinejad, A.: Failure mechanisms in unsaturated silty sand slopes triggered by rainfall, ETH-Diss No. 21423, ETH Zurich, Zurich, 246 pp., https://doi.org/10.3929/ethz-a-010002526, 2013.
Bacchini, M. and Zannoni, A.: Relations between rainfall and triggering of debris-flow: case study of Cancia (Dolomites, Northeastern Italy), Nat. Hazards Earth Syst. Sci., 3, 71–79, https://doi.org/10.5194/nhess-3-71-2003, 2003.
Badoux, A., Graf, C., Rhyner, J., Kuntner, R., and McArdell, B. W.: A debris-flow alarm system for the Alpine Illgraben catchment: design and performance, Nat. Hazards, 49, 517–539, 2009.
Baum, R. L. and Godt, J. W.: Early warning of rainfall-induced shallow landslides and debris flows in the USA, Landslides, 7, 259–272, 2010.
Bell, R., Mayer, J., Pohl, J., Greiving, S., and Glade, T.: Integrative Frühwarnsysteme für gravitative Massenbewegungen (ILEWS), Monitoring, Implementierung, Klartext Verlag, Essen, 2010.
Berti, M., Martina, M. L. V., Franceschini, S., Pignone, A., Simoni, A., and Pizziolo, M.: Probabilistic rainfall thresholds for landslide occurrence using a Bayesian approach, J. Geophys. Res., 117, F04006, https://doi.org/10.1029/2012JF002367, 2012.
Bogena, H. R., Huisman, J. A., Oberdörster, C., and Vereecken, H.: Evaluation of a low-cost soil water content sensor for wireless network applications, J. Hydrol., 344, 32–42, 2007.
Bründl, M., Etter, H.-J., Steiniger, M., Klingler, Ch., Rhyner, J., and Ammann, W. J.: IFKIS – a basis for managing avalanche risk in settlements and on roads in Switzerland, Nat. Hazards Earth Syst. Sci., 4, 257–262, https://doi.org/10.5194/nhess-4-257-2004, 2004.
Burtin, A., Bollinger, L., Cattin, R., Vergne, J., and Nabelek, J. L.: Spatiotemporal sequence of Himalayan debris flow from analysis of high-frequency seismic noise, J. Geophys. Res.-Earth Surf., 114, F04009, https://doi.org/10.1029/2008JF001198, 2009.
Burtin, A., Hovius, N., McArdell, B. W., Turowski, J. M., and Vergne, J.: Dynamic links between channel and hillslopes revealed by seismic monitoring, Earth Surf. Dynam., 2, 21–33, 2014.
Caduff, R., Kos, A., Schlunegger, F., McArdell, B. W., and Wiesmann, A.: Terrestrial Radar Interferometric Measurement of Hillslope Deformation and Atmospheric Disturbances in the Illgraben Debris-Flow Catchment, Switzerland, IEEE Geosci. Remote Sens. Lett., 11, 434–438, 2011.
Caduff, R., Schlunegger, F., Kos, A., and Wiesmann, A.: A review of terrestrial radar interferometry for measuring surface change in the Geosciences, Earth Surf. Process. Landf., 40, 208–228, https://doi.org/10.1002/esp.3656, 2015.
Capparelli, G. and Tiranti, D.: Application of the MoniFLaIR early warning system for rainfall-induced landslides in Piedmont region (Italy), Landslides, 7, 401–410, 2010.
Chan, R. K. S. and Pun, W. K.: Landslip warning system in Hong Kong, in: Geotechnical Instrumentation News, BiTech Publishers Ltd., Richmond, BC, Canada, available at: http://www.bitech.ca/instrumentation_news.php (last access: November 2014), 33–35, 2004.
Chang, S. Y.: Evaluation of a system for detecting debris flows and warning road traffic at bridges susceptible to debris-flow hazard, in: Debris-flow Hazard Mitigation: Mechanics, Prediction, and Assessment, edited by: Rickenmann, D. and Chen, C., Millpress, Rotterdam, ISBN 907701778X, 731–742, 2003.
Chen, C.-Y., Chen, T.-C., Yu, F.-C., Yu, W.-H., and Tseng, C.-C.: Rainfall duration and debris-flow initiated studies for real-time monitoring, Environ. Geol., 47, 715–724, 2005.
