Articles | Volume 15, issue 10
https://doi.org/10.5194/nhess-15-2209-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/nhess-15-2209-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Assessment and comparison of extreme sea levels and waves during the 2013/14 storm season in two UK coastal regions
M. P. Wadey
CORRESPONDING AUTHOR
Ocean and Earth Sciences, University of Southampton, National Oceanography Centre, Southampton, Hampshire, UK
J. M. Brown
National Oceanography Centre, Liverpool, Merseyside, UK
I. D. Haigh
Ocean and Earth Sciences, University of Southampton, National Oceanography Centre, Southampton, Hampshire, UK
School of Civil, Environmental and Mining Engineering and the UWA Oceans Institute, The University of Western Australia, Perth, Australia
T. Dolphin
The Centre for Environment, Fisheries & Aquaculture Science (Cefas), Lowestoft, Suffolk, UK
P. Wisse
Sefton Council, Bootle, Merseyside, UK
Related authors
A. J. Stevens, D. Clarke, R. J. Nicholls, and M. P. Wadey
Nat. Hazards Earth Syst. Sci., 15, 1215–1229, https://doi.org/10.5194/nhess-15-1215-2015, https://doi.org/10.5194/nhess-15-1215-2015, 2015
Short summary
Short summary
Using census data, historic maps and hydrodynamic modelling, this paper presents a methodology for assessing how the exposure of people to flooding has changed over the last 200 years at the local level in the UK. The method is applied to two case studies at Portsea and Hayling Islands in the UK's Solent region. The analysis shows that for the case studies, population rise has, to date, had a much greater influence on exposure than sea level rise.
M. P. Wadey, I. D. Haigh, and J. M. Brown
Ocean Sci., 10, 1031–1045, https://doi.org/10.5194/os-10-1031-2014, https://doi.org/10.5194/os-10-1031-2014, 2014
Thomas P. Collings, Niall D. Quinn, Ivan D. Haigh, Joshua Green, Izzy Probyn, Hamish Wilkinson, Sanne Muis, William V. Sweet, and Paul D. Bates
EGUsphere, https://doi.org/10.5194/egusphere-2023-2267, https://doi.org/10.5194/egusphere-2023-2267, 2023
Short summary
Short summary
Coastal areas are at risk of flooding from rising sea levels and extreme weather events. This study uses a new way to figure out how likely coastal flooding is around the world. The method uses data from observations and computer models to create a detailed map of where these floods might happen at the coast. The approach can predict flooding in areas where there is little or no data. The results can be used to help get ready for and prevent this type of flooding.
Melissa Wood, Ivan D. Haigh, Quan Quan Le, Hung Nghia Nguyen, Hoang Ba Tran, Stephen E. Darby, Robert Marsh, Nikolaos Skliris, Joël J.-M. Hirschi, Robert J. Nicholls, and Nadia Bloemendaal
Nat. Hazards Earth Syst. Sci., 23, 2475–2504, https://doi.org/10.5194/nhess-23-2475-2023, https://doi.org/10.5194/nhess-23-2475-2023, 2023
Short summary
Short summary
We used a novel database of simulated tropical cyclone tracks to explore whether typhoon-induced storm surges present a future flood risk to low-lying coastal communities around the South China Sea. We found that future climate change is likely to change tropical cyclone behaviour to an extent that this increases the severity and frequency of storm surges to Vietnam, southern China, and Thailand. Consequently, coastal flood defences need to be reviewed for resilience against this future hazard.
Ed Hawkins, Philip Brohan, Samantha N. Burgess, Stephen Burt, Gilbert P. Compo, Suzanne L. Gray, Ivan D. Haigh, Hans Hersbach, Kiki Kuijjer, Oscar Martínez-Alvarado, Chesley McColl, Andrew P. Schurer, Laura Slivinski, and Joanne Williams
Nat. Hazards Earth Syst. Sci., 23, 1465–1482, https://doi.org/10.5194/nhess-23-1465-2023, https://doi.org/10.5194/nhess-23-1465-2023, 2023
Short summary
Short summary
We examine a severe windstorm that occurred in February 1903 and caused significant damage in the UK and Ireland. Using newly digitized weather observations from the time of the storm, combined with a modern weather forecast model, allows us to determine why this storm caused so much damage. We demonstrate that the event is one of the most severe windstorms to affect this region since detailed records began. The approach establishes a new tool to improve assessments of risk from extreme weather.
Ahmed A. Nasr, Thomas Wahl, Md Mamunur Rashid, Paula Camus, and Ivan D. Haigh
Hydrol. Earth Syst. Sci., 25, 6203–6222, https://doi.org/10.5194/hess-25-6203-2021, https://doi.org/10.5194/hess-25-6203-2021, 2021
Short summary
Short summary
We analyse dependences between different flooding drivers around the USA coastline, where the Gulf of Mexico and the southeastern and southwestern coasts are regions of high dependence between flooding drivers. Dependence is higher during the tropical season in the Gulf and at some locations on the East Coast but higher during the extratropical season on the West Coast. The analysis gives new insights on locations, driver combinations, and the time of the year when compound flooding is likely.
Julia Rulent, Lucy M. Bricheno, J. A. Mattias Green, Ivan D. Haigh, and Huw Lewis
Nat. Hazards Earth Syst. Sci., 21, 3339–3351, https://doi.org/10.5194/nhess-21-3339-2021, https://doi.org/10.5194/nhess-21-3339-2021, 2021
Short summary
Short summary
High coastal total water levels (TWLs) can lead to flooding and hazardous conditions for coastal communities and environment. In this research we are using numerical models to study the interactions between the three main components of the TWL (waves, tides, and surges) on UK and Irish coasts during winter 2013/14. The main finding of this research is that extreme waves and surges can indeed happen together, even at high tide, but they often occurred simultaneously 2–3 h before high tide.
Samuel Tiéfolo Diabaté, Didier Swingedouw, Joël Jean-Marie Hirschi, Aurélie Duchez, Philip J. Leadbitter, Ivan D. Haigh, and Gerard D. McCarthy
Ocean Sci., 17, 1449–1471, https://doi.org/10.5194/os-17-1449-2021, https://doi.org/10.5194/os-17-1449-2021, 2021
Short summary
Short summary
The Gulf Stream and the Kuroshio are major currents of the North Atlantic and North Pacific, respectively. They transport warm water northward and are key components of the Earth climate system. For this study, we looked at how they affect the sea level of the coasts of Japan, the USA and Canada. We found that the inshore sea level
co-varies with the north-to-south shifts of the Gulf Stream and Kuroshio. In the paper, we discuss the physical mechanisms that could explain the agreement.
Georg Umgiesser, Marco Bajo, Christian Ferrarin, Andrea Cucco, Piero Lionello, Davide Zanchettin, Alvise Papa, Alessandro Tosoni, Maurizio Ferla, Elisa Coraci, Sara Morucci, Franco Crosato, Andrea Bonometto, Andrea Valentini, Mirko Orlić, Ivan D. Haigh, Jacob Woge Nielsen, Xavier Bertin, André Bustorff Fortunato, Begoña Pérez Gómez, Enrique Alvarez Fanjul, Denis Paradis, Didier Jourdan, Audrey Pasquet, Baptiste Mourre, Joaquín Tintoré, and Robert J. Nicholls
Nat. Hazards Earth Syst. Sci., 21, 2679–2704, https://doi.org/10.5194/nhess-21-2679-2021, https://doi.org/10.5194/nhess-21-2679-2021, 2021
Short summary
Short summary
The city of Venice relies crucially on a good storm surge forecast to protect its population and cultural heritage. In this paper, we provide a state-of-the-art review of storm surge forecasting, starting from examples in Europe and focusing on the Adriatic Sea and the Lagoon of Venice. We discuss the physics of storm surge, as well as the particular aspects of Venice and new techniques in storm surge modeling. We also give recommendations on what a future forecasting system should look like.
Paula Camus, Ivan D. Haigh, Ahmed A. Nasr, Thomas Wahl, Stephen E. Darby, and Robert J. Nicholls
Nat. Hazards Earth Syst. Sci., 21, 2021–2040, https://doi.org/10.5194/nhess-21-2021-2021, https://doi.org/10.5194/nhess-21-2021-2021, 2021
Short summary
Short summary
In coastal regions, floods can arise through concurrent drivers, such as precipitation, river discharge, storm surge, and waves, which exacerbate the impact. In this study, we identify hotspots of compound flooding along the southern coast of the North Atlantic Ocean and the northern coast of the Mediterranean Sea. This regional assessment can be considered a screening tool for coastal management that provides information about which areas are more predisposed to experience compound flooding.
Yasser Hamdi, Ivan D. Haigh, Sylvie Parey, and Thomas Wahl
Nat. Hazards Earth Syst. Sci., 21, 1461–1465, https://doi.org/10.5194/nhess-21-1461-2021, https://doi.org/10.5194/nhess-21-1461-2021, 2021
Svetlana Jevrejeva, Lucy Bricheno, Jennifer Brown, David Byrne, Michela De Dominicis, Andy Matthews, Stefanie Rynders, Hindumathi Palanisamy, and Judith Wolf
Nat. Hazards Earth Syst. Sci., 20, 2609–2626, https://doi.org/10.5194/nhess-20-2609-2020, https://doi.org/10.5194/nhess-20-2609-2020, 2020
Short summary
Short summary
We explore the role of waves, storm surges and sea level rise for the Caribbean region with a focus on the eastern Caribbean islands. We simulate past extreme events, suggesting a storm surge might reach 1.5 m and coastal wave heights up to 12 m offshore and up to 5 m near the coast of St Vincent. We provide sea level projections of up to 2.2 m by 2100. Our work provides quantitative evidence for policy-makers, scientists and local communities to actively protect against climate change.
