Articles | Volume 25, issue 3
https://doi.org/10.5194/nhess-25-1169-2025
https://doi.org/10.5194/nhess-25-1169-2025
Research article
 | 
24 Mar 2025
Research article |  | 24 Mar 2025

Tsunami detection methods for ocean-bottom pressure gauges

Cesare Angeli, Alberto Armigliato, Martina Zanetti, Filippo Zaniboni, Fabrizio Romano, Hafize Başak Bayraktar, and Stefano Lorito

Related authors

Modelling tsunami initial conditions due to rapid coseismic seafloor displacement: efficient numerical integration and a tool to build unit source databases
Alice Abbate, José M. González Vida, Manuel J. Castro Díaz, Fabrizio Romano, Hafize Başak Bayraktar, Andrey Babeyko, and Stefano Lorito
Nat. Hazards Earth Syst. Sci., 24, 2773–2791, https://doi.org/10.5194/nhess-24-2773-2024,https://doi.org/10.5194/nhess-24-2773-2024, 2024
Short summary
Characterization of fault plane and coseismic slip for the 2 May 2020, Mw 6.6 Cretan Passage earthquake from tide gauge tsunami data and moment tensor solutions
Enrico Baglione, Stefano Lorito, Alessio Piatanesi, Fabrizio Romano, Roberto Basili, Beatriz Brizuela, Roberto Tonini, Manuela Volpe, Hafize Basak Bayraktar, and Alessandro Amato
Nat. Hazards Earth Syst. Sci., 21, 3713–3730, https://doi.org/10.5194/nhess-21-3713-2021,https://doi.org/10.5194/nhess-21-3713-2021, 2021
Short summary
Probabilistic tsunami hazard analysis for Tuzla test site using Monte Carlo simulations
Hafize Basak Bayraktar and Ceren Ozer Sozdinler
Nat. Hazards Earth Syst. Sci., 20, 1741–1764, https://doi.org/10.5194/nhess-20-1741-2020,https://doi.org/10.5194/nhess-20-1741-2020, 2020
Short summary
Assessment of the 1783 Scilla landslide–tsunami's effects on the Calabrian and Sicilian coasts through numerical modeling
Filippo Zaniboni, Gianluca Pagnoni, Glauco Gallotti, Maria Ausilia Paparo, Alberto Armigliato, and Stefano Tinti
Nat. Hazards Earth Syst. Sci., 19, 1585–1600, https://doi.org/10.5194/nhess-19-1585-2019,https://doi.org/10.5194/nhess-19-1585-2019, 2019
Short summary
From regional to local SPTHA: efficient computation of probabilistic tsunami inundation maps addressing near-field sources
Manuela Volpe, Stefano Lorito, Jacopo Selva, Roberto Tonini, Fabrizio Romano, and Beatriz Brizuela
Nat. Hazards Earth Syst. Sci., 19, 455–469, https://doi.org/10.5194/nhess-19-455-2019,https://doi.org/10.5194/nhess-19-455-2019, 2019

Related subject area

Sea, Ocean and Coastal Hazards
Using random forests to forecast daily extreme sea level occurrences at the Baltic Coast
Kai Bellinghausen, Birgit Hünicke, and Eduardo Zorita
Nat. Hazards Earth Syst. Sci., 25, 1139–1162, https://doi.org/10.5194/nhess-25-1139-2025,https://doi.org/10.5194/nhess-25-1139-2025, 2025
Short summary
Probabilistic tsunami hazard analysis of Batukaras, a tourism village in Indonesia
Wiwin Windupranata, Muhammad Wahyu Al Ghifari, Candida Aulia De Silva Nusantara, Marsyanisa Shafa, Intan Hayatiningsih, Iyan Eka Mulia, and Alqinthara Nuraghnia
Nat. Hazards Earth Syst. Sci., 25, 1057–1069, https://doi.org/10.5194/nhess-25-1057-2025,https://doi.org/10.5194/nhess-25-1057-2025, 2025
Short summary
Review article: A comprehensive review of compound flooding literature with a focus on coastal and estuarine regions
Joshua Green, Ivan D. Haigh, Niall Quinn, Jeff Neal, Thomas Wahl, Melissa Wood, Dirk Eilander, Marleen de Ruiter, Philip Ward, and Paula Camus
Nat. Hazards Earth Syst. Sci., 25, 747–816, https://doi.org/10.5194/nhess-25-747-2025,https://doi.org/10.5194/nhess-25-747-2025, 2025
Short summary
Validated probabilistic approach to estimate flood direct impacts on the population and assets on European coastlines
Enrico Duo, Juan Montes, Marine Le Gal, Tomás Fernández-Montblanc, Paolo Ciavola, and Clara Armaroli
Nat. Hazards Earth Syst. Sci., 25, 13–39, https://doi.org/10.5194/nhess-25-13-2025,https://doi.org/10.5194/nhess-25-13-2025, 2025
Short summary
Changing sea level, changing shorelines: integration of remote-sensing observations at the Terschelling barrier island
Benedikt Aschenneller, Roelof Rietbroek, and Daphne van der Wal
Nat. Hazards Earth Syst. Sci., 24, 4145–4177, https://doi.org/10.5194/nhess-24-4145-2024,https://doi.org/10.5194/nhess-24-4145-2024, 2024
Short summary

Cited articles

Amato, A., Avallone, A., Basili, R., Bernardi, F., Brizuela, B., Graziani, L., Herrero, A., Lorenzino, M. C., Lorito, S., Mele, F. M., Michelini, A., Piatanesi, A., Pintore, S., Romano, F., Selva, J., Stramondo, S., Tonini, R., and Volpe, M.: From seismic monitoring to tsunami warning in the Mediterranean Sea, Seismol. Res. Lett., 92, 1796–1816, https://doi.org/10.1785/0220200437, 2021. a, b
Barbe, P., Cicone, A., Li, W. S., and Zhou, H.: Time-frequency representation of nonstationary signals: the IMFogram, arXiv [preprint], https://doi.org/10.48550/arXiv.2011.14209, 2020. a, b, c
Beltrami, G. M.: An ANN algorithm for automatic, real-time tsunami detection in deep-sea level measurements, Ocean Eng., 35, 572–587, https://doi.org/10.1016/j.oceaneng.2007.11.009, 2008. a, b, c
Beltrami, G. M.: Automatic, real-time detection and characterization of tsunamis in deep-sea level measurements, Ocean Eng., 38, 1677–1685, https://doi.org/10.1016/j.oceaneng.2011.07.016, 2011. a, b, c, d
Bressan, L., Zaniboni, F., and Tinti, S.: Calibration of a real-time tsunami detection algorithm for sites with no instrumental tsunami records: application to coastal tide-gauge stations in eastern Sicily, Italy, Nat. Hazards Earth Syst. Sci., 13, 3129–3144, https://doi.org/10.5194/nhess-13-3129-2013, 2013. a
Download
Short summary
To issue precise and timely tsunami alerts, detecting the propagating tsunami is fundamental. The most used instruments are pressure sensors positioned at the ocean bottom, called ocean-bottom pressure gauges (OBPGs). In this work, we study four different techniques that allow us to recognize a tsunami as soon as it is recorded by an OBPG and a methodology to calibrate them. The techniques are compared in terms of their ability to detect and characterize the tsunami wave in real time.
Share
Altmetrics
Final-revised paper
Preprint