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Abstract. The real-time detection of tsunami waves is a fun-
damental part of tsunami early warning and alert systems.
Several algorithms have been proposed in the literature for
that. Three of them and a newly developed one, based on
the fast iterative filtering (FIF) technique, are applied here
to a large number of records from the Deep-ocean Assess-
ment and Reporting of Tsunamis (DART) monitoring net-
work in the Pacific Ocean. The techniques are compared in
terms of earthquake and tsunami event-detection capabilities
and statistical properties of the detection curves. The clas-
sical Mofjeld’s algorithm is very efficient in detecting seis-
mic waves and tsunamis, but it does not always character-
ize the tsunami waveform correctly. Other techniques, based
on empirical orthogonal functions and cascade of filters,
show better results in wave characterization but they usually
have larger residuals than Mofjeld’s. The FIF-based detec-
tion method shows promising results in terms of detection
rates of tsunami events, filtering of seismic waves, and char-
acterization of wave amplitude and period. The technique is
a good candidate for monitoring networks and in data assim-
ilation applications for real-time tsunami forecasts.

1 Introduction

Tsunami early warning and alert system operations are based
on the rapid earthquake characterization in terms of magni-
tude and hypocenter after which alerts are typically given
based on a decision matrix or on databases of precomputed
tsunami propagation scenarios; the forecast can then be con-
firmed, updated or canceled based on additional earthquake
information (e.g., focal mechanism, moment tensor, finite

fault models) and sea level measurements (Titov et al., 2005;
Duputel et al., 2011; Lomax and Michelini, 2013; Amato et
al., 2021). The latter are crucial for the rapid characterization
of tsunami waves, which are monitored from tsunami warn-
ing centers by means of coastal tide gauges and/or ocean-
bottom pressure gauges (OBPGs) (Rabinovich and Eblé,
2015).

Historically, the first tsunami-recording instruments were
coastal tide gauges, for which self-recording variants have
been available since the 1830s (Matthäus, 1972). However,
such instruments measure the sea level in close proximity to
the coast. For this reason, they are not the primary choice
in the context of tsunami detection, even though they can be
used for early warning purposes wherever no other instru-
ments are located and real-time detection algorithms for tide
gauges have been developed (Bressan et al., 2013; Lee et al.,
2016). Furthermore, the tsunami evolution at coastal loca-
tions is deeply influenced by its nonlinear interaction with
the local bathymetry and topography.

Conversely, these site effects are negligible in the case of
measurements of tsunami waves in deep-water environments
using OBPGs. By virtue of being located at the bottom of
the ocean, these instruments only detect long wave signals,
such as tsunamis and tides, filtering out naturally the most su-
perficial oscillations; moreover, the open-ocean tsunami evo-
lution is less affected by complex interactions with coastal
morphology and is mostly a linear phenomenon. Thus, the
signals from ocean-bottom measurements are a superposition
of

1. tidal oscillations, dominated by diurnal and semidiurnal
periods, which are the main contribution to the energy
of the signal;
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2. random oscillations in the same frequency range of
tides, not accounted for by harmonic analysis;

3. tsunami waves;

4. changes in pressure due to displacement of the ocean
bottom.

This last case is evident for gauges subjected to seismic shak-
ing, like for instruments located relatively close to the earth-
quake source zone, for which seismic and tsunami waves
may not be well separated in the recordings, making the ex-
traction of the tsunami wave quite challenging. Thus, tech-
niques able to separate the two contributions are necessary
for instruments located near the potential earthquake sources
(Williamson and Newman, 2019). For detailed discussions
on the nature of deep-ocean pressure measurements, we re-
fer to the many detailed works in the literature, such as Ra-
binovich (1997), Goring (2008), Mungov et al. (2013), and
Rabinovich and Eblé (2015).

OBPGs can be classified based on the transmission tech-
nology they used, either through cable or through acoustic
transmission. Cabled instruments transmit data as soon as
they are acquired through cable to research or data centers,
where they are analyzed for both early warning applications
and later studies. Cabled instruments are commonly used for
real-time forecast (Tsushima et al., 2007) and data assimi-
lation applications (Wang et al., 2019a), and they are used
as part of the DONET (Kawaguchi et al., 2008) and S-NET
(Mochizuki et al., 2018) networks deployed around the Pa-
cific coasts of Japan to monitor both local and far-field earth-
quakes and tsunamis.

OBPGs with acoustic transmission are the ones used in the
Deep-ocean Assessment and Reporting of Tsunamis (DART)
network (National Oceanic and Atmospheric Administra-
tion, 2005; Titov et al., 2005), composed of a variable-in-
time number of OBPGs operating around the Pacific, north-
eastern Indian and north Atlantic oceans, each of which
continuously transmits pressure data to a buoy located at
the sea surface, which then transmits data to the tsunami
warning center. The data transmission frequency between
the pressure gauge and the buoy increases in the case of
an event, which can be triggered by an automatic detec-
tion or an external prompt. The recorded pressure changes
can then be converted to sea level variation and incorpo-
rated into the tsunami forecast with different methods, such
as real-time source inversion (Titov et al., 2003; Tang et al.,
2009), data assimilation methods (Maeda et al., 2015; Wang
et al., 2017, 2019a, b; Heidarzadeh et al., 2019; Wang et al.,
2021) or recently proposed Bayesian approaches (Selva et
al., 2021b).

Lastly, we mention that another possible instrument for di-
rect sea level measurement offshore is the GPS buoy (Kato
et al., 2000). In this case, a GPS receiver is placed on a sta-
ble buoy and data are analyzed at a ground base station us-
ing real-time kinematics (RTK) to obtain the relative vertical

motion of the buoy. GPS buoys have been used for real-time
tsunami inversion as well (Yasuda and Mase, 2013).

The purpose of this work is to test and compare real-time
tsunami detection methods from the literature that have been
applied to real data acquired by OBPGs. In particular, some
techniques are chosen and then applied to past OBPG data
as if it would happen in real time. The first technique is the
one proposed by Mofjeld (1997). Since every DART station
has the algorithm implemented on board, the technique has
a long history of applications and analysis of its properties
(Beltrami, 2008, 2011; Chierici et al., 2017). It has to be
noted that fourth generation DART (DART 4G) also includes
an additional algorithm which allows the automatic separa-
tion of seismic shaking and tsunami waves, exploiting the
higher sampling rate (https://www.ndbc.noaa.gov/dart/dart.
shtml, last access: 24 February 2025). For that, 1 s sam-
pling rate data are used (Christopher Moore, personal com-
munication, 2024). Since not enough information regarding
DART 4G is publicly available, in this study, we do not deal
with this algorithm, but rather test the other algorithms on
largely available DART data with sampling times of 15 s.
Many of them are currently operational. It also has to be
noted that even the onboard sampling rate is higher, the ordi-
nary transmission rates are lower, and the onboard comput-
ing capability is generally limited, in each case to limit the
battery consumption. Thus, it is desirable to have a detection
algorithm that works for relatively low sampling rates.