Scott A. Stephens, Robert G. Bell, and Ivan D. Haigh
Nat. Hazards Earth Syst. Sci., 20, 783–796, https://doi.org/10.5194/nhess-20-783-2020, https://doi.org/10.5194/nhess-20-783-2020, 2020
Short summary
Short summary
Extreme sea levels in New Zealand occur in nearby places and at similar times, which means that flooding impacts and losses may be linked in space and time. The most extreme sea levels depend on storms coinciding with very high tides because storm surges are relatively small in New Zealand. The type of storm weather system influences where the extreme sea levels occur, and the annual timing is influenced by the low-amplitude (~10 cm) annual sea-level cycle.
Anaïs Couasnon, Dirk Eilander, Sanne Muis, Ted I. E. Veldkamp, Ivan D. Haigh, Thomas Wahl, Hessel C. Winsemius, and Philip J. Ward
Nat. Hazards Earth Syst. Sci., 20, 489–504, https://doi.org/10.5194/nhess-20-489-2020, https://doi.org/10.5194/nhess-20-489-2020, 2020
Short summary
Short summary
When a high river discharge coincides with a high storm surge level, this can exarcebate flood level, depth, and duration, resulting in a so-called compound flood event. These events are not currently included in global flood models. In this research, we analyse the timing and correlation between modelled discharge and storm surge level time series in deltas and estuaries. Our results provide a first indication of regions along the global coastline with a high compound flooding potential.
Alistair Hendry, Ivan D. Haigh, Robert J. Nicholls, Hugo Winter, Robert Neal, Thomas Wahl, Amélie Joly-Laugel, and Stephen E. Darby
Hydrol. Earth Syst. Sci., 23, 3117–3139, https://doi.org/10.5194/hess-23-3117-2019, https://doi.org/10.5194/hess-23-3117-2019, 2019
Short summary
Short summary
Flooding can arise from multiple sources, including waves, extreme sea levels, rivers, and severe rainfall. When two or more sources combine, the consequences can be greatly multiplied. We find the potential for the joint occurrence of extreme sea levels and river discharge to be greater on the western coast of the UK compared to the eastern coast. This is due to the weather conditions generating each flood source around the UK. These results will help increase our flood forecasting ability.
Robert Marsh, Ivan D. Haigh, Stuart A. Cunningham, Mark E. Inall, Marie Porter, and Ben I. Moat
Ocean Sci., 13, 315–335, https://doi.org/10.5194/os-13-315-2017, https://doi.org/10.5194/os-13-315-2017, 2017
Short summary
Short summary
To the west of Britain and Ireland, a strong ocean current follows the steep slope that separates the deep Atlantic and the continental shelf. This “Slope Current” exerts an Atlantic influence on the North Sea and its ecosystems. Using a combination of computer modelling and archived data, we find that the Slope Current weakened over 1988–2007, reducing Atlantic influence on the North Sea, due to a combination of warming of the subpolar North Atlantic and weakening winds to the west of Scotland.
J. M. Brown, P. Ciavola, G. Masselink, R. McCall, and A. J. Plater
Nat. Hazards Earth Syst. Sci., 16, 463–467, https://doi.org/10.5194/nhess-16-463-2016, https://doi.org/10.5194/nhess-16-463-2016, 2016
P. Dissanayake, J. Brown, and H. Karunarathna
Nat. Hazards Earth Syst. Sci., 15, 1533–1543, https://doi.org/10.5194/nhess-15-1533-2015, https://doi.org/10.5194/nhess-15-1533-2015, 2015
Short summary
Short summary
Impacts of storm event chronology in a storm cluster was investigated. The largest event-driven bed level change occurred under the most powerful storm event when it initialised the cluster, and the lowest bed level change occurred for the weakest event when it ended the cluster. Negligible variability in the cumulative impact of the storm clusters occurred in response to different storm wave chronologies. However, the highest erosion was found when the storms approached in increasing severity.
P. J. Knight, T. Prime, J. M. Brown, K. Morrissey, and A. J. Plater
Nat. Hazards Earth Syst. Sci., 15, 1457–1471, https://doi.org/10.5194/nhess-15-1457-2015, https://doi.org/10.5194/nhess-15-1457-2015, 2015
Short summary
Short summary
A pressing problem facing coastal decision makers is the conversion of "high-level" but plausible climate change assessments into an effective basis for climate change adaptation at the local scale. Here, we describe a web-based, geospatial decision support tool (DST) that provides an assessment of the potential flood risk for populated coastal lowlands arising from future sea-level rise, coastal storms, and high river flows.
A. J. Stevens, D. Clarke, R. J. Nicholls, and M. P. Wadey
Nat. Hazards Earth Syst. Sci., 15, 1215–1229, https://doi.org/10.5194/nhess-15-1215-2015, https://doi.org/10.5194/nhess-15-1215-2015, 2015
Short summary
Short summary
Using census data, historic maps and hydrodynamic modelling, this paper presents a methodology for assessing how the exposure of people to flooding has changed over the last 200 years at the local level in the UK. The method is applied to two case studies at Portsea and Hayling Islands in the UK's Solent region. The analysis shows that for the case studies, population rise has, to date, had a much greater influence on exposure than sea level rise.
M. P. Wadey, I. D. Haigh, and J. M. Brown
Ocean Sci., 10, 1031–1045, https://doi.org/10.5194/os-10-1031-2014, https://doi.org/10.5194/os-10-1031-2014, 2014
J. M. Brown, L. O. Amoudry, F. M. Mercier, and A. J. Souza
Ocean Sci., 9, 721–729, https://doi.org/10.5194/os-9-721-2013, https://doi.org/10.5194/os-9-721-2013, 2013
Related subject area
Sea, Ocean and Coastal Hazards
A wave-resolving modeling study of rip current variability, rip hazard, and swimmer escape strategies on an embayed beach
Human displacements from Tropical Cyclone Idai attributable to climate change
Three decades of coastal subsidence in the slow-moving Nice Côte d'Azur Airport area (France) revealed by InSAR (interferometric synthetic-aperture radar): insights into the deformation mechanism
Modelling extreme water levels using intertidal topography and bathymetry derived from multispectral satellite images
Regional assessment of extreme sea levels and associated coastal flooding along the German Baltic Sea coast
Joint probability analysis of storm surges and waves caused by tropical cyclones for the estimation of protection standard: a case study on the eastern coast of the Leizhou Peninsula and the island of Hainan in China
Meteotsunami in the United Kingdom: the hidden hazard
A new European coastal flood database for low-medium intensity events
Climate-induced storminess forces major increases in future storm surge hazard in the South China Sea region
Assessing Typhoon Soulik-induced morphodynamics over the Mokpo coastal region in South Korea based on a geospatial approach
Bayesian hierarchical modelling of sea-level extremes in the Finnish coastal region
Assessing the coastal hazard of Medicane Ianos through ensemble modelling
A predictive equation for wave setup using genetic programming
Bayesian extreme value analysis of extreme sea levels along the German Baltic coast using historical information
Contribution of solitons to enhanced rogue wave occurrence in shallow depths: a case study in the southern North Sea
Compound flood events: analysing the joint occurrence of extreme river discharge events and storm surges in northern and central Europe
Improvements to the detection and analysis of external surges in the North Sea
Optimal probabilistic placement of facilities using a surrogate model for 3D tsunami simulations
Enabling dynamic modelling of coastal flooding by defining storm tide hydrographs
The role of preconditioning for extreme storm surges in the western Baltic Sea
Storm characteristics influence nitrogen removal in an urban estuarine environment
Freak wave events in 2005–2021: statistics and analysis of favourable wave and wind conditions
Probabilistic projections and past trends of sea level rise in Finland
The effect of deep ocean currents on ocean- bottom seismometers records
Total water levels along the South Atlantic Bight during three along-shelf propagating tropical cyclones: relative contributions of storm surge and wave runup
An interdisciplinary agent-based evacuation model: integrating the natural environment, built environment, and social system for community preparedness and resilience
Hurricane Irma: an unprecedented event over the last 3700 years? Geomorphological changes and sedimentological record in Codrington Lagoon, Barbuda
Coastal extreme sea levels in the Caribbean Sea induced by tropical cyclones
Characteristics of consecutive tsunamis and resulting tsunami behaviors in southern Taiwan induced by the Hengchun earthquake doublet on 26 December 2006
Potential tsunami hazard of the southern Vanuatu subduction zone: tectonics, case study of the Matthew Island tsunami of 10 February 2021 and implication in regional hazard assessment
Detecting anomalous sea-level states in North Sea tide gauge data using an autoassociative neural network
Boulder transport and wave height of a seventeenth century South China Sea tsunami on Penghu Islands, Taiwan
Observations of extreme wave runup events on the US Pacific Northwest coast
Warning water level determination and its spatial distribution in coastal areas of China
A global open-source database of flood-protection levees on river deltas (openDELvE)
Hazard assessment and hydrodynamic, morphodynamic, and hydrological response to Hurricane Gamma and Hurricane Delta on the northern Yucatán Peninsula
Estimating dune erosion at the regional scale using a meta-model based on neural networks
Simulation of tsunami induced by a submarine landslide in a glaciomarine margin: the case of Storfjorden LS-1 (southwestern Svalbard Islands)
Multi-hazard analysis of flood and tsunamis on the western Mediterranean coast of Turkey
Importance of non-stationary analysis for assessing extreme sea levels under sea level rise
Wind-wave characteristics and extremes along the Emilia-Romagna coast
Partitioning the contributions of dependent offshore forcing conditions in the probabilistic assessment of future coastal flooding
Identification and ranking of subaerial volcanic tsunami hazard sources in Southeast Asia
Modelling geographical and built-environment attributes as predictors of human vulnerability during tsunami evacuations: a multi-case-study and paths to improvement
Modelling the sequential earthquake–tsunami response of coastal road embankment infrastructure
Historical tsunamis of Taiwan in the 18th century: the 1781 Jiateng Harbor flooding and 1782 tsunami event
Multilevel multifidelity Monte Carlo methods for assessing uncertainty in coastal flooding
Reconstruction of wind and surge of the 1906 storm tide at the German North Sea coast
Developing a framework for the assessment of current and future flood risk in Venice, Italy
Storm surge hazard over Bengal delta: a probabilistic–deterministic modelling approach
Ye Yuan, Huaiwei Yang, Fujiang Yu, Yi Gao, Benxia Li, and Chuang Xing
Nat. Hazards Earth Syst. Sci., 23, 3487–3507, https://doi.org/10.5194/nhess-23-3487-2023, https://doi.org/10.5194/nhess-23-3487-2023, 2023
Short summary
Short summary
Rip currents are narrow jets of offshore-directed flow that originated in the surf zone, which can take swimmers of all ability levels into deeper water unawares. In this study, a 1 m fine-resolution wave-resolving model was configured to study rip current variability and the optimal swimmer escape strategies. Multiple factors contribute to the survival of swimmers. However, for weak-to-moderate rip and longshore currents, swimming onshore consistently seems to be the most successful strategy.