Chiang, S.-H. and Chang, K.-T.: Application of radar data to modeling rainfall-induced landslides, Geomorphology, 103, 299–309, 2009.
Chleborad, A. F., Baum, R. L., and Godt, J. W.: A prototype system for forecasting landslides in the Seattle, Washington, Area, in: Engineering geology and landslides of the Seattle, edited by: Baum, R. L., Godt, J. W., and Highland, L. M., Washington, area: Geological Society of America Reviews in Engineering Geology v. XX, 103–120, https://doi.org/10.1130/2008.4020(06), 2008.
Christen, M., Kowalski, J., and Bartelt, P.: RAMMS: Numerical simulation of dense snow avalanches in three-dimensional terrain, Cold Reg. Sci. Technol., 63, 1–14, 2010.
Cohen, D., Lehmann, P., and Or, D.: Fiber bundle model for multiscale modeling of hydromechanical triggering of shallow landslides, Water Resour. Res., 45, W10436, https://doi.org/10.1029/2009WR007889, 2009.
Cole, K. and Davis, G. M.: Landslide warning and emergency planning systems in West Dorset, England, in: Instability. Planning and Management, edited by: McInnes, R. G. and Jakeways, J., Thomas Telford Publishing, London, UK, ISBN: 0727731327, 463–470, 2002.
Crosta, G. B. and Frattini, P.: Distributed modelling of shallow landslides triggered by intense rainfall, Nat. Hazards Earth Syst. Sci., 3, 81–93, https://doi.org/10.5194/nhess-3-81-2003, 2003.
Egger, P. and Mair, V.: Innovative measures to reduce dangers using the Grissian Torrent as an example, J. Wildbach Lawinen Eros. Steinschlag., 161, available at: http://www.wlv-austria.at/journal_archivartikel.php?ausgabe=29&artausgabe=296 (last access: November 2014), 2009.
Eichenberger, J., Ferrari, A., and Laloui, L.: Early warning thresholds for partially saturated slopes in volcanic ashes, Comput. Geotech., 49, 79–89, 2013.
Ekström, G. and Stark, C. P.: Simple Scaling of Catastrophic Landslide Dynamics, Science, 339, 1416–1419, 2013.
Evans, S. G., Tutubalina, O. V., Drobyshev, V. N., Chernomorets, S. S., McDougall, S., Petrakov, D. A., and Hungr, O.: Catastrophic detachment and high-velocity long-runout flow of Kolka Glacier, Caucasus Mountains, Russia in 2002, Geomorphology, 105, 314–321, 2009.
Eyer, W., Gubler, H. U., Keusen H. R., and Naef, O.: Frühwarndienste – Stand der Kenntnisse und Anwendungsbeipiele, FAN Forstliche Arbeitsgruppe, Glarus, Switzerland, 1998.
Finn, M., Lewis, M. D., Bosch, D., Giraldo, M., Yamamoto, K., Sullivan, D., and Kincaid, R.: Remote sensing of soil moisture using airborne hyperspectral data, GISci. Remote Sens., 48, 522–540, 2011.
Flentje, P., Chowdhury, R. N., Tobin, P., and Brizga, V.: Towards real-time landslide risk management in an urban area, in: Landslide Risk Management, edited by: Hungr, O., Fell, R., Couture, R., and Eberhardt, E., Proceedings of the International Conference on Landslide Risk Management, 31 May–4 June 2005, Vancouver, Canada, 741–751, 2005.
Forsttechnischer Dienst für Wildbach- und Lawinenverbauung: Frühwarn- und Monitoringsysteme in Österreich, Zustandsbericht 2008, Entscheidungshilfe: Frühwarnsystem. Forsttechnischer Dienst für Wildbach- und Lawinenverbauung, Sektion Salzburg, Fachschwerpunkt Frühwarn- und Monitoringsysteme, Salzburg, Austria, 90 pp., 2008.
Glantz, M. H.: Early warning system: Does and Don't, Report of Workshop 20–23 October 2003, Shanghai, China, 76 pp., 2003.
Glade, T. and Nadim, F.: Early warning systems for natural hazards and risks, Nat. Hazards, 70, 1669–1671, 2014.