The other techniques presented and tested are the detid-
ing through empirical orthogonal functions (EOFs) (Tolkova,
2009, 2010) and the tsunami detection algorithm (TDA) de-
veloped by Chierici et al. (2017). Lastly, a new technique,
similar to the one developed by Wang et al. (2020), is pre-
sented. This new technique is based on the fast iterative filter-
ing (FIF) technique (Cicone, 2020; Cicone and Zhou, 2021)
and the IMFogram time–frequency representation (Barbe et
al., 2020; Cicone et al., 2024a).

These applications include tests on background signals,
i.e., signals where no evident earthquake or tsunami oscilla-
tion is present, and on records acquired during the generation
and propagation of past events. With these analyses, we are
able to characterize each technique in terms of their filtering
capabilities for both high- and low-frequency disturbances.
Tests on past events’ signals allow us to quantify the detec-
tion rates of each technique and to evaluate how they would
perform in an early warning setting through simple detec-
tion scores. Moreover, we propose simple possible criteria
to determine optimal detection thresholds for each detection
method, based exclusively on real OBPG data.

The four techniques, which we will refer to as MOF (short
for Mofjeld), EOF, TDA and FIF for brevity, are described
in their basic mathematical structure in Sect. 2. Applications
are then shown in Sect. 3 in order to study how the techniques
behave on signals with and without tsunamis.
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2 Algorithms for real-time tsunami detection

2.1 MOF algorithm

DART stations in the NOAA monitoring network are
equipped with an automatic tsunami detection algorithm, de-
scribed by Mofjeld (1997). The algorithm compares the pres-
sure recorded at each instant with a prediction computed
from the previously acquired data. If the absolute difference
between these two values exceeds a given threshold, this is
considered a detection of a sea level anomaly.

The predicted value is found by using Newton’s forward
polynomial interpolation formula:

Hp(t
′)=

3∑
i=0

wiH (t − idt) , (1)

where t ′ is the prediction time set to t + 5.25 s, where t is
the time of most recent measurement used to compute the
interpolating polynomial;H is the 10 min moving average of
pressure data; and dt = 60 min. For the default parameters,
the following can be shown.

w1 =+1.16818457031250

w2 =−0.28197558593750

w3 =+0.14689746093750

w4 =−0.03310644531250

(2)

The technique is particularly suitable for onboard implemen-
tation due to its very simple mathematical formulation, com-
putational efficiency and low requirements in terms of data
needed for the prediction, since little more than the previous
3 h of measurements is needed.

We note that the most recent point used for extrapolation
is 5 min before the current time. If a tsunami signal has a
period longer than that, the averaging operation will not be
able to remove it, so the extrapolation will be affected by
the presence of the tsunami. The result is that residuals pro-
duced by Mofjeld’s algorithm deviate in terms of amplitude
and period from the tsunami waveform. The problem is ad-
dressed by Beltrami (2011), showing that a better agreement
between the residual and the tsunami waveform may be ob-
tained by adopting a longer prediction time. However, this re-
sults in a much smaller signal-to-noise ratio. The technique
has no built-in method to filter out high-frequency compo-
nents, such as random noise and seismic waves.

2.2 EOF detiding

The use of empirical orthogonal functions (EOFs) for de-
tiding has been introduced by Tolkova (2009, 2010). The
method is based on the application of principal component
analysis to a pressure record ζ(t) as follows:

1. Extract from a long time series N segments of length
M .

2. Compute the covariance matrix,

Cij =

N∑
k=1

[
ζ(qk + i− 1)− ak

][
ζ(qk + j − 1)− ak

]
, (3)

where qk is the index where the kth fragment starts and
ak is the average of the kth fragment.

3. Compute the EOFs ei as the eigenvectors of the matrix
Cij +CM+1−i,M+1−j .

It has been shown by Tolkova (2009) that the first few EOFs
are sufficient to reconstruct the tidal component of the sea
level signals. Furthermore, Tolkova (2010) shows that these
bases have a universality property. In fact, if we compute the
EOFs for data obtained in different locations, the residual
produced by detiding a signal has the same amplitude what-
ever basis we use. For this reason, once we have data from
a tsunameter in a basin, the technique may be applied to de-
tide any signal from any other instrument within the same
basin.

The explanation proposed by Tolkova (2010) hinges on the
fact that the periods of the diurnal and semidiurnal tidal com-
ponents, captured by the first few EOFs, are the same in every
position in the global ocean. Since tides are obtained by pro-
jection, the differences in amplitude between different basis
function sets have no effects on the decomposition. On the
other hand, the tidal fine structures, i.e., tidal oscillations of
shorter periods such as 6 and 8 h, are location-specific and
are thus removed with this technique. It should be noted also
that the universality of the main tidal components has been
shown empirically, but we lack a rigorous justification. Thus,
the property may not be valid for data acquired very far from
the sensors used by Tolkova (2010).

To apply the technique to real-time tsunami detection, a
1-lunar-day-long (24 h 50.4 min) basis is used. At each time
step

1. the signal average is subtracted from the data;

2. tides are extracted by projecting the last-acquired data
onto the EOF basis;

3. a residual is computed by subtracting computed tides
from the original signal;

4. the last residual point is compared with a given thresh-
old;

5. once a new measurement is acquired, the computation is
repeated on the new 1-lunar-day time window that ends
at that measurement.

Since tides are obtained by projection, the results of the com-
putations are unaffected by multiplying any of the basis func-
tions by an arbitrary constant.
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Figure 1. Empirical orthogonal functions computed for DART
46414 (in the period 6 June 2018–8 June 2022) and used for EOF-
based detection. The DART station is located southeast of Chirikov
Island in the Gulf of Alaska. We note that the vertical scale is ar-
bitrary. Since the tides are computed by projection on this basis,
any multiplicative scaling of any EOF would have no effect on the
computed tides.