Benedikt Mester, Thomas Vogt, Seth Bryant, Christian Otto, Katja Frieler, and Jacob Schewe
Nat. Hazards Earth Syst. Sci., 23, 3467–3485, https://doi.org/10.5194/nhess-23-3467-2023, https://doi.org/10.5194/nhess-23-3467-2023, 2023
Short summary
Short summary
In 2019, Cyclone Idai displaced more than 478 000 people in Mozambique. In our study, we use coastal flood modeling and satellite imagery to construct a counterfactual cyclone event without the effects of climate change. We show that 12 600–14 900 displacements can be attributed to sea level rise and the intensification of storm wind speeds due to global warming. Our impact attribution study is the first one on human displacement and one of very few for a low-income country.
Olivier Cavalié, Frédéric Cappa, and Béatrice Pinel-Puysségur
Nat. Hazards Earth Syst. Sci., 23, 3235–3246, https://doi.org/10.5194/nhess-23-3235-2023, https://doi.org/10.5194/nhess-23-3235-2023, 2023
Short summary
Short summary
Coastal areas are fragile ecosystems that face multiple hazards. In this study, we measured the downward motion of the Nice Côte d'Azur Airport (France) that was built on reclaimed area and found that it has subsided from 16 mm yr-1 in the 1990s to 8 mm yr-1 today. A continuous remote monitoring of the platform will provide key data for a detailed investigation of future subsidence maps, and this contribution will help to evaluate the potential failure of part of the airport platform.
Wagner L. L. Costa, Karin R. Bryan, and Giovanni Coco
Nat. Hazards Earth Syst. Sci., 23, 3125–3146, https://doi.org/10.5194/nhess-23-3125-2023, https://doi.org/10.5194/nhess-23-3125-2023, 2023
Short summary
Short summary
For predicting flooding events at the coast, topo-bathymetric data are essential. However, elevation data can be unavailable. To tackle this issue, recent efforts have centred on the use of satellite-derived topography (SDT) and bathymetry (SDB). This work is aimed at evaluating their accuracy and use for flooding prediction in enclosed estuaries. Results show that the use of SDT and SDB in numerical modelling can produce similar predictions when compared to the surveyed elevation data.
Joshua Kiesel, Marvin Lorenz, Marcel König, Ulf Gräwe, and Athanasios T. Vafeidis
Nat. Hazards Earth Syst. Sci., 23, 2961–2985, https://doi.org/10.5194/nhess-23-2961-2023, https://doi.org/10.5194/nhess-23-2961-2023, 2023
Short summary
Short summary
Among the Baltic Sea littoral states, Germany is anticipated to experience considerable damage as a result of increased coastal flooding due to sea-level rise (SLR). Here we apply a new modelling framework to simulate how flooding along the German Baltic Sea coast may change until 2100 if dikes are not upgraded. We find that the study region is highly exposed to flooding, and we emphasise the importance of current plans to update coastal protection in the future.
Zhang Haixia, Cheng Meng, and Fang Weihua
Nat. Hazards Earth Syst. Sci., 23, 2697–2717, https://doi.org/10.5194/nhess-23-2697-2023, https://doi.org/10.5194/nhess-23-2697-2023, 2023
Short summary
Short summary
Simultaneous storm surge and waves can cause great damage due to cascading effects. Quantitative joint probability analysis is critical to determine their optimal protection design values. The joint probability of the surge and wave for the eastern coasts of Leizhou Peninsula and Hainan are estimated with a Gumbel copula based on 62 years of numerically simulated data, and the optimal design values under various joint return periods are derived using the non-linear programming method.
Clare Lewis, Tim Smyth, David Williams, Jess Neumann, and Hannah Cloke
Nat. Hazards Earth Syst. Sci., 23, 2531–2546, https://doi.org/10.5194/nhess-23-2531-2023, https://doi.org/10.5194/nhess-23-2531-2023, 2023
Short summary
Short summary
Meteotsunami are globally occurring water waves initiated by atmospheric disturbances. Previous research has suggested that in the UK, meteotsunami are a rare phenomenon and tend to occur in the summer months. This article presents a revised and updated catalogue of 98 meteotsunami that occurred between 1750 and 2022. Results also demonstrate a larger percentage of winter events and a geographical pattern highlighting the
hotspotregions that experience these events.
Marine Le Gal, Tomás Fernández-Montblanc, Enrico Duo, Juan Montes Perez, Paulo Cabrita, Paola Souto Ceccon, Vera Gastal, Paolo Ciavola, and Clara Armaroli
EGUsphere, https://doi.org/10.5194/egusphere-2023-1157, https://doi.org/10.5194/egusphere-2023-1157, 2023
Short summary
Short summary
Assessing coastal hazards is crucial to mitigate flooding disasters. In this regard, coastal flood databases are valuable tools. This paper describes a new coastal flood map catalogue covering the entire European coastline, as well as the methodology to build it and its accuracy. The catalogue focuses on frequent extreme events and relies on synthetic scenarios estimated from local storm conditions. Flood prone areas and regions sensitive to storm duration and water level peak were identified.
Melissa Wood, Ivan D. Haigh, Quan Quan Le, Hung Nghia Nguyen, Hoang Ba Tran, Stephen E. Darby, Robert Marsh, Nikolaos Skliris, Joël J.-M. Hirschi, Robert J. Nicholls, and Nadia Bloemendaal
Nat. Hazards Earth Syst. Sci., 23, 2475–2504, https://doi.org/10.5194/nhess-23-2475-2023, https://doi.org/10.5194/nhess-23-2475-2023, 2023
Short summary
Short summary
We used a novel database of simulated tropical cyclone tracks to explore whether typhoon-induced storm surges present a future flood risk to low-lying coastal communities around the South China Sea. We found that future climate change is likely to change tropical cyclone behaviour to an extent that this increases the severity and frequency of storm surges to Vietnam, southern China, and Thailand. Consequently, coastal flood defences need to be reviewed for resilience against this future hazard.
Sang-Guk Yum, Moon-Soo Song, and Manik Das Adhikari
Nat. Hazards Earth Syst. Sci., 23, 2449–2474, https://doi.org/10.5194/nhess-23-2449-2023, https://doi.org/10.5194/nhess-23-2449-2023, 2023
Short summary
Short summary
This study performed analysis on typhoon-induced coastal morphodynamics for the Mokpo coast. Wetland vegetation was severely impacted by Typhoon Soulik, with 87.35 % of shoreline transects experiencing seaward migration. This result highlights the fact that sediment resuspension controls the land alteration process over the typhoon period. The land accretion process dominated during the pre- to post-typhoon periods.
Olle Räty, Marko Laine, Ulpu Leijala, Jani Särkkä, and Milla M. Johansson
Nat. Hazards Earth Syst. Sci., 23, 2403–2418, https://doi.org/10.5194/nhess-23-2403-2023, https://doi.org/10.5194/nhess-23-2403-2023, 2023
Short summary
Short summary
We studied annual maximum sea levels in the Finnish coastal region. Our aim was to better quantify the uncertainty in them compared to previous studies. Using four statistical models, we found out that hierarchical models, which shared information on sea-level extremes across Finnish tide gauges, had lower uncertainty in their results in comparison with tide-gauge-specific fits. These models also suggested that the shape of the distribution for extreme sea levels is similar on the Finnish coast.