Gubler, H.: Five years experience with avalanche-, mudflow-, and rockfall-alarm systems in Switzerland, in: Proceedings of the international snow science workshop (ISSW), Big Sky, Montana, 2000.
Guzzetti, F., Peruccacci, S., Rossi, M., and Stark, C. P.: The rainfall intensity–duration control of shallow landslides and debris flows: an update, Landslides, 5, 3–17, 2008.
Hegg, C. and Rhyner, J.: Warnung bei aussergewöhnlichen Naturereignissen. Forum für Wissen, Swiss Federal Research Institute WSL, Birmensdorf, ISSN 1021-2256, 96 pp., 2007.
Heil, B., Petzold, I., Romang, H., and Hess, J.: The common information platform for natural hazards in Switzerland, Nat. Hazards, 70, 1673–1687, 2014.
Honda K., Aadit, S., Rassarin, C., Nguyen, D. H., Hiroshi, S., Teuku, F. F., Dwikorita, K., and Kyoji, S.: Landslide early warning system for rural community as an application of Sensor Asia. World Conference on Agricultural Information and IT, IAALD AFITA WCCA, 24–27 August 2008 at Tokyo University of Agriculture, Tokyo, 283–288, 2008.
Hong, Y., Adler, R. F., and Huffman, G.: An Experimental Global Prediction System for Rainfall-Triggered Landslides Using Satellite Remote Sensing and Geospatial Datasets, IEEE Trans. Geosci. Remote Sens., 45, 1671–1680, 2007.
Huggel, C., Khabarov, N., Obersteiner, M., and Ramírez, J. M.: Implementation and integrated numerical modeling of a landslide early warning system: a pilot study in Colombia, Nat. Hazards, 52, 501–518, 2010.
Hungr, O. and McDougall, S.: Two numerical models for landslide dynamic analysis, Comput. Geosci., 35, 978–992, 2009.
Intrieri, E., Gigli, G., Mugnai, F., Fanti, R., and Casagli, N.: Design and implementation of a landslide early warning system, Eng. Geol., 147–148, 124–136, 2012.
Intrieri, E., Gigli, G., Casagli, N., and Nadim, F.: Brief communication "Landslide Early Warning System: toolbox and general concepts", Nat. Hazards Earth Syst. Sci., 13, 85–90, https://doi.org/10.5194/nhess-13-85-2013, 2013.
Itakura, Y., Koga, Y., Takahama, J., and Nowa, Y.: Acoustic detection sensor for debris flow, in: Debris-flow hazards mitigation, edited by: Chen, C., ASCE, American Society of Civil Engineers, New York, NY, 747–756, 1997.
Jakob, M., Holm, K., Lange, O., and Schwab, J. W.: Hydrometeorological thresholds for landslide initiation and forest operation shutdowns on the north coast of British Columbia, Landslides, 3, 228–238, 2006.
Jakob, M., Owen, T., and Simpson, T.: A regional real-time debris-flow warning system for the District of North Vancouver, Canada, Landslides, 9, 165–178, 2012.
Johansen, A. and Sornette, D.: Critical ruptures, Eur. Phys. J. B, 18, 163–181, 2000.
Jorgensen, D. P., Hanshaw, M. N., Schmidt, K. M., Laber, J. L., Staley, D. M., Kean, J. W., and Restrepo, P. J.: Value of a dual-polarized gap-filling radar in support of southern California post-fire debris-flow warnings, J. Hydrometeorol., 12, 1581–1595, 2011.
Kean, J. W., Staley, D. M., and Cannon, S. H.: In situ measurements of post fire debris flows in southern California: Comparisons of the timing and magnitude of 24 debris flow events with rainfall and soil moisture conditions, J. Geophys. Res.-Earth Surf., 116, F04019, https://doi.org/10.1029/2011JF002005, 2011.
Keefer, D. K., Wilson, R. C., Mark, R. K., Brabb, E. E., Brown, W. M., Ellen, S. D., Harp, E. L., Wieczorek, G. F., Alger, C. S., and Zatkin, R. S.: Real-time landslide warning during heavy rainfall, Science, 238, 921–925, 1987.