The technique is computationally efficient, since comput-
ing the tides s by projection of a signal η can be done by a
simple matrix–vector product like

s = EET η, (4)

where the matrix E has the EOF basis vector ei as columns.
It has also been shown that using seven elements for the basis
minimizes errors for the chosen signal length. In this work,
the basis is obtained from DART 46414 in the period be-
tween 6 June 2018 and 8 June 2022, since it presents no dis-
continuities or missing data. The obtained basis is shown in
Fig. 1.

2.3 TDA

The tsunami detection algorithm (TDA), introduced by
Chierici et al. (2017), has a modular structure, which in-
cludes tide prediction and signal filtering. Each time a new

pressure measurement is acquired, tides are removed using a
harmonic model (Pawlowicz et al., 2002) with precomputed
coefficients. After that, a spike detection algorithm is used
to eliminate isolated spikes. Lastly, the residual time history
is bandpass-filtered using a finite impulse response (FIR) fil-
ter. Since the TDA is designed to work in real time, which is
only utilizing previous data, a mirroring boundary condition
is applied to the signal before filtering.

The TDA has been specifically developed to be as com-
putationally efficient as possible, and the processing at each
time step requires only a few thousand floating-point op-
erations. Furthermore, the modularity makes it very easily
adaptable to different operational conditions. On the other
hand, requiring precomputed tidal coefficients puts a con-
straint on the applicability, since a relatively long time series,
on the order of a few months, is needed at the position of the
instrument. Thus, the technique as described by Chierici et
al. (2017) cannot be applied to instruments which have been
deployed too recently or have recorded jump discontinuities.
Both of these events occur in the case of DART instruments,
since they are periodically resurfaced for maintenance and
downloading raw data and then deployed again in a different
position. The case of jump discontinuities, due to resurfacing
or other reasons, usually requires ad hoc processing, as in the
case of very long (e.g., multiannual) trends (Mungov et al.,
2013). Techniques to account for these occurrences in real
time need further investigation and are outside the scope of
the present work. Whenever such a case is present for a sig-
nal in our datasets, TDA is not applied to it. An intermediate
situation may occur where enough data to compute a set of
tidal coefficients are available but not enough to remove tidal
oscillations completely. In these cases, the residual produced
by the technique may have amplitudes of several centimeters
that may produce false detections even in the absence of any
anomaly. Local tidal ranges may also play a role, since ar-
eas with much larger tidal ranges are expected to have larger
residuals. Given the modularity of TDA, different detiding
techniques can be employed in the place of the harmonic
model presented (Consoli et al., 2014). However, this is out-
side the scope of the present analysis.

In this work, tidal coefficients are computed using UTide
(Codiga, 2011) from at least 2 months of data ending a few
days before the time interval of interest in each case. For the
harmonic filter, Chierici et al. (2017) use a 4000-point FIR
bandpass filter with a [2min,120min] or [4min,120min] pe-
riod window. Here, we use the second window, since we are
mainly interested in applications to tsunamis of tectonic ori-
gin. Furthermore, filtering using this period band happens to
filter out the frequencies which may be contaminated by in-
fragravity waves (Mungov et al., 2013).

2.4 FIF-based tsunami detection

The FIF technique (Cicone, 2020) is a data-driven signal
analysis technique for decomposing nonlinear and nonsta-
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tionary signals into simple oscillatory components. The de-
composition is additive, so a signal s(t) can be written as

s(t)=

N∑
k=1

Ik(t)+ r(t) , (5)

where Ik are called intrinsic mode functions (IMFs) and r(t)
is the residual. Each IMF satisfies the following properties:

1. The number of zero crossings and the number of relative
extrema differ at a maximum of one unity.

2. The envelopes of relative maxima and relative minima
are symmetric with respect to zero.

A function with such properties can be regarded as a gen-
eralization of a Fourier mode f (t)= A(t)cos(θ(t)), where
the amplitude A(t) can vary with time and the phase θ(t) is
allowed to be nonlinear (Huang et al., 1998).

The most common method to decompose a signal into
IMFs is the empirical mode decomposition (EMD), intro-
duced by Huang et al. (1998). However, the FIF method has
some properties that make it preferable. In particular, it is
more robust to noise (Cicone et al., 2016), it is not prone to
mode mixing (Cicone et al., 2024b), and it generates no un-
wanted oscillations as defined by Cicone et al. (2022). The
FIF shares some of these good properties with the ensem-
ble empirical mode decomposition (EEMD; Wu and Huang,
2009), but for EEMD this comes with a severe increase in
computational cost. In contrast, FIF can be formulated us-
ing fast Fourier transform (FFT) (Cicone and Zhou, 2021),
making it numerically efficient. To perform a time–frequency
analysis of a signal, FIF is complemented by the IMFogram
technique (Barbe et al., 2020; Cicone et al., 2024a). From
the IMFogram, instantaneous amplitudes and frequencies are
computed for each component from the envelope of the abso-
lute value of extrema and the distribution of zero crossings,
respectively.

The tsunami detection strategy we propose is as follows:

1. Take the last 3 h of acquired sea level data.

2. Remove the long period trend by robust polynomial fit
(Street et al., 1988).

3. Decompose the residual using the FIF technique.

4. Sum the IMFs with frequency content, computed with
the IMFogram method, lying within a chosen frequency
band.

5. Compare the last point of the obtained signal with a cho-
sen amplitude threshold.

6. Repeat from step (1) once a new sea level measurement
is acquired.

The reason for which the tidal trend is removed through
polynomial fit lies in the ability of IMFs to capture com-
ponents with variable frequency. Just after the arrival of a
tsunami wave, as in the example in Fig. 2, using FIF on raw
data before detrending may not separate the tsunami wave
from tides. For 3 h long signals, polynomials of degree 3
seem to be the most appropriate. In terms of frequency band,
in this work we retain components with periods between
4 and 180 min, which represent a conservative window for
preserving all components related to earthquake-generated
tsunamis. Nonetheless, we point out that the combination of
FIF and IMFogram techniques is quite robust with respect
to the choice of both their parameters and the chosen period
window. An example of the procedure for one time step is
shown in Fig. 2.