Christian Ferrarin, Florian Pantillon, Silvio Davolio, Marco Bajo, Mario Marcello Miglietta, Elenio Avolio, Diego S. Carrió, Ioannis Pytharoulis, Claudio Sanchez, Platon Patlakas, Juan Jesús González-Alemán, and Emmanouil Flaounas
Nat. Hazards Earth Syst. Sci., 23, 2273–2287, https://doi.org/10.5194/nhess-23-2273-2023, https://doi.org/10.5194/nhess-23-2273-2023, 2023
Short summary
Short summary
The combined use of meteorological and ocean models enabled the analysis of extreme sea conditions driven by Medicane Ianos, which hit the western coast of Greece on 18 September 2020, flooding and damaging the coast. The large spread associated with the ensemble highlighted the high model uncertainty in simulating such an extreme weather event. The different simulations have been used for outlining hazard scenarios that represent a fundamental component of the coastal risk assessment.
Charline Dalinghaus, Giovanni Coco, and Pablo Higuera
Nat. Hazards Earth Syst. Sci., 23, 2157–2169, https://doi.org/10.5194/nhess-23-2157-2023, https://doi.org/10.5194/nhess-23-2157-2023, 2023
Short summary
Short summary
Wave setup is a critical component of coastal flooding. Consequently, understanding and being able to predict wave setup is vital to protect coastal resources and the population living near the shore. Here, we applied machine learning to improve the accuracy of present predictors of wave setup. The results show that the new predictors outperform existing formulas demonstrating the capability of machine learning models to provide a physically sound description of wave setup.
Leigh Richard MacPherson, Arne Arns, Svenja Fischer, Fernando J. Méndez, and Jürgen Jensen
EGUsphere, https://doi.org/10.5194/egusphere-2023-1122, https://doi.org/10.5194/egusphere-2023-1122, 2023
Short summary
Short summary
Efficient adaptation planning to coastal flooding caused by extreme sea levels requires accurate assessments of the underlying hazard. Tide-gauge data alone is often insufficient for providing the desired accuracy but may be supplemented with historical information. We estimate extreme sea levels along the German Baltic coast and show that relying solely on tide-gauge data leads to underestimations. Incorporating historical information leads to improved estimates with reduced uncertainties.
Ina Teutsch, Markus Brühl, Ralf Weisse, and Sander Wahls
Nat. Hazards Earth Syst. Sci., 23, 2053–2073, https://doi.org/10.5194/nhess-23-2053-2023, https://doi.org/10.5194/nhess-23-2053-2023, 2023
Short summary
Short summary
Rogue waves exceed twice the significant wave height. They occur more often than expected in the shallow waters off Norderney. When applying a nonlinear Fourier transform for the Korteweg–de Vries equation to wave data from Norderney, we found differences in the soliton spectra of time series with and without rogue waves. A strongly outstanding soliton in the spectrum indicated an enhanced probability for rogue waves. We could attribute spectral solitons to the measured rogue waves.
Philipp Heinrich, Stefan Hagemann, Ralf Weisse, Corinna Schrum, Ute Daewel, and Lidia Gaslikova
Nat. Hazards Earth Syst. Sci., 23, 1967–1985, https://doi.org/10.5194/nhess-23-1967-2023, https://doi.org/10.5194/nhess-23-1967-2023, 2023
Short summary
Short summary
High seawater levels co-occurring with high river discharges have the potential to cause destructive flooding. For the past decades, the number of such compound events was larger than expected by pure chance for most of the west-facing coasts in Europe. Additionally rivers with smaller catchments showed higher numbers. In most cases, such events were associated with a large-scale weather pattern characterized by westerly winds and strong rainfall.
Alexander Böhme, Birgit Gerkensmeier, Benedikt Bratz, Clemens Krautwald, Olaf Müller, Nils Goseberg, and Gabriele Gönnert
Nat. Hazards Earth Syst. Sci., 23, 1947–1966, https://doi.org/10.5194/nhess-23-1947-2023, https://doi.org/10.5194/nhess-23-1947-2023, 2023
Short summary
Short summary
External surges in the North Sea are caused by low-pressure cells travelling over the northeast Atlantic. They influence extreme water levels on the German coast and have to be considered in the design process of coastal defence structures. This study collects data about external surges from 1995–2020 and analyses their causes, behaviours and potential trends. External surges often occur less than 72 h apart, enabling a single storm surge to be influenced by more than one external surge.
Kenta Tozato, Shuji Moriguchi, Shinsuke Takase, Yu Otake, Michael R. Motley, Anawat Suppasri, and Kenjiro Terada
Nat. Hazards Earth Syst. Sci., 23, 1891–1909, https://doi.org/10.5194/nhess-23-1891-2023, https://doi.org/10.5194/nhess-23-1891-2023, 2023
Short summary
Short summary
This study presents a framework that efficiently investigates the optimal placement of facilities probabilistically based on advanced numerical simulation. Surrogate models for the numerical simulation are constructed using a mode decomposition technique. Monte Carlo simulations using the surrogate models are performed to evaluate failure probabilities. Using the results of the Monte Carlo simulations and the genetic algorithm, optimal placements can be investigated probabilistically.
Job C. M. Dullaart, Sanne Muis, Hans de Moel, Philip J. Ward, Dirk Eilander, and Jeroen C. J. H. Aerts
Nat. Hazards Earth Syst. Sci., 23, 1847–1862, https://doi.org/10.5194/nhess-23-1847-2023, https://doi.org/10.5194/nhess-23-1847-2023, 2023
Short summary
Short summary
Coastal flooding is driven by storm surges and high tides and can be devastating. To gain an understanding of the threat posed by coastal flooding and to identify areas that are especially at risk, now and in the future, it is crucial to accurately model coastal inundation and assess the coastal flood hazard. Here, we present a global dataset with hydrographs that represent the typical evolution of an extreme sea level. These can be used to model coastal inundation more accurately.
Elin Andrée, Jian Su, Morten Andreas Dahl Larsen, Martin Drews, Martin Stendel, and Kristine Skovgaard Madsen
Nat. Hazards Earth Syst. Sci., 23, 1817–1834, https://doi.org/10.5194/nhess-23-1817-2023, https://doi.org/10.5194/nhess-23-1817-2023, 2023
Short summary
Short summary
When natural processes interact, they may compound each other. The combined effect can amplify extreme sea levels, such as when a storm occurs at a time when the water level is already higher than usual. We used numerical modelling of a record-breaking storm surge in 1872 to show that other prior sea-level conditions could have further worsened the outcome. Our research highlights the need to consider the physical context of extreme sea levels in measures to reduce coastal flood risk.
Anne Margaret H. Smiley, Suzanne P. Thompson, Nathan S. Hall, and Michael F. Piehler
EGUsphere, https://doi.org/10.5194/egusphere-2023-292, https://doi.org/10.5194/egusphere-2023-292, 2023
Short summary
Short summary
Floodwaters can deliver reactive nitrogen to sensitive aquatic systems and diminish water quality. We assessed the nitrogen removal capabilities of flooded habitats and urban landscapes. Differences in processing rates across land cover treatments and between nutrient treatments suggest that abundance and spatial distributions of habitats, as well as storm characteristics, influence landscape-scale nitrogen removal. Results have important implications for coastal development and climate change.
Ekaterina Didenkulova, Ira Didenkulova, and Igor Medvedev
Nat. Hazards Earth Syst. Sci., 23, 1653–1663, https://doi.org/10.5194/nhess-23-1653-2023, https://doi.org/10.5194/nhess-23-1653-2023, 2023
Short summary
Short summary
The paper is dedicated to freak wave accidents which happened in the world ocean in 2005–2021 and that were described in mass media sources. The database accounts for 429 events, all of which resulted in ship or coastal and offshore structure damage and/or human losses. In agreement with each freak wave event, we put background wave and wind conditions extracted from the climate reanalysis ERA5. We analyse their statistics and discuss the favourable conditions for freak wave occurrence.
Havu Pellikka, Milla M. Johansson, Maaria Nordman, and Kimmo Ruosteenoja
Nat. Hazards Earth Syst. Sci., 23, 1613–1630, https://doi.org/10.5194/nhess-23-1613-2023, https://doi.org/10.5194/nhess-23-1613-2023, 2023
Short summary
Short summary
We explore the rate of past and future sea level rise at the Finnish coast, northeastern Baltic Sea, in 1901–2100. For this analysis, we use tide gauge observations, modelling results, and a probabilistic method to combine information from several sea level rise projections. We provide projections of local mean sea level by 2100 as probability distributions. The results can be used in adaptation planning in various sectors with different risk tolerance, e.g. land use planning or nuclear safety.
Carlos Corela, Afonso Loureiro, José Luis Duarte, Luis Matias, Tiago Rebelo, and Tiago Bartolomeu
Nat. Hazards Earth Syst. Sci., 23, 1433–1451, https://doi.org/10.5194/nhess-23-1433-2023, https://doi.org/10.5194/nhess-23-1433-2023, 2023
Short summary
Short summary
We show that ocean-bottom seismometers are controlled by bottom currents, but these are not always a function of the tidal forcing. Instead we suggest that the ocean bottom has a flow regime resulting from two possible contributions: the permanent low-frequency bottom current and the tidal current along the full tidal cycle, between neap and spring tides. In the short-period noise band the ocean current generates harmonic tremors that corrupt the dataset records.