Kirschbaum, D. B., Adler, R., Hong, Y., Kumar, S., Peters-Lidard, C., and Lerner-Lam, A.: Advances in landslide nowcasting: evaluation of a global and regional modeling approach, Environ. Earth Sci., 66, 1683–1696, 2012.
Lacroix, P., Grasso, J., Roulle, J., Giraud, G., Goetz, D., Morin, S., and Helmstetter, A.: Monitoring of snow avalanches using a seismic array: Location, speed estimation, and relationships to meteorological variables, J. Geophys. Res.-Earth Surf., 117, F01034, https://doi.org/10.1029/2011JF002106, 2012.
La Rocca, M., Galluzo, D., Saccorotti, G., Tinit, S., Cimini, G. B., and Del Pezzo, E.: Seismic signals associated with landslides and with a tsunami at Stromboli Volcano, Italy, Bull. Seismol. Soc. Am., 94, 1850–1867, 2004.
Lehmann, P. and Or, D.: Hydromechanical triggering of landslides: From progressive local failures to mass release, Water Resour. Res., 48, W03535, https://doi.org/10.1029/2011WR010947, 2012.
Lehmann, P. and Or, D.: Effect of wetness patchiness on evaporation dynamics from drying porous surfaces, Water Resour. Res., 49, 8250–8262, 2013.
Lehning, M., Bartelt, P., Brown, B., Russi, T., Stöckli, U., and Zimmerli M.: A network of automatic weather and snow stations and supplementary model calculations providing snowpack information for avalanche warning, in: Proceedings of the International Snow Science Workshop "a Merging of Theory and Practice", September 1998, Washington State Departement of Transportation, Sunriver, Oregon, Seattle, Washington, 225–233, 1998.
Loew, S., Gitschig, V., Moore, J. R., and Keller-Signer, A.: Monitoring of potentially catastrophic rockslides, in: Landslides and Engineered Slopes: Protecting Society through Improved Understanding, edited by: Eberhardt, E., Froese, C., Turner, K., and Leroueil, S., Taylor & Francis Group, London, 101–116, 2012.
Michlmayr, G., Cohen, D., and Or, D.: Sources and characteristics of acoustic emissions from mechanically stressed geologic granular media – A review, Earth-Sci. Rev., 112, 97–114, 2012.
Michlmayr, G., Cohen, D., and Or, D.: Shear-induced force fluctuations and acoustic emissions in granular material, J. Geophys. Res.-Solid Earth, 118, 6086–6098, 2013.
Michoud, C., Bazin, S., Blikra, L. H., Derron, M.-H., and Jaboyedoff, M.: Experiences from site-specific landslide early warning systems, Nat. Hazards Earth Syst. Sci., 13, 2659–2673, https://doi.org/10.5194/nhess-13-2659-2013, 2013.
Molteni, F., Buizza, R., Palmer, T. N., and Petroliagis, T.: The ECMWF ensemble prediction system: Methodology and validation, Q. J. Roy. Meteorol. Soc., 122, 73–119, 1996.
NOAA-USGS Debris Flow Task Force: NOAA-USGS debris-flow warning system. Final report, US Geological Survey Circular 1283, US Geological Survey, Reston, Virginia, USA, p. 47, available at: http://pubs.usgs.gov/circ/2005/1283/pdf/Circular1283.pdf (last access: November 2014), 2005.
Nuth, M. and Laloui, L.: Advances in modelling hysteretic water retention curve in deformable soils, Comput. Geotech., 35, 835–844, 2008.
O'Brien, J., Julien, P., and Fullerton, W.: Two-Dimensional Water Flood and Mudflow Simulation, J. Hydraul. Eng., 119, 244–261, 1993.
Ortiago, J. A. R., Justi, M. G., D'Orsi, R., and Brito, H.: Rio-Watch 2001: the Rio de Janeiro landslide alarm system, Proc. 14th Southeast Asian Geotechnical Conference, edited by: Ho and Li, Hong Kong, Balkema, 3, 237–241, 2001.
Panziera, L., Germann, U., Gabella, M., and Mandapaka, P. V.: NORA-Nowcasting of Orographic Rainfall by means of Analogues, Q. J. Roy. Meteorol. Soc., 137, 2106–2123, 2011.