The decomposition step in Fig. 2 deserves further com-
ments in regards to the presence of non-causal oscillations
in the components, i.e., non-physical oscillations before the
tsunami’s arrival. Firstly, we point out that this effect is not
exclusive to FIF (or FIF-like) decompositions and it can be
observed also in classical Fourier trigonometric series. One
example can be found in Figs. 18 and 19 in the work by
Tolkova (2009). Secondly, the tsunami component of the sig-
nal is obtained by summing components within the chosen
frequency band. In doing so, the additional oscillations can-
cel out, as shown in the example in Fig. 2. Thus, they have
no effect on the obtained residual. Nonetheless, this effect
could be avoided using a different set of parameters for the
FIF decomposition. Given the robustness of the technique
the results of the present work do not depend on this choice.
Therefore, the determination of optimal parameters is left for
future works.

A similar detection technique based on data-driven sig-
nal decomposition was proposed by Wang et al. (2020). The
FIF-based detection proposed here differs in two aspects.
Firstly, they use the more computationally expensive EEMD-
based signal decomposition. Despite having two more steps,
namely trend removal and frequency computation, than the
technique by Wang et al. (2020), the numerical efficiency of
FIF makes our algorithm faster overall. Secondly, Wang et
al. (2020) a priori choose which components represent the
tsunami, while we choose them based on the frequency con-
tent computed at each time step.

3 Performance comparison

To test the algorithms described in the previous sections,
raw data from OBPG were retrieved from the Unassessed
Ocean Bottom Pressure (highest available resolution) cat-
alog available on NOAA’s website (https://www.ngdc.noaa.
gov/thredds/catalog/dart_bpr/rawdata/catalog.html, last ac-
cess: 24 February 2025). For background analyses, DART
data from New Zealand’s network were also used, which
are available from GeoNet’s website (https://tilde.geonet.org.
nz/, last access: 24 February 2025).
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Figure 2. Example of FIF-based decomposition: (a) the last 3 h of data is taken, (b) detrended through polynomial fitting and (c) decom-
posed using FIF, and (d) the sum of components in the chosen frequency band (periods between 4 and 180 min) are summed. Data from
DART 32413, during the 16 September 2015 Illapel tsunami. The generating earthquake occurred at 22:54:32 UTC, while “now” in the plot
refers to 4 h 43 min after origin time.

All the techniques we consider here are amplitude-based
– i.e., they process the most recent available portion of data
and a detection is triggered based on the amplitude of the last
point of the processed signal. To characterize the properties
of each technique, we analyze the time history made of these
last points processed at each time step. We will refer to these
time series as “detection curves”. The content of the detec-
tion curves is a superposition of residuals of the analysis and
any component that is not filtered in the processing. How-
ever, the specific nature of these contributions differs among
the techniques. For example, MOF only removes long-term
trends, so detection curves contain oscillations from seismic
and tsunami waves and random noise. In the case of tech-
niques with a model-based tide-removal algorithm, such as
EOF detiding and TDA, there may be contributions to the
detection curves due to unmodeled tidal components. The
role of random instrumental noise is reduced wherever high-
frequency filtering is used, e.g., for TDA and FIF, but not
completely eliminated, since detection curves include only
the last point of each analysis and are thus prone to errors
from the boundary treatment. FIF detection curves may also
be affected by errors in the polynomial fit. In every case, the
characteristics that we want from an ideal detection curve
are to have an amplitude that increases in correspondence
with the passage of a tsunami wave while remaining below
a given threshold anywhere else. Also, it is desirable to have
them symmetrically distributed around zero. For example, in
a detection curve with a negative bias, leading trough waves

may be detected even if they have amplitudes smaller than
the detection threshold, while leading crest waves may not
be detected even if larger than the threshold.

Each technique is applied to two different datasets. The
first dataset includes time series consisting only of tides and
random noise, which we will refer to as “background sig-
nals”. Among these we have five time series of 1-month
length, where the first characteristics of each technique are
shown, and 16 signals from different instruments recorded
simultaneously in the absence of tsunami events. From these
analyses, we are able to characterize the properties of the
residual. The second includes day-long signals recorded at
DART stations during real tsunami events to check if the
techniques are able to detect tsunamis and if and when a de-
tection is false or triggered by seismic shaking.

We note here that the applications have been carried out
on raw pressure data and that all data and plots are ex-
pressed in meters of equivalent water through the equivalence
1 dbar= 1 m. The equivalence is only valid whenever the ver-
tical pressure profile in the water column can be assumed to
be hydrostatic. While this is usually the case for earthquake-
generated tsunamis, there are cases where it fails, such as the
case of coupled air–sea waves (Okal, 2024). While taking
this into account is fundamental for the proper characteriza-
tion of the tsunami source, it does not have an effect on the
properties of the detection algorithm. However, any integra-
tion of the techniques tested here into any alert system must
take into account that tsunami waveforms observed in de-
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Figure 3. Raw data from DART 46414 for the month of August
2019.

tection curves represent pressure signals and any use in data
assimilation or forecast methodology must correctly convert
it into sea level time series.

3.1 Background signal analyses

For the analysis of the background signal, we started by se-
lecting five time series of 1-month length, according to the
following criteria:

1. no visible seismic or tsunami oscillations;

2. no instrumental spikes, holes or discontinuities;

3. part of a deployment long enough to accurately compute
tidal coefficients needed for TDA.

Furthermore, the different time series are taken from instru-
ments installed in different areas around the Pacific Ocean to
avoid biases due to regional features.

Here, we illustrate the analysis by considering the signal
chosen from DART 46414 (Fig. 3), whose detection curves
for each technique are shown in Fig. 4. All detection curves
show some residual oscillations, though of different ampli-
tude and spectral content, as shown by the spectra in Fig. 5.
The EOF detection curve has peaks for periods around 24 h,
i.e., the residual from the main diurnal component, and 8 h,
which may be related to the fine structure of tidal oscillation
that is not captured by the algorithm (Tolkova, 2010). TDA
has the main periods around 12 and 24 h, showing that the
main contribution to the residual is given by the difference
between predicted and observed tides. MOF and FIF detec-
tion curves also have a spectral peak around a period of 12 h
but with a lower amplitude. Also, contrary to EOF, they have
a mostly flat spectrum far from the semidiurnal frequency
band.

It is also interesting to look at the amplitude distribution of
the prediction around zero. From the histograms in Fig. 6, we
can notice that the MOF technique has the narrowest distribu-
tion, since it is able to remove the long-term trends entirely,

Figure 4. Detection curves for each detection technique for
DART 46414 from August 2019 (Fig. 3).