Chu-En Hsu, Katherine Serafin, Xiao Yu, Christie Hegermiller, John C. Warner, and Maitane Olabarrieta
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2023-49, https://doi.org/10.5194/nhess-2023-49, 2023
Revised manuscript accepted for NHESS
Short summary
Short summary
We analyzed how tropical cyclone (TC) characteristics affect total water level components. We used a numerical model to simulate surges and wind waves in the South Atlantic Bight (SAB) during hurricanes Matthew 2016, Dorian 2019, and Isaias 2020. We compared the water levels along the SAB. As the TCs approached, the water levels were affected by the instantaneous wind speed and the TC locations. To quantify the individual effects of TC properties on water levels, further analysis is required.
Chen Chen, Charles Koll, Haizhong Wang, and Michael K. Lindell
Nat. Hazards Earth Syst. Sci., 23, 733–749, https://doi.org/10.5194/nhess-23-733-2023, https://doi.org/10.5194/nhess-23-733-2023, 2023
Short summary
Short summary
This paper uses empirical-data-based simulation to analyze how to evacuate efficiently from disasters. We find that departure delay time and evacuation decision have significant impacts on evacuation results. Evacuation results are more sensitive to walking speed, departure delay time, evacuation participation, and destinations than to other variables. This model can help authorities to prioritize resources for hazard education, community disaster preparedness, and resilience plans.
Maude Biguenet, Eric Chaumillon, Pierre Sabatier, Antoine Bastien, Emeline Geba, Fabien Arnaud, Thibault Coulombier, and Nathalie Feuillet
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-262, https://doi.org/10.5194/nhess-2022-262, 2023
Revised manuscript accepted for NHESS
Short summary
Short summary
This work documents the impact of Hurricane Irma (2017) on the Codrington barrier and lagoon on Barbuda Island. Irma caused two wide breaching in the sandy barrier, which remained unopened for 250 years. The thick and extensive sand sheet on the top of the lagoon fill was attributed to Irma. This unique deposit in a 3700 years record confirms Irma's exceptional character. This case study illustrates the consequences of high-intensity hurricanes in low-lying islands in a global warming context.
Ariadna Martín, Angel Amores, Alejandro Orfila, Tim Toomey, and Marta Marcos
Nat. Hazards Earth Syst. Sci., 23, 587–600, https://doi.org/10.5194/nhess-23-587-2023, https://doi.org/10.5194/nhess-23-587-2023, 2023
Short summary
Short summary
Tropical cyclones (TCs) are among the potentially most hazardous phenomena affecting the coasts of the Caribbean Sea. This work simulates the coastal hazards in terms of sea surface elevation and waves that originate through the passage of these events. A set of 1000 TCs have been simulated, obtained from a set of synthetic cyclones that are consistent with present-day climate. Given the large number of hurricanes used, robust values of extreme sea levels and waves are computed along the coasts.
An-Chi Cheng, Anawat Suppasri, Kwanchai Pakoksung, and Fumihiko Imamura
Nat. Hazards Earth Syst. Sci., 23, 447–479, https://doi.org/10.5194/nhess-23-447-2023, https://doi.org/10.5194/nhess-23-447-2023, 2023
Short summary
Short summary
Consecutive earthquakes occurred offshore of southern Taiwan on 26 December 2006. This event revealed unusual tsunami generation and propagation, as well as unexpected consequences for the southern Taiwanese coast (i.e., amplified waves and prolonged durations). This study aims to elucidate the source characteristics of the 2006 tsunami and the important behaviors responsible for tsunami hazards in Taiwan such as wave trapping and shelf resonance.
Jean Roger, Bernard Pelletier, Aditya Gusman, William Power, Xiaoming Wang, David Burbidge, and Maxime Duphil
Nat. Hazards Earth Syst. Sci., 23, 393–414, https://doi.org/10.5194/nhess-23-393-2023, https://doi.org/10.5194/nhess-23-393-2023, 2023
Short summary
Short summary
On 10 February 2021 a magnitude 7.7 earthquake occurring at the southernmost part of the Vanuatu subduction zone triggered a regional tsunami that was recorded on many coastal gauges and DART stations of the south-west Pacific region. Beginning with a review of the tectonic setup and its implication in terms of tsunami generation in the region, this study aims to show our ability to reproduce a small tsunami with different types of rupture models and to discuss a larger magnitude 8.2 scenario.
Kathrin Wahle, Emil V. Stanev, and Joanna Staneva
Nat. Hazards Earth Syst. Sci., 23, 415–428, https://doi.org/10.5194/nhess-23-415-2023, https://doi.org/10.5194/nhess-23-415-2023, 2023
Short summary
Short summary
Knowledge of what causes maximum water levels is often key in coastal management. Processes, such as storm surge and atmospheric forcing, alter the predicted tide. Whilst most of these processes are modeled in present-day ocean forecasting, there is still a need for a better understanding of situations where modeled and observed water levels deviate from each other. Here, we will use machine learning to detect such anomalies within a network of sea-level observations in the North Sea.
Neng-Ti Yu, Cheng-Hao Lu, I-Chin Yen, Jia-Hong Chen, Jiun-Yee Yen, and Shyh-Jeng Chyi
Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2022-293, https://doi.org/10.5194/nhess-2022-293, 2023
Revised manuscript accepted for NHESS
Short summary
Short summary
Rock debris moved by tsunami waves that probably followed the 1661 earthquake in SW Taiwan are found. The long-awaited question of whether large tsunamis could impact on the South China Sea coasts is answered. The 3 m tall waves are powerful enough to carry big rocks, up to 2 t in weight and 1.7 m in length, landward for 30 m in distance and onto a 2.5 m high cliff. The earthquake and tsunami must be huge compared to the modern record set by the 1994 M6.4 earthquake and 0.4 m high tsunami.
Chuan Li, H. Tuba Özkan-Haller, Gabriel García Medina, Robert A. Holman, Peter Ruggiero, Treena M. Jensen, David B. Elson, and William R. Schneider
Nat. Hazards Earth Syst. Sci., 23, 107–126, https://doi.org/10.5194/nhess-23-107-2023, https://doi.org/10.5194/nhess-23-107-2023, 2023
Short summary
Short summary
In this work, we examine a set of observed extreme, non-earthquake-related and non-landslide-related wave runup events. Runup events with similar characteristics have previously been attributed to trapped waves, atmospheric disturbances, and abrupt breaking of long waves. However, we find that none of these mechanisms were likely at work in the observations we examined. We show that instead, these runup events were more likely due to energetic growth of bound infragravity waves.
Shan Liu, Xianwu Shi, Qiang Liu, Jun Tan, Yuxi Sun, Qingrong Liu, and Haoshuang Guo
Nat. Hazards Earth Syst. Sci., 23, 127–138, https://doi.org/10.5194/nhess-23-127-2023, https://doi.org/10.5194/nhess-23-127-2023, 2023
Short summary
Short summary
This study proposes a quantitative method for the determination of warning water levels. The proposed method is a multidimensional scale, centered on the consideration of various factors that characterize various coastlines. The implications of our study are not only scientific, as we provide a method for water level determination that is rooted in the scientific method (and reproducible across various contexts beyond China), but they are also deeply practical.
Jaap H. Nienhuis, Jana R. Cox, Joey O'Dell, Douglas A. Edmonds, and Paolo Scussolini
Nat. Hazards Earth Syst. Sci., 22, 4087–4101, https://doi.org/10.5194/nhess-22-4087-2022, https://doi.org/10.5194/nhess-22-4087-2022, 2022
Short summary
Short summary
Humans build levees to protect themselves against floods. We need to know where they are to correctly predict flooding, for example from sea level rise. Here we have looked through documents to find levees, and checked that they exist using satellite imagery. We developed a global levee map, available at www.opendelve.eu, and we found that 24 % of people in deltas are protected by levees.
Alec Torres-Freyermuth, Gabriela Medellín, Jorge A. Kurczyn, Roger Pacheco-Castro, Jaime Arriaga, Christian M. Appendini, María Eugenia Allende-Arandía, Juan A. Gómez, Gemma L. Franklin, and Jorge Zavala-Hidalgo
Nat. Hazards Earth Syst. Sci., 22, 4063–4085, https://doi.org/10.5194/nhess-22-4063-2022, https://doi.org/10.5194/nhess-22-4063-2022, 2022
Short summary
Short summary
Barrier islands in tropical regions are prone to coastal flooding and erosion during hurricane events. The Yucatán coast was impacted by hurricanes Gamma and Delta. Inner shelf, coastal, and inland observations were acquired. Beach morphology changes show alongshore gradients. Flooding occurred on the back barrier due to heavy inland rain and the coastal aquifer's confinement. Modeling systems failed to reproduce the coastal hydrodynamic response due to uncertainties in the boundary conditions.
Panagiotis Athanasiou, Ap van Dongeren, Alessio Giardino, Michalis Vousdoukas, Jose A. A. Antolinez, and Roshanka Ranasinghe
Nat. Hazards Earth Syst. Sci., 22, 3897–3915, https://doi.org/10.5194/nhess-22-3897-2022, https://doi.org/10.5194/nhess-22-3897-2022, 2022
Short summary
Short summary
Sandy dunes protect the hinterland from coastal flooding during storms. Thus, models that can efficiently predict dune erosion are critical for coastal zone management and early warning systems. Here we develop such a model for the Dutch coast based on machine learning techniques, allowing for dune erosion estimations in a matter of seconds relative to available computationally expensive models. Validation of the model against benchmark data and observations shows good agreement.