Parker, T., Shatalin, S., and Farhadiroushan, M: Distributed Acoustic Sensing – a new tool for seismic applications, First Break, 32, 61–69, 2014.
Reiweger, I. and Schweizer, J.: Measuring acoustic emissions in an avalanche starting zone to monitor snow stability, in: Proceedings ISSW 2013, edited by: Naaim-Bouvet, F., Durand, Y., and Lambert, R., International Snow Science Workshop, Grenoble, France, 7–11 October 2013. ANENA, IRSTEA, Météo-France, Grenoble, France, 942–944, 2013.
Reiweger, I., Mayer, K., Steiner, K., and Dual, J.; Schweizer, J.: Measuring and localizing acoustic emission events in snow prior to fracture, Cold Reg. Sci. Technol., 110, 160–169, 2015.
Rhyner J.: Lawinenwarnung Schweiz – Komponenten eines bewähren Systems, in: Warnung bei aussergewöhnlichen Naturereignissen, edited by: Hegg, C. and Rhyner, J., Forum für Wissen 2007, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland, 91–92, 2007.
Sättele, M. and Meier, L.: Elektronisch Warnen, in: Achtung Naturgefahr, TEC21, Nr. 31-32, espazium, Zurich, Switzerland, 2013.
Sättele, M., Bründl, M., and Straub, D.: A classification of warning system for natural hazards, in: 10th International Probabilistic Workshop, edited by: Moormann, C., Huber, M., and Proske, D., Stuttgart: Institut für Geotechnik der Universität Stuttgart, 257–270, 2012.
Sättele, M., Bründl, M., and Straub, D.: Bayesian networks to quantify the reliability of a debris flow alarm system, in: Safety, Reliability, Risk and Life-cycle Performance of Structures and Infrastructures, edited by: Deodatis, G., Ellingwood, B. R., and Frangopol, D. M., Taylor & Francis Group, London, UK, 2013.
Scheel, M. L. M., Rohrer, M., Huggel, Ch., Santos Villar, D., Silvestre, E., and Huffman, G. J.: Evaluation of TRMM Multi-satellite Precipitation Analysis (TMPA) performance in the Central Andes region and its dependency on spatial and temporal resolution, Hydrol. Earth Syst. Sci., 15, 2649–2663, https://doi.org/10.5194/hess-15-2649-2011, 2011.
Schleiss, M. and Berne, A.: Stochastic Space-Time Disaggregation of Rainfall into DSD fields, J. Hydrometeorol., 13, 1954–1969, 2012.
Schleiss, M., Chamoun, S., and Berne A.: Non-stationarity in intermittent rainfall: the "dry drift", J. Hydrometeorol., 15, 1189–1204, 2014.
Schneider, D., Huggel, C., Cochachin, A., Guillén, S., and García, J.: Mapping hazards from glacier lake outburst floods based on modelling of process cascades at Lake 513, Carhuaz, Peru, Adv. Geosci., 35, 145–155, 2014.
Segoni, S., Battistini, A., Rossi, G., Rosi, A., Lagomarsino, D., Catani, F., Moretti, S., and Casagli, N.: Technical Note: An operational landslide early warning system at regional scale based on space-time variable rainfall thresholds, Nat. Hazards Earth Syst. Sci. Discuss., 2, 6599–6622, https://doi.org/10.5194/nhessd-2-6599-2014, 2014.
Shafique, M., van der Meijde, M., and Ullah, S.: Regolith modeling and its relation to earthquake induced building damage: A remote sensing approach, J. Asian Earth Sci., 42, 65–75, 2011.
Springman, S. M., Kienzler, P., Casini, F., and Askarinejad, A.: Landslide triggering experiment in a steep forested slope in Switzerland, Proceedings of the 17th International Conference on Soil Mechanics and Geotechnical Engineering, edited by: Hamza, M., Shahien, M., and El-Mossallamy, Y., Alexandria, Egypt, https://doi.org/10.3233/978-1-60750-031-5-1698, 2009.
Springman, S. M., Askarinejad, A., Casini, F., Friedel, S., Kienzler, P., Teysseire, P., and Thielen, A.: Lessons learnt from field tests in some potentially unstable slopes in Switzerland, Acta Slovenica Geotech., 1, 5–29, 2012.