Figure 5. Spectra, computed as absolute values of the fast Fourier
transform (FFT), for each detection curve in Fig. 4 relative to data
from DART 46414 from August 2019 (Fig. 3).

with the only contribution to the detection curve being the
random noise, as pointed out before. FIF has a very peaked
distribution, indicating that the detection points checked at
each time step do not deviate much from zero. On the other
hand, EOF and TDA have a wider distribution, which shows
that a larger number of values are further away from zero.

https://doi.org/10.5194/nhess-25-1169-2025 Nat. Hazards Earth Syst. Sci., 25, 1169–1185, 2025
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Figure 6. Histograms of each detection curve in Fig. 4, relative to
data from DART 46414 from August 2019 (Fig. 3).

For TDA, it can also be noticed that the histogram is not cen-
tered around zero; i.e., the points in the detection curve are
distributed asymmetrically due to the fact that the predicted
tides are above the raw data.

The conclusions made for the case in Fig. 3 can be gen-
eralized to the analysis of the other four background signals.
The variability in the detection curves for all five cases can
be measured by their maximum range of variability and stan-
dard deviation, reported in Tables 1 and 2, respectively. In
each case, MOF produces the narrowest distributions, both in
terms of maximum variability, which is around 0.5 cm from
zero, and in terms of standard deviation. FIF shows a larger
variability for both metrics compared to MOF but smaller
than the other techniques, remaining within 1.2 cm from zero
at each time. EOF is the technique with the largest standard
deviations from the origin on average, followed by TDA and
then FIF and MOF, with the exception of case A, where TDA
has a larger standard deviation than EOF. This may be caused
by the large tidal range in case A (see Table 1), which results
in less accurate tide prediction.

The asymmetric amplitude distribution of TDA is ob-
served in all cases. Cases A, C and D are negatively skewed,

while cases B and E are positively skewed. In contrast, the
other techniques are approximately symmetrical in every
case. For these five time series, the threshold of 3 cm, com-
monly used in DART OBPGs (Mofjeld, 1997; Rabinovich
and Eblé, 2015), produces no false detection and seems to be
a highly conservative choice. In fact, a 2 cm threshold would
result in false detections only for TDA in case A. For MOF
and FIF, the threshold may be lowered to 1 and 1.5 cm, re-
spectively. Plots for cases B, C, D and E, analogous to Figs. 3
to 6, are reported in the Supplement. Furthermore, the analy-
sis of these five cases has been used to have a first-order eval-
uation of the sensitivity of TDA to the amount of data used to
compute tidal coefficients. We determined that an amount of
data between 7 to 9 months results in the narrowest detection
curves for TDA. Details about this analysis are reported in
the Supplement.

We should point out that the presented background anal-
ysis takes into account geographical variability only weakly,
since the five signals are from different points in time. Fur-
thermore, multiple tsunamis occurred and were detected dur-
ing those time windows. This in principle may lead to misin-
terpretations of the results, and weak anomalous oscillations
could be attributed to those events. To verify the properties of
the detection algorithm accounting for these factors, we set
up another test. In this case, we selected data following these
criteria:

– Signals were acquired simultaneously by different
DART stations.

– The considered DART stations were located in various
locations to have maximum geographical coverage.

– The raw data preceding the signal at each station should
be long enough to accurately compute tidal coefficients
for TDA.

– The considered time window should include no tsunami
in the regions where the DART stations are located.

Accordingly, we chose the period between 8 and 27 April
2021. We use data between 1 August 2020 and 1 April
2021 to compute tidal coefficients. In this period, we found
19 DART stations that met the data amount requirements, 3
of which were excluded due to the presence of isolated spikes
in the considered time frame. During this period, only one
tsunami is reported by NOAA National Centers for Environ-
mental Information (2025)’s global tsunami catalog, related
to the eruptive activity of La Soufrière volcano on the island
of Saint Vincent. The catalog reports a maximum runup of
0.1 m on the island. Since only 2 of the 16 stations are in the
Atlantic Ocean and the closest is located at ∼ 1000 km, we
assume that the signals are unaffected by the tsunami waves.

In Fig. 7, we show the signal average and the absolute
extrema of each detection curve for each technique. For the
most part, the results reproduce what we observed in the pre-
vious background examples. MOF and FIF have narrower
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Table 1. Maximum peak-to-peak amplitude, indicated asA, of raw data and maximum variability range of detection curves for each technique
in each background case. All quantities are expressed in centimeters.

Case DART Period A MOF EOF TDA FIF

A 46414 1 August–1 September 2019 337.25 [−0.59,0.51] [−1.39,1.45] [−2.16,1.75] [−0.92,1.13]
B 52402 1 June–1 July 2016 82.04 [−0.40,0.42] [−1.67,1.85] [−0.63,1.25] [−0.63,0.71]
C 32413 1 January–1 February 2019 129.62 [−0.54,0.58] [−1.72,1.84] [−1.30,0.75] [−0.74,0.74]
D 51407 15 April–15 April 2022 88.70 [−0.51,0.54] [−1.94,1.93] [−1.27,0.82] [−0.94,0.97]
E 21413 1 June–1 July 2021 86.06 [−0.44,0.43] [−1.71,1.62] [−0.69,1.46] [−0.64,0.63]

Table 2. Standard deviation expressed in centimeters for each technique in each background case.

Case DART Period A MOF EOF TDA FIF

A 46414 1 August–1 September 2019 337.25 0.15 0.41 0.64 0.24
B 52402 1 June–1 July 2016 82.04 0.10 0.56 0.27 0.15
C 32413 1 January–1 February 2019 129.62 0.13 0.61 0.29 0.17
D 51407 15 April–15 April 2022 88.70 0.13 0.63 0.30 0.20
E 21413 1 June–1 July 2021 86.06 0.10 0.57 0.35 0.14

and more symmetric distributions around zero than EOF and
TDA, with no curve that ever reaches an absolute amplitude
of 1.3 cm. On the other hand, TDA’s signal averages tend to
be larger in absolute value, meaning that the amplitude dis-
tribution of the amplitudes is skewed away from zero. The
results for EOF in the case of New Zealand’s DART stations
are noteworthy, since they have the largest-amplitude resid-
ual out of all the background tests: 3.2 and 2.9 cm maxima for
stations NZC and NZE, respectively. A possible reason might
be that these stations are significantly further away than most
of the others from the position of the DART station used to
compute the EOF basis, located in the Alaskan Aleutian arc,
and the New Zealand area was not covered in the empirical
tests by Tolkova (2010), since data were not available at the
time. Although one reason for the difference could be found
in the distance between these stations and the ones used for
the basis computation, we also point out that such large oscil-
lations are not observed at DART stations 41421 and 44402,
located in the Atlantic Ocean, where tidal regimes can be
quite different.