María Teresa Pedrosa-González, José Manuel González-Vida, Jesús Galindo-Záldivar, Sergio Ortega, Manuel Jesús Castro, David Casas, and Gemma Ercilla
Nat. Hazards Earth Syst. Sci., 22, 3839–3858, https://doi.org/10.5194/nhess-22-3839-2022, https://doi.org/10.5194/nhess-22-3839-2022, 2022
Short summary
Short summary
The L-ML-HySEA (Landslide Multilayer Hyperbolic Systems and Efficient Algorithms) model of the tsunami triggered by the Storfjorden LS-1 landslide provides new insights into the sliding mechanism and bathymetry controlling the propagation, amplitude values and shoaling effects as well as coastal impact times. This case study provides new perspectives on tsunami hazard assessment in polar margins, where global climatic change and its related ocean warming may contribute to landslide trigger.
Cuneyt Yavuz, Kutay Yilmaz, and Gorkem Onder
Nat. Hazards Earth Syst. Sci., 22, 3725–3736, https://doi.org/10.5194/nhess-22-3725-2022, https://doi.org/10.5194/nhess-22-3725-2022, 2022
Short summary
Short summary
Even if the coincidence of flood and tsunami hazards may be experienced once in a blue moon, it should also be investigated due to the uncertainty of the time of occurrence of these natural hazards. The objective of this study is to reveal a statistical methodology to evaluate the aggregate potential hazard levels due to flood hazards with the presence of earthquake-triggered tsunamis. The proposed methodology is applied to Fethiye city, located on the Western Mediterranean coast of Turkey.
Damiano Baldan, Elisa Coraci, Franco Crosato, Maurizio Ferla, Andrea Bonometto, and Sara Morucci
Nat. Hazards Earth Syst. Sci., 22, 3663–3677, https://doi.org/10.5194/nhess-22-3663-2022, https://doi.org/10.5194/nhess-22-3663-2022, 2022
Short summary
Short summary
Extreme-event analysis is widely used to provide information for the design of coastal protection structures. Non-stationarity due to sea level rise can affect such estimates. Using different methods on a long time series of sea level data, we show that estimates of the magnitude of extreme events in the future can be inexact due to relative sea level rise. Thus, considering non-stationarity is important when analyzing extreme-sea-level events.
Umesh Pranavam Ayyappan Pillai, Nadia Pinardi, Ivan Federico, Salvatore Causio, Francesco Trotta, Silvia Unguendoli, and Andrea Valentini
Nat. Hazards Earth Syst. Sci., 22, 3413–3433, https://doi.org/10.5194/nhess-22-3413-2022, https://doi.org/10.5194/nhess-22-3413-2022, 2022
Short summary
Short summary
The study presents the application of high-resolution coastal modelling for wave hindcasting on the Emilia-Romagna coastal belt. The generated coastal databases which provide an understanding of the prevailing wind-wave characteristics can aid in predicting coastal impacts.
Jeremy Rohmer, Deborah Idier, Remi Thieblemont, Goneri Le Cozannet, and François Bachoc
Nat. Hazards Earth Syst. Sci., 22, 3167–3182, https://doi.org/10.5194/nhess-22-3167-2022, https://doi.org/10.5194/nhess-22-3167-2022, 2022
Short summary
Short summary
We quantify the influence of wave–wind characteristics, offshore water level and sea level rise (projected up to 2200) on the occurrence of flooding events at Gâvres, French Atlantic coast. Our results outline the overwhelming influence of sea level rise over time compared to the others. By showing the robustness of our conclusions to the errors in the estimation procedure, our approach proves to be valuable for exploring and characterizing uncertainties in assessments of future flooding.
Edgar U. Zorn, Aiym Orynbaikyzy, Simon Plank, Andrey Babeyko, Herlan Darmawan, Ismail Fata Robbany, and Thomas R. Walter
Nat. Hazards Earth Syst. Sci., 22, 3083–3104, https://doi.org/10.5194/nhess-22-3083-2022, https://doi.org/10.5194/nhess-22-3083-2022, 2022
Short summary
Short summary
Tsunamis caused by volcanoes are a challenge for warning systems as they are difficult to predict and detect. In Southeast Asia there are many active volcanoes close to the coast, so it is important to identify the most likely volcanoes to cause tsunamis in the future. For this purpose, we developed a point-based score system, allowing us to rank volcanoes by the hazard they pose. The results may be used to improve local monitoring and preparedness in the affected areas.
Jorge León, Alejandra Gubler, and Alonso Ogueda
Nat. Hazards Earth Syst. Sci., 22, 2857–2878, https://doi.org/10.5194/nhess-22-2857-2022, https://doi.org/10.5194/nhess-22-2857-2022, 2022
Short summary
Short summary
Our research focuses on how the geophysical characteristics of coastal cities can determine evacuees' vulnerability during a tsunami evacuation. We identify, analyse, and rank some of those essential characteristics by examining seven case studies in Chile through computer-based inundation, evacuation, and statistical regressive modelling. These results could lead to urban planning guidelines to enhance future evacuations and increase resilience to global tsunamis.
Azucena Román-de la Sancha, Rodolfo Silva, Omar S. Areu-Rangel, Manuel Gerardo Verduzco-Zapata, Edgar Mendoza, Norma Patricia López-Acosta, Alexandra Ossa, and Silvia García
Nat. Hazards Earth Syst. Sci., 22, 2589–2609, https://doi.org/10.5194/nhess-22-2589-2022, https://doi.org/10.5194/nhess-22-2589-2022, 2022
Short summary
Short summary
Transport networks in coastal urban areas are vulnerable to seismic events, with damage likely due to both ground motions and tsunami loading. The paper presents an approach that captures the earthquake–tsunami effects on transport infrastructure in a coastal area, taking into consideration the combined strains of the two events. The model is applied to a case in Manzanillo, Mexico, using ground motion records of the 1995 earthquake–tsunami event.
Tien-Chi Liu, Tso-Ren Wu, and Shu-Kun Hsu
Nat. Hazards Earth Syst. Sci., 22, 2517–2530, https://doi.org/10.5194/nhess-22-2517-2022, https://doi.org/10.5194/nhess-22-2517-2022, 2022
Short summary
Short summary
The findings from historical reports and numerical studies suggest the 1781 Jiateng Harbor flooding and the 1782 tsunami should be two independent incidents. Local tsunamis generated in southwest Taiwan could be responsible for the 1781 flooding, while the existence of the 1782 tsunami remains doubtful. With the documents of a storm event on 22 May 1782, the possibility that the significant water level of the 1782 tsunami was caused by storm surges or multiple hazards could not be ignored.
Mariana C. A. Clare, Tim W. B. Leijnse, Robert T. McCall, Ferdinand L. M. Diermanse, Colin J. Cotter, and Matthew D. Piggott
Nat. Hazards Earth Syst. Sci., 22, 2491–2515, https://doi.org/10.5194/nhess-22-2491-2022, https://doi.org/10.5194/nhess-22-2491-2022, 2022
Short summary
Short summary
Assessing uncertainty is computationally expensive because it requires multiple runs of expensive models. We take the novel approach of assessing uncertainty from coastal flooding using a multilevel multifidelity (MLMF) method which combines the efficiency of less accurate models with the accuracy of more expensive models at different resolutions. This significantly reduces the computational cost but maintains accuracy, making previously unfeasible real-world studies possible.
Elke Magda Inge Meyer, Ralf Weisse, Iris Grabemann, Birger Tinz, and Robert Scholz
Nat. Hazards Earth Syst. Sci., 22, 2419–2432, https://doi.org/10.5194/nhess-22-2419-2022, https://doi.org/10.5194/nhess-22-2419-2022, 2022
Short summary
Short summary
The severe storm tide of 13 March 1906 is still one of the most severe storm events for the East Frisian coast. Water levels from this event are considered for designing dike lines. For the first time, we investigate this event with a hydrodynamic model by forcing with atmospheric data from 147 ensemble members from century reanalysis projects and a manual reconstruction of the synoptic situation. Water levels were notably high due to a coincidence of high spring tides and high surge.
Julius Schlumberger, Christian Ferrarin, Sebastiaan N. Jonkman, Manuel Andres Diaz Loaiza, Alessandro Antonini, and Sandra Fatorić
Nat. Hazards Earth Syst. Sci., 22, 2381–2400, https://doi.org/10.5194/nhess-22-2381-2022, https://doi.org/10.5194/nhess-22-2381-2022, 2022
Short summary
Short summary
Flooding has serious impacts on the old town of Venice. This paper presents a framework combining a flood model with a flood-impact model to support improving protection against future floods in Venice despite the recently built MOSE barrier. Applying the framework to seven plausible flood scenarios, it was found that individual protection has a significant damage-mediating effect if the MOSE barrier does not operate as anticipated. Contingency planning thus remains important in Venice.