Schweizer, J. and van Herwijnen, A.: Can near real-time avalanche occurrence data improve avalanche forecasting?, in: Proceedings ISSW 2013, edited by: Naaim-Bouvet, F., Durand, Y., and Lambert, R., International Snow Science Workshop, Grenoble, France, 7–11 October, ANENA, IRSTEA, Météo-France, Grenoble, France, 195–198, 2013.
Suriñach, E., Vilajosana, I., Khazaradze, G., Biescas, B., Furdada, G., and Vilaplana, J. M.: Seismic detection and characterization of landslides and other mass movements, Nat. Hazards Earth Syst. Sci., 5, 791–798, https://doi.org/10.5194/nhess-5-791-2005, 2005
Tobler, D., Kuli, I., and Hählen, N.: Hazard management in a Debris Flow Affected Area – The Spreitgraben in Central Switzerland. Extended Abstract, International Disaster and Risk Conference, Global Risk Forum, August 2012, Davos, 2012.
UNEP (United Nations Environment Programme): Early Warning Systems: A State of the Art Analysis and Future Directions. Division of Early Warning and Assessment (DEWA), United Nations Environment Programme (UNEP), Nairobi, ISBN: 978-92-807-3263-4, 2012.
UN/ISDR: Global Survey of Early Warning Systems: An assessment of capacities, gaps and opportunities towards building a comprehensive global early warning system for all natural hazards, available at: http://www.unisdr.org/2006/ppew/info-resources/ewc3/Global-Survey-of-Early-Warning-Systems.pdf (last access: November 2014), 2006.
Van Herwijnen, A. and Schweizer, J.: Seismic sensor array for monitoring an avalanche start zone: design, deployment and preliminary results, J. Glaciol., 57, 267–276, 2011a.
Van Herwijnen, A. and Schweizer, J.: Monitoring avalanche activity using a seismic sensor, Cold Reg. Sci. Technol., 69, 165–176, 2011b.
Villagrán de León, J. C., Pruessner, I., and Breedlove, H.: Alert and Warning Frameworks in the Context of Early Warning Systems. A Comparative Review. Intersections No. 12. Bonn: United Nations University Institute for Environment and Human Security, 2013.
Von Ruette, J., Lehmann, P., and Or, D.: Rainfall-triggered shallow landslides at catchment scale – threshold mechanics-based modeling for abruptness and localization, Water Resour. Res., 49, 6266–6285, 2013.
Von Ruette, J., Lehmann, P., and Or, D.: Effects of rainfall spatial variability and intermittency on shallow landslide triggering patterns at a catchment scale, Water Resour. Res., 50 , 7780–7799, https://doi.org/10.1002/2013WR015122, 2014.
Wegmüller, U., Strozzi, T., Gruner, U., Gisler, C., and Hauser, M.: Verschiebungsmessungen mittels Satellitenradar im Urner Reusstal oberhalb der Nord-Süd-Verkehrsachse im Zeitraum 1992–2010. Swiss Bull. angew. Geol., 18, 139–153, 2013.
Willenberg, H., Eberhardt, E., Loew, S., McDougall, S., and Hungr, O.: Hazard assessment and runout analysis for an unstable rock slope above an industrial site in the Riviera valley, Switzerland, Landslides, 6, 111–116, 2009.
Yamamoto, Y. and Springman, S. M.: Axial compression stress path tests on artificial frozen soil samples in a triaxial device at temperatures just below 0 °C. Can. Geotech. J., 51, 1178–1195, https://doi.org/10.1139/cgj-2013-0257, 2014.
Žic, E., Arbanas, Ž., Bićanić, N., and Ožanić, N.: A model of mudflow propagation downstream from the Grohovo landslide near the city of Rijeka (Croatia), Nat. Hazards Earth Syst. Sci., 15, 293–313, https://doi.org/10.5194/nhess-15-293-2015, 2015.
Short summary
This review paper describes the state of the art in monitoring and predicting rapid mass movements for early warning. It further presents recent innovations in observation technologies and modelling to be used in future early warning systems (EWS). Finally, the paper proposes avenues towards successful implementation of next-generation EWS.
This review paper describes the state of the art in monitoring and predicting rapid mass...
Special issue
Altmetrics
Final-revised paper
Preprint