From a spectral point of view, each technique shows con-
sistent results across different instruments. In Fig. 8, we plot
the absolute value of the Fourier transform. For each tech-
nique, we also plot the average spectra across the differ-
ent DART stations. All four techniques show consistent fre-
quency peaks, with MOF and FIF showing peaks around
the 12 h periods corresponding to the semidiurnal tide pe-
riod range. EOF has strong peaks for periods of 24, 8, 6
and 4.8 h, corresponding to tidal oscillations not well mod-
eled by the EOF basis. On the other hand, the peak at 12 h is
weaker than for the other techniques. Lastly, TDA has strong
peaks at diurnal and semidiurnal periods, meaning that the
harmonic fit does not capture the entirety of the main tidal
oscillations. Furthermore, it is the only technique with sig-

Figure 7. Signal average (red) and maximum and minimum ampli-
tude (black) recorded in each detection curve for all signals in the
simultaneous background test. The detection curves have been com-
puted for each of the 16 DART stations reported on the x axis over
the period 8–27 April 2021. Note that MOF and FIF have a nar-
rower and more symmetric distribution than EOF and TDA. TDA
shows significant asymmetries.

nificant amplitude at the zero frequency limit, showing the
presence of signal-long trends that are not eliminated by ei-
ther the tide forecast or the bandpass filter.
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Figure 8. Absolute value of the FFT of each detection curve (gray) and average absolute value of the FFT per technique (red). The detection
curves have been computed for each of the 16 DART stations reported on the x axis of Fig. 7 over the period 8–27 April 2021. Note that
MOF and FIF show the weakest spectral peak, around the period of semidiurnal tides. EOF and TDA have more pronounced spectral peaks
in correspondence of various periods. Signal-long trends in TDA are evident from the larger values in the zero frequency limit.

3.2 Computational cost

Since the main application of a tsunami detection algorithm
is in an early warning context, we require the computational
time to be low (Beltrami, 2008, 2011). The techniques pre-
sented in this work are all applied every time the instrument
acquires a new measurement; thus the computational costs
for the application to one step must be lower than the acqui-
sition sampling time, which for the DART stations we con-
sidered in this study is 15 s. Another common characteristic
of these techniques is that each should take a constant time
per step, since it performs the same operations in each step.
Thus, we can characterize the computational cost of each de-
tection algorithm by computing the time per step.

To this aim, we computed the time each technique takes
to compute the first 5000 data points of the detection curves
for the background signal A (Fig. 3), reported in Table 3. In
all cases, we took into account only computations that are
needed in real time while ignoring every computation that
may be performed offline, such as the computation of the ba-
sis functions for EOF or the tidal coefficients for TDA. Com-
putations have been carried out on an Intel Core i9−11900
CPU, 2.50 GHz, 32.0 GB RAM, Windows 11 Pro computer
and with MATLAB R2024a.

For all techniques the computational time per step is much
smaller than the sampling time. Thus, they may all be used
for real-time tsunami detection as currently implemented.
However, further considerations are needed for real-world
applicability. We note that MOF and TDA require less time
by orders of magnitude than the other techniques. MOF in-

Table 3. Total computational time and time per step in seconds re-
quired for each technique to compute the first 5000 points of the
detection curves in Fig. 4

Technique Time Time per step

MOF 0.001 2× 10−7

EOF 46.89 0.094
TDA 0.005 10−6

FIF 325.27 0.0651

cludes just a few tens of floating-point operations, for which
modern hardware is highly optimized. The same is true for
TDA, where the computationally heaviest operation, i.e., the
fitting procedure to determine tidal coefficients, is carried out
offline. On the other hand, EOF detiding and the FIF-based
detection technique need 3 to 4 orders of magnitude more
computing time. While they are still fast enough to be used
for real-time tsunami detection, their applicability to instru-
ments with an autonomous power supply, e.g., DART sta-
tions, can be limited by the comparatively larger computa-
tional cost.

In regards to the FIF-based detection method, we should
also point out that its current implementation described in
Sect. 2.4 could be optimized. In fact, we note that a com-
plete decomposition of the signal is computed at each time
step. However, the computation could be stopped once the
first component with a frequency below the chosen frequency
band is extracted. Moreover, the parameters of both the FIF
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decomposition and the IMFogram algorithm have not been
optimized for computational costs. Lastly, the detrending
step, carried out with a polynomial fit, might be carried
out through more numerically efficient techniques, such as
smoothing FIR filters (Schafer, 2011).

3.3 Detection testing on past events

To test how the various algorithms compare in the detec-
tion of real events, a dataset based on the catalog by Davies
(2019) has been built. The catalog includes 18 events that
occurred around the Pacific Ocean between 2006 and 2016,
generated by earthquakes with magnitudes between 7.8
and 9.1. For each event, we extracted 24 h long signals start-
ing from the earthquake origin time from every DART station
active at origin time whose data are available on NOAA’s
website. It may happen that data may not be retrieved from
some instruments. In these cases, only data transmitted in
real time by the instrument are available. For the DART sta-
tions concerned here, the raw data’s sampling time is 15 s,
while it varies for transmitted data between 15 min for nor-
mal conditions and 15 s and 1 min for the 4 h after a detec-
tion is triggered (Rabinovich and Eblé, 2015). For this rea-
son, the cases where only transmitted data are available have
been excluded. Finally, we removed instrumental spikes and
resampled by linear interpolation. The dataset obtained con-
tains 437 signals of various nature: some of them consist of
only background, while others also contain seismic and/or
tsunami waves.

A first comparison between the different techniques can
be made by computing the average and standard deviation of
each detection curve. The comparison among absolute values
of the averages (Fig. 9) gives results similar to the analysis of
backgrounds in the previous section: MOF usually produces
the smallest residuals followed by FIF, EOF and at last TDA.
TDA has worse performance than before due to the variable
availability of preceding data, as explained in Sect. 2.3. Thus,
TDA was not applicable to 55 signals whose deployment was
too recent to compute tidal coefficients, and it shows large
residuals if the coefficients were computed from relatively
short series.