Md Jamal Uddin Khan, Fabien Durand, Kerry Emanuel, Yann Krien, Laurent Testut, and A. K. M. Saiful Islam
Nat. Hazards Earth Syst. Sci., 22, 2359–2379, https://doi.org/10.5194/nhess-22-2359-2022, https://doi.org/10.5194/nhess-22-2359-2022, 2022
Short summary
Short summary
Cyclonic storm surges constitute a major threat to lives and properties along the vast coastline of the Bengal delta. From a combination of cyclone and storm surge modelling, we present a robust probabilistic estimate of the storm surge flooding hazard under the current climate. The estimated extreme water levels vary regionally, and the inland flooding is strongly controlled by the embankments. More than 1/10 of the coastal population is currently exposed to 50-year return period flooding.
Cited articles
Alcock, G.: Parameterizing extreme still water levels and waves in design level studies, Report No. 183, Institute of Oceanographic Sciences, available at: http://eprints.soton.ac.uk/14599/1/14599-01.pdf (last access: 5 February 2015), 1984.
Araújo, I. B. and Pugh, D. T.: Sea Levels at Newlyn 1915–2005: Analysis of Trends for Future Flooding Risks, J. Coastal Res., 24, 203–212, 2008.
Batstone, C., Lawless, M., Tawn, J., Horsburgh, K., Blackman, D., McMillan, A., Worth, D., Laeger, S., and Hunt, T.: A UK best-practice approach for extreme sea-level analysis along complex topographic coastlines, Ocean Eng., 71, 28–39, 2013.
Baxter, P. J.: The east coast Big Flood, 31 January–1 February 1953: a summary of the human disaster, Phil. T. Roy. Soc. A: Mathematical, Physical and Engineering Sciences, 363, 1293–1312, 2005.
BBC: Suffolk flooding: Shingle Street sea wall repairs underway, 12 December 2013, last updated at 02:14, available at: http://www.bbc.co.uk/news/uk-england-suffolk-25343116 (last access: 15 January 2015), 2013a.
BBC: Tidal surge hits east UK coastal towns after storm, 6 December 2013, last updated at 17:19, available at: http://www.bbc.co.uk/news/uk-25253080 (last access: 3 February 2015), 2013b.
BBC: 10 key moments of the UK winter storms, 17 February 2014, BBC News. available at: http://www.bbc.co.uk/news/uk-26170904 (last access: 15 January 2015), 2014a.
BBC: Channel Islands flooded after `highest tide of the year', 3 March 2014, BBC News, Jersey, available at: http://www.bbc.co.uk/news/world-europe-jersey-26390204 (last access: 15 January 2015), 2014b.
Bradley, S. L., Milne, G. A., Teferle, F. N., Bingley, R. M., and Orliac, E. J.: Glacial isostatic adjustment of the British Isles: new constraints from GPS measurements of crustal motion, Geophys. J. Int., 178, 14–22, 2009.
Brown, J. M., Souza, A. J., and Wolf, J.: An investigation of recent decadal-scale storm events in the eastern Irish Sea, J. Geophys. Res., 115, C05018, https://doi.org/10.1029/2009JC005662, 2010.
Church, J. A. and White, N. J.: A 20th century acceleration in global sea-level rise, Geophys. Res. Lett., 33, L01602, https://doi.org/10.1029/2005GL024826, 2006.
Church, J. A., Clark, P. U., Cazenave, A., Gregory, J. M., Jevrejeva, S., Levermann, A., Merrifield, M. A., Milne, G. A., Nerem, R. S., Nunn, P. D., Payne, A. J., Pfeffer, W. T., Stammer, D., and Unnikrishnan, A. S.: Sea level change, in: Climate Change 2013: the Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge Univer5 sity Press, Cambridge, UK and New York, NY, USA, 1137–1216, 2013.
Coles, S. G. and Tawn, J. A.: Statistics of coastal flood prevention, Phil. T. Roy. Soc. London–Series A: Physical and Engineering Sciences, 332, 457–476, 1990.
Cooper, N. and Pontee, N.: Appraisal and evolution of the littoral `sediment cell' concept in applied coastal management: experiences from England and Wales, Ocean Coast. Manag., 49, 498–510, 2006.
DCLG: Planning Policy Statement 25: Development and Flood Risk Practice Guide, December 2009, Department for Communities and Local Government, available at: https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/7772/pps25guideupdate.pdf (last access: 3 February 2015), 2009.
Defra: Water Bill: Flood Insurance, November 2013, Department for Environment, Food and Rural Affairs, available at: https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/259665/pb14066-water-bill-flood-insurance.pdf (last access: 3 February 2015), 2013.
Dissanayake, P., Brown, J., and Karunarathna, H.: Modelling storm-induced beach/dune evolution: Sefton coast, Liverpool Bay, UK, Marine Geol., 357, 225–242, 2014.
Dissanayake, P., Brown, J., and Karunarathna, H.: Impacts of storm chronology on the morphological changes of the Formby beach and dune system, UK, Nat. Hazards Earth Syst. Sci., 15, 1533–1543, https://doi.org/10.5194/nhess-15-1533-2015, 2015.
Dolphin, T., Vincent, C., Coughlan, C., and Rees, J.: Variability in sandbank behaviour at decadal and annual time-scales and implications for adjacent beaches, J. Coast. Res., 50, 731–737, 2007.
EA: Flooding in England: A National Assessment of Flood Risk, Environment Agency, available at: http://publications.environment-agency.gov.uk/PDF/GEHO0609BQDS-E-E.pdf (last access: 14 April 2015), 2009.
EADT: Sizewell C: Scientists probing N-plant flood threat, available at: http://www.eadt.co.uk/business/sizewell_c_scientists_probing_n_plant_flood_threat_1_1811534 (last access: 3 December 2014), 2013.
EDF Energy: Sizewell C: Initial Proposals and Options Consultation Document, November 2012, available at: http://sizewell.edfenergyconsultation.info/wp-content/uploads/Consultationdocument.pdf (last access: 2 September 2015), 2012.
Esteves, L. S., Brown, J. M., Williams, J. J., and Lymbery, G.: Quantifying thresholds for significant dune erosion along the Sefton Coast, Northwest England, Geomorphology, 143, 52–61, 2012.
Flather, R. A.: A numerical model investigation of the storm surge of 31 January and 1 February 1953 in the North Sea, Q. J. Roy. Meteorol. Soc., 110, 591–612, 1984.
Gerritsen, H.: What happened in 1953? The Big Flood in the Netherlands in retrospect, Phil. T. Roy. Soc. A: Mathematical, Physical and Engineering Sciences, 363, 1271–1291, 2005.
Gönnert, G., Dube, S. K., Murty, T. S., and Siefert, W.: Global Storm Surges: Theory Observation and Applications, German Eng. Res. Council, 63, 623 p., 2001.
Haigh, I., Nicholls, R., and Wells, N.: Assessing changes in extreme sea levels: Application to the English Channel, 1900–2006, Cont. Shelf Res., 30, 1042–1055, 2010.
Haigh, I. D., Eliot, M., and Pattiaratchi, C.: Global influences of the 18.61 year nodal cycle and 8.85 year cycle of lunar perigee on high tidal levels, J. Geophys. Res., 116, C06025, https://doi.org/10.1029/2010JC006645, 2011.
Hames, D. and Reeve, D.: The joint probability of waves and high sea levels in coastal defence, in: Proceedings of Flood Risk Assessment II Conference, 09-04 2nd IMA International Conference on Flood Risk Assessment, 4–5 September 2007, Institute of Mathematics & Its Applications, University of Plymouth, 97–106, available at: http://www.ima.org.uk/viewItem.cfm-cit_id=383896.html (last access: 4 April 2015), 2007.
Hanson, S., Nicholls, R., Ranger, N., Hallegatte, S., Corfee-Morlot, J., Herweijer, C., and Chateau, J.: A global ranking of port cities with high exposure to climate extremes, Clim. Change, 104, 89–111, 2011.
Hawkes, P. and Gouldby, B.: The joint probability of waves and water levels, JOINSEA-User Manual, HR Wallingford, Wallingford, UK, 1998.
Hawkes, P. and Svensson, C.: Joint Probability: Dependence mapping and best practice, Defra/Environment AGency R & D Interim Technical Report FD2308/TR1, HR Wallingford, UK, 120 p., 2003.
Hawkes, P. J., Gouldby, B. P., Tawn, J. A., and Owen, M. W.: The joint probability of waves and water levels in coastal engineering design, J. Hydraul. Res., 40, 241–251, 2002.
Heaps, N. S.: Storm surges, 1967–1982, Geophys. J. Roy. Astron. Soc., 74, 331–376, 1983.
Horsburgh, K. J. and Wilson, C.: Tide-surge interaction and its role in the distribution of surge residuals in the North Sea, J. Geophys. Res., 112, 1–13, 2007.
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., and Woollen, J.:. The NCEP/NCAR 40-year reanalysis project, B. Am. Meteorol. Soc., 77, 437–471, 1996.
Lamb, H.: Historic storms of the North Sea, British Isles and Northwest Europe, Cambridge 30 University Press, Cambridge, 1991.
Lennon, G.:. The identification of weather conditions associated with the generation of major storm surges along the west coast of the British Isles, Q. J. Roy. Meteorol. Soc., 89, 381–394, 1963.
Leonard-Williams, A. and Saulter, A.: Comparing EVA results from analysis of 12 years of WAVEWATCH III\texttrademark and 50 years of NORA10 data. Forecasting Research Technical Report No: 574, available at: http://www.metoffice.gov.uk/media/pdf/8/3/FRTR574.pdf (last access: January 2014), 2013.
