Articles | Volume 25, issue 7
https://doi.org/10.5194/nhess-25-2255-2025
https://doi.org/10.5194/nhess-25-2255-2025
Research article
 | 
08 Jul 2025
Research article |  | 08 Jul 2025

Super typhoons Mangkhut (2018) and Saola (2023) during landfall: comparison and insights for wind engineering practice

Yujie Liu, Yuncheng He, Pakwai Chan, Aiming Liu, and Qijun Gao

Related authors

Adjustment of 1 min rain gauge time series using co-located drop size distribution and wind speed measurements
Arianna Cauteruccio, Mattia Stagnaro, Luca G. Lanza, and Pak-Wai Chan
Atmos. Meas. Tech., 16, 4155–4163, https://doi.org/10.5194/amt-16-4155-2023,https://doi.org/10.5194/amt-16-4155-2023, 2023
Short summary
Introduction of a Trans-scale Numerical Simulation Framework Focusing on Urban Boundary Layer: WOCSS V1.0
Wei Li, Shuo Leng, Sunwei Li, Zhenzhong Hu, and Pakwai Chan
EGUsphere, https://doi.org/10.5194/egusphere-2023-482,https://doi.org/10.5194/egusphere-2023-482, 2023
Preprint archived
Short summary
Identification of tropical cyclones via deep convolutional neural network based on satellite cloud images
Biao Tong, Xiangfei Sun, Jiyang Fu, Yuncheng He, and Pakwai Chan
Atmos. Meas. Tech., 15, 1829–1848, https://doi.org/10.5194/amt-15-1829-2022,https://doi.org/10.5194/amt-15-1829-2022, 2022
Short summary
Impact of the COVID-19 pandemic on the observed vertical distributions of PM2.5, NOx, and O3 from a tower in the Pearl River Delta
Lei Li, Chao Lu, Pak-Wai Chan, Zi-Juan Lan, Wen-Hai Zhang, Hong-Long Yang, and Hai-Chao Wang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-579,https://doi.org/10.5194/acp-2021-579, 2021
Revised manuscript not accepted
Short summary
Performance of post-processing algorithms for rainfall intensity using measurements from tipping-bucket rain gauges
Mattia Stagnaro, Matteo Colli, Luca Giovanni Lanza, and Pak Wai Chan
Atmos. Meas. Tech., 9, 5699–5706, https://doi.org/10.5194/amt-9-5699-2016,https://doi.org/10.5194/amt-9-5699-2016, 2016
Short summary

Related subject area

Sea, Ocean and Coastal Hazards
Recent Baltic Sea storm surge events from a climate perspective
Nikolaus Groll, Lidia Gaslikova, and Ralf Weisse
Nat. Hazards Earth Syst. Sci., 25, 2137–2154, https://doi.org/10.5194/nhess-25-2137-2025,https://doi.org/10.5194/nhess-25-2137-2025, 2025
Short summary
Development of a wind-based storm surge model for the German Bight
Laura Schaffer, Andreas Boesch, Johanna Baehr, and Tim Kruschke
Nat. Hazards Earth Syst. Sci., 25, 2081–2096, https://doi.org/10.5194/nhess-25-2081-2025,https://doi.org/10.5194/nhess-25-2081-2025, 2025
Short summary
Advancing nearshore and onshore tsunami hazard approximation with machine learning surrogates
Naveen Ragu Ramalingam, Kendra Johnson, Marco Pagani, and Mario L. V. Martina
Nat. Hazards Earth Syst. Sci., 25, 1655–1679, https://doi.org/10.5194/nhess-25-1655-2025,https://doi.org/10.5194/nhess-25-1655-2025, 2025
Short summary
Untangling the waves: decomposing extreme sea levels in a non-tidal basin, the Baltic Sea
Marvin Lorenz, Katri Viigand, and Ulf Gräwe
Nat. Hazards Earth Syst. Sci., 25, 1439–1458, https://doi.org/10.5194/nhess-25-1439-2025,https://doi.org/10.5194/nhess-25-1439-2025, 2025
Short summary
Accelerating compound flood risk assessments through active learning: A case study of Charleston County (USA)
Lucas Terlinden-Ruhl, Anaïs Couasnon, Dirk Eilander, Gijs G. Hendrickx, Patricia Mares-Nasarre, and José A. Á. Antolínez
Nat. Hazards Earth Syst. Sci., 25, 1353–1375, https://doi.org/10.5194/nhess-25-1353-2025,https://doi.org/10.5194/nhess-25-1353-2025, 2025
Short summary

Cited articles

Bento, N. and Fontes, M.: Emergence of floating offshore wind energy: Technology and industry, Renew. Sust. Energ. Rev., 99, 66–82, https://doi.org/10.31230/osf.io/ma7ku, 2019. 
Chen, X. L., Jiang, Z. Y., Li, Q. Y., Li, Y., and Ren. N. X.: Extended environmental contour methods for long-term extreme response analysis of offshore wind turbines, J. Offshore Mech. Arct., 142, 052003, https://doi.org/10.1115/1.4046772, 2020. 
Díaz, H. and Guedes Soares, C.: Review of the current status, technology and future trends of offshore wind farms, Ocean Eng., 209, 107381, https://doi.org/10.1115/1.4046772, 2020. 
Dong, X. F., Lian, J. J., Wang, H. J., Yu, T. S., and Zhao, Y.: Structural vibration monitoring and operational modal analysis of offshore wind turbine structure, Ocean Eng. 150, 280–297, https://doi.org/10.1002/we.2849/v1/review1, 2018. 
GB 50009-2012: Load Code for the Design of Building Structures, China Architecture and Building Press, Beijing, China. 
Download
Short summary
Offshore wind turbines are sensitive to tropical cyclones (TCs). Wind data from super typhoons Mangkhut and Saola, impacting south China, are vital for design and operation. Despite Saola's higher intensity, it caused less damage. Both had concentric eyewall structures, but Saola completed an eyewall replacement before landfall, becoming more compact. Mangkhut decayed but affected a wider area. Their wind characteristics provide insights for turbine maintenance and operation.
Share
Altmetrics
Final-revised paper
Preprint