Standard deviations are correlated with the total area be-
tween the curve and horizontal axis; i.e., we expect the stan-
dard deviation to be proportional to the amplitude of oscil-
lations in a signal. Thus, the standard deviations of detec-
tion curves with low-amplitude seismic and tsunami compo-
nents behave similarly to curve averages, as shown in Fig. 10.
In contrast, for signals with high-amplitude seismic and/or
tsunami components, the various techniques tend to provide
similar results. This is evident for the case of the two Kuril
Islands events and the Maule event (KJ1, KJ2 and SA3, re-
spectively, in the plot; see Davies, 2019).

To compare the four techniques, we now try to discrim-
inate false detections and detections triggered by seismic

shaking or the tsunami wave. We define the following for
a given detection threshold T :

– N – the total number of signals in the dataset;

– nF – the number of signals with at least one false detec-
tion;

– nE – number of signals with no false detection and at
least one earthquake detection;

– nT – number of signals with no false detection and at
least one tsunami detection;

– detection score 1 – θ1 =
nT−nF
N

;

– detection score 2 – θ2 =
nT−nE−nF

N
.

These parameters have been computed for each threshold
from T = 1.0 cm to T = 4.0 cm with a step of 0.5 cm. We
note that the process of attributing a detection to the seis-
mic or tsunami wave trains has been carried out by visual
inspection. To avoid possible biases, two strategies are em-
ployed. First, the attribution has been as conservative as pos-
sible; i.e., any doubtful detection is considered a false detec-
tion. Second, we compared detection curves with postpro-
cessed waveforms made available by Davies (2019). To ob-
tain these waveforms, Davies (2019) uses a LOESS smoother
to find tides, while seismic waves are removed by truncating
the time series. The signals in the dataset for which these
are available are 73. Furthermore, the analysis has been ap-
plied separately to the set of signals for which we have post-
processed waveforms, which we refer to as the “restricted
dataset” and the full dataset.

The differences among techniques may be highlighted by
comparing the number of false detections and the detec-
tion scores, reported in Fig. 11 as functions of the detection
threshold. The number of false detections decreases mono-
tonically with the detection threshold, as we expect. MOF
and FIF both have zero false detections above a given thresh-
old, namely 2.5 cm for the full dataset and 2.0 cm for the re-
stricted one. In contrast, EOF and TDA have false detections
for each threshold among the ones considered. It is interest-
ing to notice that both reach an asymptote in the restricted
dataset for thresholds bigger than or equal to 3.0 cm. This is
also the case in the full dataset for EOF but not for TDA. The
reason is that the full dataset contains a higher percentage of
signals with larger tidal residual, which have an amplitude of
several centimeters.

The behavior is different in the case of the θ1 and θ2 scores.
For θ1, which can be interpreted as a measure of success-
ful tsunami detections relative to the number of signals with
false detections, we observe that MOF always gets better
with lower thresholds. On the other hand, for EOF θ1 has a
maximum for a threshold of 2.0 cm. This can be interpreted
as the optimal threshold for EOF if θ1 is assumed to be a
good performance metric. TDA and FIF show a slightly dif-
ferent behavior between the two datasets. FIF has an optimal
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Figure 9. Absolute average value of detection curves for each of the 437 signals in the dataset built by including signals for each event in the
catalog by Davies (2019) from every active DART station whose raw data are available through NOAA’s Unassessed Ocean Bottom Pressure
(highest available resolution) catalog. Detection curves are obtained by applying each of the four techniques to every signal in the dataset.
The events to which the signals corresponds are reported along the x axis in chronological order using the nomenclature by Davies (2019).
Missing values in the case of TDA corresponds to signals for which there are not enough data for the tidal fit to converge.

Figure 10. Standard deviation value of detection curves for each of the 437 signals in the dataset built by including signals for each event
in the catalog by Davies (2019) from every active DART station whose raw data are available through NOAA’s Unassessed Ocean Bottom
Pressure (highest available resolution) catalog. Detection curves are obtained by applying each of the four techniques to every signal in the
dataset. The events to which the signals corresponds are reported along the x axis in chronological order using the nomenclature by Davies
(2019). Missing values in the case of TDA corresponds to signals for which there are not enough data for the tidal fit to converge.

threshold T = 1.5 cm for the restricted dataset. TDA has the
same optimum T = 2.0 cm as EOF for the restricted dataset,
while in the full dataset the presence of signals with large
residuals dominates as in the previous case.
θ2 is similar to θ1, with the added goal of minimizing the

number of earthquake detections. In the restricted dataset,
MOF and EOF perform worse than TDA and FIF, since the
latter two filter out the high-frequency content. Exactly as it
happens for θ1, EOF and TDA reach optimal score values at

T = 2.0 cm and FIF does at T = 1.5 cm. However, in the full
dataset FIF is the only technique with an optimal threshold,
again equal to 1.5 cm. For the other techniques, θ2 increases
monotonically with the detection threshold. While for TDA
the reason is the same as before, MOF’s and EOF’s perfor-
mance is dominated by the larger amount of recorded seismic
waves.
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Figure 11. Normalized false detections nF/N and detections scores
θ1 and θ2 for each detection technique for the full dataset (left col-
umn) and the restricted dataset (right column) of time series avail-
able in Davies (2019).

3.4 Waveform characterization in FIF-based detection

According to Beltrami (2008), one of the desirable prop-
erties of a tsunami detection algorithm is the correct char-
acterization of the wave in terms of amplitude and period.
While these properties have already been investigated for
MOF (Beltrami, 2011), EOF (Tolkova, 2009, 2010) and TDA
(Chierici et al., 2017), they have yet to be established in the
case of FIF. In particular, we are interested in determining

1. the behavior of signals where no earthquake or tsunami
is present,

2. how seismic waves are filtered and the separation be-
tween Rayleigh waves and tsunami waves in the near
field,

3. if we can determine the correct tsunami waveform from
the detection algorithm.

Regarding point 1, detection curves generally behave as
expected from the analysis of the background signal (see
Sect. 3.1), with amplitudes mostly within 1.0 cm and no
strong residual oscillation.

For point 2, we already pointed out in Sect. 3.3 that FIF
filtering capabilities are well illustrated by the variation in
θ2 as a function of the detection threshold. However, even
when the earthquake is detected, FIF allows seismic and
tsunami waves to be better separated. This is exemplified
in Fig. 12, showing the application of the techniques to

Figure 12. Comparison of detection curves (in blue) and postpro-
cessed tsunami waveforms (orange) for the 29 September 2009
Samoa tsunami as recorded by DART 51425. Dashed, horizontal
red lines are located at ±2 cm.