Li, F., Van Gelder, P. H. A. J. M., Callaghan, D. P., Jongejan, R. B., Den Heijer, C., and Ranasinghe, R.: Probabilistic modeling of wave climate and predicting dune erosion, J. Coast. Res. Spec. Issue, 65, 760–765, 2013.
Magnox: Sizewell A Site Strategic Environmental Assessment, Site Specific Baseline, September 2014, Magnox Ltd, available at: https://magnoxsites.com/wp-content/uploads/2014/11/Sizewell-A-SEA-FINAL.pdf (last access: 2 September 2015), 2014.
Matthews, T., Murphy, C., Wilby, R. L., and Harrigan, S.: Stormiest winter on record for Ireland and UK, Nature Clim. Change, 4, 738–740, 2014.
McMillan, A., Batstone, C., Worth, D., Tawn, J. A., Horsburgh, K., and Lawless, M.: Coastal flood boundary conditions for UK mainland and islands, Project SC060064/TR2, Design sea levels, Environment Agency, Bristol, UK, 2011a.
McMillan, A., Johnson, A., Worth, D., Tawn, J. A., and Hu, K.:. Coastal flood boundary conditions for UK mainland and islands, Project SC060064/TR3, Design swell waves, Environment Agency, Bristol, UK, 2011b.
McRobie, A., Spencer, T., and Gerritsen, H.: The Big Flood: North Sea storm surge, Phil. T. Roy. Soc. A: Mathematical, Physical and Engineering Sciences, 363, 1263–1270, 2005.
Menéndez, M. and Woodworth, P. L.: Changes in extreme high water levels based on a quasi-global tide-gauge data set, J. Geophys. Res., 115, C10011, https://doi.org/10.1029/2009JC005997, 2010.
Met Office: Winter storms, December 2013 to January 2014, Online report, available at: http://www.metoffice.gov.uk/climate/uk/interesting/2013-decwind (last access: 3 February 2015), 2014.
Motyka, J. M. and Brampton, A. H.: Coastal management: mapping of littoral cells, HR Wallingford Report SR328, 1993.
NT: How have the storms affected the coast? The National Trust – coast & countryside, available at: http://www.nationaltrust.org.uk/article-1355824158683/, last access: 6 November 2014.
Plater, A. J. and Grenville, J.: Liverpool Bay: Linking the eastern Irish Sea to the Sefton Coast, in: Sefton's Dynamic Coast, edited by: Worsley, A. T., Lymbery, G., Holden, V. J. C., and Newton, M., Coastal Defence: Sefton MBC Technical Services Department, Ainsdale-on-Sea, Southport, p. 28–54, ISBN 978-0-9566350-0-6, 2010.
Pugh, D. T.: Tides, surges and mean sea-level. A handbook for engineers and scientists, Wiley, Chichester, 2004.
Pye, K. and Blott, S. J.:. Coastal processes and morphological change in the Dunwich-Sizewell area, Suffolk, UK, J. Coast. Res., 22, 453–473, 2006.
Pye, K. and Blott, S.: Decadal-scale variation in dune erosion and accretion rates: an investigation of the significance of changing storm tide frequency and magnitude on the Sefton coast, UK, Geomorphology, 102, 652–666, 2008.
Pye, K. and Blott, S. J.: Progressive Breakdown of a Gravel-Dominated Coastal Barrier, Dunwich–Walberswick, Suffolk, UK.: Processes and Implications, J. Coast. Res., 25, 589–602, 2009.
Quinn, N., Lewis, M., Wadey, M., and Haigh, I.: Assessing the temporal variability in extreme storm-tide time series for coastal flood risk assessment, J. Geophys. Res.-Oceans, 119, 4983–4998, 2014.
Ramsbottom, D., Tarrant, O., and Cooper, A.: Sources of flooding on floodplains of the tidal Thames, HR Wallingford, available at: http://eprints.hrwallingford.co.uk/63/1/HRPP325_Sources_of_flooding_on_floodplains_of_the_tidal_Thames.pdf (last access: 3 February 2015), 2006.
Rossiter, J. R.: The North Sea Storm Surge of 31 January and 1 February 1953, Phil. T. Roy. Soc. London Series A, Mathematical and Physical Sciences, 246, 371–400, 1954.
Royal Haskoning: SUFFOLK SMP2 Sub-cell 3c, Policy Development Zone 3 – Easton Broad to Dunwich Cliffs. Available online:
Ruocco, A., Nicholls, R., Haigh, I., and Wadey, M.: Reconstructing coastal flood occurrence combining sea level and media sources: a case study of the Solent, UK since 1935, Nat. Hazards, 59, 1773–1796, 2011.
SDC: East Coast Tidal Surge – 5 & 6 December 2013, available at: http://www.suffolkcoastal.gov.uk/yourdistrict/planning/coastal-management/tidalsurge/, last access: 28 October 2014.
SFCN: 1. December Tidal Surge, available at: http://www.greensuffolk.org/assets/Greenest-County/Coastal/Suffolk-Flood–Coastal-News/Suffolk-Flood-and-Coastal-News-Feb-2014.pdf, last access: 29 October 2014.
Shennan, I. and Horton, B.:. Holocene land- and sea-level changes in Great Britain, J. Quat. Sci., 17, 511–526, 2002.
Smith, P. H.: Effects of winter storm surges on the Sefton Coast, north Merseyside, Sand Dune and Shingle Network Eighteenth Newsletter, March 2014, Linking science and management, Liverpool Hope University, available at: http://coast.hope.ac.uk/media/liverpoolhope/contentassets/images/coast/media,38794,en.pdf, last access: 6 Novermber 2014.
Spencer, T., Brooks, S. M., Evans, B. R., Tempest, J. A., and Möller, I.: Southern North Sea storm surge eventof 5 December 2013: Water levels, waves and coastal impacts, Earth-Sci. Rev., 146, 120–145, 2015.
Steers, J. A.: The East Coast Floods, January 31–February 1 1953, Geographical J., 119, 280–295, 1953.
Stevens, A. J., Clarke, D., and Nicholls, R. J.: Trends in reported flooding in the UK: 1884–2013, Hydrol. Sci. J., https://doi.org/10.1080/02626667.2014.950581, 2014.
Stevens, A. J., Clarke, D., Nicholls, R. J., and Wadey, M. P.: Estimating the long-term historic evolution of exposure to flooding of coastal populations, Nat. Hazards Earth Syst. Sci., 15, 1215–1229, https://doi.org/10.5194/nhess-15-1215-2015, 2015.
Tucker, M., Carr, A., and Pitt, E.: The effect of an offshore bank in attenuating waves, Coastal Eng., 7, 133–144, 1983.
Wadey, M. P., Nicholls, R. J., and Haigh, I.: Understanding a coastal flood event: the 10th March 2008 storm surge event in the Solent, UK, Nat. Hazards, 67, 829–854, 2013.
Wadey, M. P., Haigh, I. D., and Brown, J. M.: A century of sea level data and the UK's 2013/14 storm surges: an assessment of extremes and clustering using the Newlyn tide gauge record, Ocean Sci., 10, 1031–1045, https://doi.org/10.5194/os-10-1031-2014, 2014.
Wadey, M. P., Cope, S. N., Nicholls, R. J., McHugh, K., Grewcock, G., and Mason, T.: Coastal flood analysis and visualisation for a small town, Ocean Coast. Manag., 116, 237–247, 2015.
Wahl, T., Jensen, J., Frank, T., and Haigh, I.: Improved estimates of mean sea level changes in the German Bight over the last 166 years, Ocean Dynam., 61, 701–715, 2011.
Wahl, T., Mudersbach, C., and Jensen, J.: Assessing the hydrodynamic boundary conditions for risk analyses in coastal areas: a multivariate statistical approach based on Copula functions, Nat. Hazards Earth Syst. Sci., 12, 495–510, https://doi.org/10.5194/nhess-12-495-2012, 2012.
Wilby, R., Nicholls, R., Warren, R., Wheater, H., Clarke, D., and Dawson, R.: New nuclear build: adaptation options over the full life-cycle, Proc. Inst. Civil Eng., 164, 129–136, 2011.
Wirral Council: Flood investigation report for 5 December 2013, available online: http://www.wirral.gov.uk/my-services/advice-and-benefits/emergencies/floods/flood-monitoring-and-reports, last access: 13 November 2014.
Wolf, J. and Flather, R. A.: Modelling waves and surges during the 1953 storm, Phil. T. Roy. Soc. A: Mathematical, Physical and Engineering Sciences, 363, 1359–1375, 2005.
Woodworth, P., Teferle, F. N., Bingley, R., Shennan, I., and Williams, S.: Trends in UK mean sea level revisited, Geophys. J. Int., 176, 19–30, 2009.
Zappa, G., Shaffrey, L. C., Hodges, K. I., Sansom, P. G., and Stephenson, D. B.: A Multimodel Assessment of Future Projections of North Atlantic and European Extratropical Cyclones in the CMIP5 Climate Models*, J. Climate, 26, 5846–5862, 2013.
Zou, Q. P., Chen, Y., Cluckie, I., Hewston, R., Pan, S., Peng, Z., and Reeve, D.: Ensemble prediction of coastal flood risk arising from overtopping by linking meteorological, ocean, coastal and surf zone models, Q. J. Roy. Meteorol. Soc., 139, 298–313, 2013.
Altmetrics
Final-revised paper
Preprint