DART 51425 recorded during the 29 September 2009 Samoa
earthquake and tsunami. In this case, all four techniques
would register a detection at the passage of seismic waves,
but the corresponding amplitude varies a lot between MOF
and EOF (∼ 85 cm, not shown in the figure) and TDA and
FIF (∼ 10 cm). Furthermore, while for the first two the seis-
mic wave train overlaps with the tsunami wave, for the last
two there is a clear separation, allowing for a better estima-
tion of the tsunami amplitude, which represents an important
observable that is part of a tsunami alert statement.

In the analysis, we found a limited number of signals
where FIF detection curves present jump discontinuities dur-
ing the tsunami passage in cases where the signal is very
steep. Since the occurrence of these discontinuities only hap-
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Figure 13. Example of the tsunami components (yellow, purple and
green curves) extracted during monitoring compared with the post-
processed waveform (black) and the detection curve (blue crosses)
obtained with the FIF-based technique. Time is measured from the
earthquake origin time. Data from the record at DART 21413 for
the 2010 Maule tsunami.

pens during a tsunami, they do not hinder in any way the
detection capabilities of the technique. However, such cases
may be problematic in data assimilation applications, where
the full waveform is needed. In these cases, we can use the
tsunami component produced by the decomposition (step 4
in the procedure described in Sect. 2.4) at the time of assim-
ilation.

As shown in Fig. 13, the tsunami components extracted
during monitoring at different times approximate the tsunami
waveform much better than the detection curve by itself.
However, the use of the full component extracted through FIF
decomposition may be a heavy operation to perform in real
time, since it would require the transmission of a 3 h long sig-
nal, i.e., a 720-element-long vector, instead of a single num-
ber as needed for the detection curves. In instruments where
power management is critical, such as DART stations, this
operation should be performed rarely, e.g., once at a fixed
time after detection, if precise data are needed, as is the case
in data assimilation contexts (Wang et al., 2019b). Lastly, we
also note that such large discontinuities in the detection curve
are present in very few detection curves and that the example
in Fig. 13 is the most pathological.

4 Conclusions

Four tsunami real-time detection algorithms, one of which is
presented in this work for the first time, have been analyzed
and compared. In particular, they have been tested against a
large amount of real OBPG data from NOAA’s and GeoNet’s
DART networks, both in the presence and in the absence of

oscillations related to the earthquake and the tsunami. Firstly,
we have determined the main properties of the techniques
by analyzing their application to background signals. These
background tests, which include five signals of 1-month du-
ration and signals of 20 d duration acquired simultaneously
from 16 different stations, show consistent results in terms
of amplitude and spectral content. After that, a dataset of
tsunami signals from past events has been analyzed and de-
tection rates of each technique have been quantified through
simple detection scores, with the goal of determining optimal
detection thresholds.

For detection applications only, Mofjeld’s algorithm re-
mains the best-performing technique, both in terms of de-
tection metrics and computational speed. However, the algo-
rithm is not the most suitable to correctly characterize the
tsunami waves or to filter out high-frequency components
(e.g., the seismic Rayleigh waves). The EOF and TDA tech-
niques present variable behavior. EOF is not able to reduce
the tidal residual below ∼ 2 cm, leading to incorrect char-
acterization of low-amplitude tsunami signals. TDA has a
strong dependence on the precision of precomputed tidal co-
efficients, resulting in a large number of detection curves
with amplitudes of several centimeters, too large for a pre-
cise detection of offshore-traveling tsunamis. Investigating a
combination of TDA with a different detiding technique may
be the subject of future work.

The newly developed FIF-based detection method possi-
bly shows the best compromise between detection and real-
time characterization. Optimal detection thresholds for the
technique have been determined to be

1. T = 2 cm for the goal of minimizing false detections

2. T = 1.5 cm for maximizing tsunami detection with re-
spect to earthquake and false detections, based on two
simple detection scores.

Furthermore, it is shown that the entire tsunami component
over the 3 h period reproduces accurately the tsunami wave-
form, allowing the characterization of wave amplitude and
period even in the rare cases where the detection curves fail
to do so.

Future work is planned for the application of the technique
to the DART 4G stations and non-OBPG data (e.g., coastal
tide gauges) and to tsunamis of nonseismic origin, for ex-
ample for OBPGs which are planned at Stromboli to mon-
itor volcano-induced tsunamis (Selva et al., 2021a). On the
other hand, the technique is already fast enough to be ap-
plied in real time, but an onboard implementation will require
greater optimization to limit power consumption, especially
in the case where the entire tsunami components have to be
transmitted. Future work is then also planned for the numer-
ical optimization of the technique by exploiting the recent
installation of SMART cables (Howe et al., 2019) and also
in view of the recent installations in the Ionian Sea of a dedi-
cated instrumented cable to detect earthquakes and tsunamis
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(Marinaro et al., 2024) and of further DART-like OBPGs by
CAT-INGV (Amato et al., 2021).

Code and data availability. All data used in the work are
available in the Unassessed Ocean Bottom Pressure (high-
est available resolution) catalog available on NOAA’s web-
site (https://www.ngdc.noaa.gov/thredds/catalog/dart_bpr/rawdata/
catalog.html, NOAA National Centers for Environmental Infor-
mation, 2025) or from the New Zealand DART Dataset at
https://doi.org/10.21420/8TCZ-TV02?x=y (GNS Science, 2020),
through GeoNet’s Tilde API (https://tilde.geonet.org.nz/, 24 Febru-
ary 2025). The computation of tidal coefficients has been carried out
using UTide (Codiga, 2011), available at https://www.po.gso.uri.
edu/~codiga/utide/utide.htm (last access: 24 February 2025). For
the FIF technique (Cicone, 2020) and the IMFogram algorithm
(Barbe et al., 2020, https://doi.org/10.48550/arXiv.2011.14209; Ci-
cone et al., 2024a, https://doi.org/10.1016/j.acha.2024.101634),
we used the codes developed by the original developers of the
techniques, available on GitHub at https://github.com/Acicone/FIF
(last access: 24 February 2025) and https://github.com/Acicone/
IMFogram (last access: 24 February 2025), respectively. Everything
else, such as the FIR filter coefficients and the empirical orthogonal
functions, has been computed through native MATLAB functions,
and scripts are available as the Supplement.
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